MATH 201 (SUMMER 2023, SESH A2) LECTURE 4: 05/18/23 ANURAG SAHAY OFF HRS: BY APPT (VIA 700M LECTURES: 9:00 AM - 11:15 AM email: anuregsahay@rochester.edu

Zoon ID: 979-4693-6650

COURSE

PHOTOS TAKEN TEXTBOOK

WEB PAGE https://people.math.rochester.edu/grads/asahay/summer2023/math201/index.html

AHHOUNCEMENTS

1 LECTURE 3 IS UPLOADED. (PAMOTTO SCHEDULE)

2 UPCOMING DEADLINES:

2 HW 1 (FRI, MAY 194 AT 11 PM ET) -> STRICT.

B) WW 2 (SAT MAY 20th AT 11 PM ET) -> LOOSE-3) WW 1 IS CLOSED. (4) OFFICE HOURS TO DAY

COLLABORATION IN HW 1. 3- NAMES.

[] IMP: FILL OUT FORM. SCHEDULING.

(LINK ON BLACKBOARD)

PLEASE KEEP YOUR VIDEOS ON, ZF POSSIBLE

P(AB) = P(AOB)

A AHD B

\$2.1 CONDITIONAL PROBABILITY

PANDOMNESS CAN BE THOUGHT OF AS LACK
OF IHFORMATION

e.g. TEMPERATURE

PAY-TO-DAY VARILITION
OF AT MOST 20°

$$e \cdot g = \{1, 2, 3\}$$

$$P(1) = \frac{1}{5}, P(2) = \frac{2}{5}, P(3) = \frac{2}{5}$$

$$PROMISE: THE RESULT OF THE EXPERIMEN$$

PROMISE: THE RESULT OF THE EXPERIMENT IS EITHER 1 OR 2.

WHAT IS THE MEW PROBABZLITY P?

$$P(1) \vee P(1) \wedge P(2) \vee P(2)$$
 $P(3) = 0$

WHAT IS THE MEW PROBABZLITY
$$\stackrel{\sim}{P}$$
?

 $\stackrel{\sim}{P}(1) \swarrow P(1) \swarrow \stackrel{\sim}{P}(2) \swarrow P(2)$
 $\stackrel{\sim}{P}(3) = 0$
 $\stackrel{\sim}{P}\{1/2\} = \stackrel{\sim}{P}(1) + \stackrel{\sim}{P}(2) = 1$
 $\stackrel{\sim}{P}(2) = 2\stackrel{\sim}{P}(1)$
 $\stackrel{\sim}{P}(2) = 2\frac{1}{3}$

$$\frac{\widetilde{p}(1)}{1-\widetilde{p}\{1,2\}} = \frac{p(1)}{p\{1,2\}} \Rightarrow \widetilde{p}(1) = \frac{p(1)}{p\{1,2\}} = \frac{1}{\sqrt{s+2/s}}$$

$$\frac{\widetilde{p}(2)}{1-\widetilde{p}\{1,2\}} = \frac{p(2)}{p\{1,2\}} \Rightarrow \widetilde{p}(2) = \frac{p(2)}{p\{1,2\}} = \frac{2}{3}$$

Definition 2.1. Let B be an event in the sample space Ω such that P(B) > 0. Then for all events A the conditional probability of A given B is defined as

$$P(A \mid B) = \frac{P(AB)}{P(B)}. = \frac{P(A \cap B)}{P(B)}$$
(2.2)

$$\tilde{P}(.) = P(.)B$$

Fact 2.2. Let *B* be an event in the sample space Ω such that P(B) > 0. Then, as a function of the event *A*, the conditional probability $P(A \mid B)$ satisfies the axioms of Definition 1.1.

Figure 2.1. Venn diagram representation of conditioning on an event. The conditional probability of A given B is the probability of the part of A inside B (the shaded region), divided by the probability of B.

KOLMOGORQV'S.

Example 2.3. Counting outcomes as in Example 1.7, the probability of getting 2 heads out of three coin flips is
$$3/8$$
. Suppose the first coin flip is revealed to be heads. Heuristically, the probability of getting exactly two heads out of the three is now $1/2$. This is because we are simply requiring the appearance of precisely one heads in the final two flips of the coin, which has a probability of $1/2$.

