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Definition 2.1. Let B be an event in the

sample space €2 such that,P(B) > 0)
Then for all events A the conditional probability of A given B is defined as
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— 1 AN Fact 2.2. Let B be an event in the sample space Q2 such that P(B) > 0. Then,

p ( \ - ? / , \ rR \ as a function of the event A, the conditional