$$A = FLIPPED TWO HEADS.$$

$$EXACTLY$$

$$P(A) = \#FAVOR = \frac{3}{2^3} = \frac{3}{8} \qquad HTHS$$

$$THHS$$

$$B = FIRST FLIP IS HEADS$$

HEA DS

$$P(B) = \frac{1}{2}$$

$$P(A \cap B) = \# FAYER = 2$$

$$P(A|B) = P(A \cap B) = \frac{1}{4} = \frac{1}{4}$$

Fact 2.4. Suppose that we have an experiment with finitely many equally likely outcomes and
$$B$$
 is not the empty set. Then, for any event A

$$P(A|B) = \frac{\#AB}{\#B}.$$

$$P(A|B) = \frac{\#AB}{\#B}. \qquad \# \text{ TO TAL GUTCOMES}$$

$$GIVEH B$$

$$\frac{A(B) - P(A \cap B)}{P(B)} = \frac{\#A \cap B}{\#B}$$

$$\frac{\#A \cap B}{\#B}$$

$$\frac{\#A \cap B}{\#B}$$

$$\frac{\#A \cap B}{\#B}$$

Example 2.5. We have an urn with 4 red and 6 green balls. We choose a sample of 3 without replacement. Find the conditional probability of having exactly 2 red balls in the sample given that there is at least one red ball in the sample.

$$B = A \mid RED \mid BALL$$
 $P(A \cap B)$
 $DEL : GRDER \mid POESH'T \mid MATTER$
 $P(B)$
 $P(B)$
 $P(B)$
 $P(B)$
 $P(B)$

$$P(B) = 1 - P(B^{c}) = 1 - \frac{1}{6} = \frac{5}{6}$$

$$A \cap B = A \qquad (BE(AUSF A \subseteq B)$$

$$P(AB) = P(A) = \frac{\binom{4}{2}\binom{6}{1}}{\binom{10}{2}} = \frac{3}{10}$$

$$P(A|B) = P(AB) = \frac{3}{10} = \frac{9}{25}$$

$$P(AB) = P(A) = \frac{3}{10}$$

$$\frac{3}{10}$$

$$P(AB) = P(A) = \frac{3}{10}$$

P(A|B) = P(AB)MULTIPLICATION RULE P(AB) = P(B)P(A|B)SOMETIMES B& AB ARE EASTER
TO UNDERSTAND THAM AB

Example 2.7. Suppose an urn contains 8 red and 4 white balls. Draw two balls without replacement. What is the probability that both are red?

$$= \#FAVOR = 2$$

TO TAL

MULT. RULE

Fact 2.6. (Multiplication rule for
$$n$$
 events) If A_1, \ldots, A_n are events and all the conditional probabilities below make sense then we have
$$P(A_1A_2 \cdots A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1A_2) \cdots P(A_n \mid A_1 \cdots A_{n-1}). \quad (2.5)$$

. I HOULTZON.

BASE
$$(n=1)$$

CASE $P(A_1) = P(A_1)$
 $(n=2) \rightarrow P(A_1A_2) = P(A_1)P(A_2|A_1)$

$$P(A, A_2, A_3) = P(A_1) P(B|A_1)$$

A,) = P(A, 1A,) . P(A3 | A, A2)

$$P(A_1 A_2) = P(A_1) P(A_2 | A_1)$$

$$P(A_1 A_2 A_3) = P(A_1) P(B | A_1)$$

$$B = P(A_1) P(A_2 A_3 | A_1) = P(A_1) P(A_2 | A_1)$$

$$P(A_3 | A_1) = P(A_1 | A_2)$$

Example
$$\cong$$
 Suppose an urn contains 8 red and 4 white balls. Draw \cong balls P{first two draws are red and the third and fourth draws are white}

R; \rightarrow jth DRAW SS RED

$$P(R_1R_2 W_3 W_4) = P(R_1) \cdot P(R_2 | R_1) \cdot P(W_3 | R_1R_2) \cdot P(W_4 | R_1R_2 W_3)$$

$$P(R_1R_2 | W_3 | W_4) = P(R_1|R_2) \cdot P(R_2|R_2) \cdot P(W_4 | R_1R_2 W_3)$$

$$W_{j} \rightarrow jth \quad DRAW \qquad PS$$

$$P(R_{1}R_{2} W_{3}W_{4}) = P(R_{1}) \cdot P(R_{2} | R_{1}) \cdot P(W_{3} | R_{1}R_{2}) \cdot F$$

$$P(W_{4} | R_{1} R_{2} W_{3}) = \frac{3}{9} = \frac{1}{3}$$

$$P(W_{4} | R_{1} R_{2} W_{3}) = P(R_{1}) \cdot P(R_{2} | R_{1}) \cdot P(W_{3} | R_{1} R_{2}) \cdot P(W_{4} | R_{1} R_{2} W_{3})$$

$$= \frac{2}{3} \cdot \frac{7}{1} \cdot \frac{2}{5} \cdot \frac{1}{3} = \frac{28}{495}$$

P(W3 R, R2) = # FAVOR # TO TAL

$$Q = \{(c,b)\}$$
Example 2.8. We have two urns. Urn I has 2 green balls and 1 red ball. Urn II has 2 red balls and 3 yellow balls. We perform a two-stage experiment. First choose one of the urns with equal probability. Then sample one ball uniformly at random from the selected urn.

What is the probability that we draw a red ball?

What is the probability that we draw a green ball?

What is the probability that we draw a green ball?

$$H = colH Flip$$

$$SS HEADS$$

$$H = ColH Flip$$

$$TS TAILS$$

$$R = BALL IS RED$$

$$G = BALL IS GREEN$$

$$P(G) = P(G O H^C) + P(G O H)$$

$$P(RH) = P(H) P(R|H)$$

$$P(RH') = P(H') P(R|H')$$

$$P(R) = P(H) P(R|H) + P(H') P(R|H')$$

$$= \frac{1}{2} \times \frac{1}{3} + \frac{1}{2} \times \frac{2}{5} = \frac{1}{6} + \frac{1}{5} = \frac{11}{30}$$

$$|00| \frac{1}{3}$$

$$|00| \frac{1}{3}$$

$$P(G) = P(GH) + P(GH^c)$$

$$= P(H) P(G|H) + P(H') P(G|H')$$

$$= \frac{1}{2} \times \frac{2}{3} + \frac{1}{2} \times 0 = \frac{1}{3}$$

IDFA:

 $P(A) = P(AB) + P(AB^c)$ $= P(AB) P(B) + P(AB^c) P(B^c)$

WHAT ARE WE USING ABOUT B & BC?

Definition 2.9. A finite collection of events
$$\{B_1, \ldots, B_n\}$$
 is a **partition** of Ω if the sets B_i are pairwise disjoint and together they make up Ω . That is, $B_iB_j = \emptyset$ whenever $i \neq j$ and $\bigcup_{i=1}^n B_i = \Omega$.

$$B_{j} = \emptyset$$

$$A \cap \left[\bigcup B_{j} \right] = A \cap \Omega = A$$

$$A \cap \left[\bigcup B_{j} \right] = \left[\bigcup A \cap B_{j} \right]$$

$$P(A) = P\left(\bigcup_{j} \left[A \cap B_{i}\right]\right) = \sum_{j} P(AB_{j})$$

$$P(A) = \sum_{j} P(B_{j}) P(A|B_{j})$$

$$A = FLIP IS TAFLS$$

$$B_1 = COIH IS FAIR P(B_1) = 90 = 9$$

$$100$$

$$B_2 = COTH$$
 IS MOD. BIASED $P(B_2) = \frac{9}{100}$

$$\begin{cases} B_{1}B_{2} = B_{2}B_{3} = B_{3}B_{1} = \emptyset \\ P_{1}R_{1}S_{1}S_{2}C_{1} & \emptyset \\ S_{2} & S_{3} = S_{3}B_{1} = \emptyset \\ S_{3} & S_{5} & S_{5} & S_{5} = \emptyset \\ S_{4} & S_{5} \\ S_{5} & S_{5} \\ S_{5} & S_{5} \\ S_{5} & S_{5} \\ S_{5} & S_$$

B. -> ARE PAIR-WISE

$$\frac{1}{10} = \frac{9}{2} + \frac{1}{100} + \frac{9}{100} + \frac{54}{1000} + \frac{9}{1000} + \frac{9}{100$$

 $P(k) = P(B_1) P(A \mid B_1) + P(B_2) P(A \mid B_2) + P(B_3) P(A \mid B_3)$

BACK 10:30 AM

Example 2.12. As in Example 2.8, we have two urns: urn I has 2 green balls and 1 red ball, while urn II has 2 red balls and 3 yellow balls. An urn is picked randomly and a ball is drawn from it. Given that the chosen ball is red, what is the probability that the ball came from urn I?

$$P(A|R) = P(AR) = P(AR) = P(AR)$$

$$P(A|R) = P(AR) = P(AR) = P(A) P(R|A)$$

$$P(A|R) = P(A) P(AR) = P(AR)$$

P(AR)

P(H) P(R | A)

Fact 2.13. (Bayes' formula) If
$$P(A), P(B), P(B^c) > 0$$
, then
$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A \mid B) P(B)}{P(B)}$$

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A \mid B) P(B)}{P(A \mid B) P(B) + P(A \mid B^c) P(B^c)}.$$

$$P(A) = P(A \mid B) P(B) + P(A \mid B^c) P(B^c)$$

(2.9)

STUDY

PRIOR PROBABILITY

Example 2.14. Suppose we have a medical test that detects a particular disease 96% of the time, but gives false positives 2% of the time. Assume that
$$0.5\%$$
 of the population carries the disease. If a random person tests positive for the disease, what is the probability that they actually carry the disease?

$$D = PERSON TESTED AAC DESCA SE$$

population carries the disease. If a random person tests positive for the disease, what is the probability that they actually carry the disease?

$$D = PERSON TESTED HAS DISEASE, D&D^{C}$$

$$PARTITOH$$

$$+ = PERSON TESTS POSITIVE$$

$$P(D | +) = P(D \cap +) = P(D) P(+ | D)$$

$$P(+) = P(D) P(+ | D) + P(D') P(+ | D')$$

$$P(+) = P(D) P(+ | D) + P(D') P(+ | D')$$

$$P(+) = P(D') P(+ | D')$$

$$P(+) = P(D') P(+ | D')$$

$$P(+) = P(D') P(+ | D')$$

$$P(D|+) = P(D) P(+|D)$$

$$P(D) P(+|D) + P(D^{c}) P(+|D^{c})$$

$$= \frac{\frac{1}{2*o} \times \frac{24}{25}}{\frac{1}{2*o} \times \frac{24}{25}} \approx O \cdot 194$$

DO DOCTORS TRUST MEDICAL TESTS)

MHY

$$P(D) = \frac{1}{2} \qquad P(D') = \frac{1}{2}$$

$$P(D|+) = \frac{P(D) P(+|D)}{P(D) P(+|D)} = \frac{\frac{1}{2} \cdot \frac{96}{100}}{\frac{1}{2} \cdot \frac{96}{100} + \frac{1}{2}}$$

Fact 2.15. (General version of Bayes' formula) Let
$$B_1, \ldots, B_n$$
 be a partition of the sample space Ω such that each $P(B_i) > 0$. Then for any event A with $P(A) > 0$, and any $k = 1, \ldots, n$,
$$P(B_k \mid A) = \frac{P(AB_k)}{P(A)} = \frac{P(A \mid B_k) P(B_k)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)}.$$
 (2.10)

$$P(B_k \mid A) = \frac{P(AB_k)}{P(A)} = \frac{P(A \mid B_k) P(B_k)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)}.$$
 (2.10)

$$P(B_k \mid A) = \frac{P(AB_k)}{P(A)} = \frac{P(A \mid B_k) P(B_k)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)}.$$

$$PRIQR \qquad Posterior.$$

$$P(B_k \mid A) \rightarrow PRIQR \qquad P(A \mid B_k) P(B_k)$$

$$\begin{array}{c} P(B_{k}) \rightarrow PRZOR \\ P(B_{k}|A) \rightarrow POSTERZOR \\ \end{array}$$

$$\begin{array}{c} ELECTIOH \\ 100 \rightarrow \end{array}$$

$$\begin{array}{c} FORECASTING, \\ 100 \rightarrow \end{array}$$

$$\begin{array}{c} 100 \\ 10 \end{array}$$

$$\begin{array}{c} 100 \\ 10 \end{array}$$

Example 2.16. Return to Example 2.11 with three types of coins: fair (*F*), moderately biased (*M*) and heavily biased (*H*), with probabilities of tails
$$P(\text{tails} \mid F) = \frac{1}{2}, \quad P(\text{tails} \mid M) = \frac{3}{5}, \quad \text{and} \quad P(\text{tails} \mid H) = \frac{9}{10}.$$

We hold a coin of unknown type. The probabilities of its type were given by

We hold a coin of unknown type. The probabilities of its type were given by
$$P(F) = \frac{90}{100}, \quad P(M) = \frac{9}{100}, \quad \text{and} \quad P(H) = \frac{1}{100}.$$

These are the prior probabilities. We flip the coin once and observe tails. Bayes' formula calculates our new posterior probabilities.

$$T = FLIP TURNS QUT TAILS.$$

$$P(F) P(T|F)$$

$$P(S, O(T|F) + P(M) P(T|M) + P(H) P(T|H)$$

$$T = FLIP TURNS QUT TAILS.$$

$$T = P(F) P(T|F)$$

$$T = FLIP TURNS QUT TAILS.$$

$$P(F) P(T|F)$$

$$P(H) P(T|H) ?$$

$$P(F) P(T|F)$$

$$P(H) P(T|H)$$

$$P(H) P(T|H)$$

$$P(M|T) = P(M) P(T|M) = \frac{q}{100}, \frac{3}{5} = \frac{54}{513}$$

$$P(T) = \frac{9}{100} P(T|M) = \frac{1}{513}/1000$$

$$P(H|T) = \frac{9}{100} P(T|M) = \frac{1}{100}, \frac{9}{10} = \frac{9}{513}$$

$$P(T) = \frac{9}{100} P(T|M) = \frac{9}{100}, \frac{9}{100} = \frac{9}{513}$$

$$P(F) = \frac{9}{100} = 0.9 \qquad P(F|T) \approx 0.877$$

$$P(M) = \frac{9}{100} = 0.09 \qquad P(M|T) \approx 0.105 \qquad 1$$

P(H/T) ~ 0.018

P(H)

= 1/100 = 0.01

REMITTIOER: OFF HRS TOPAY AT 49M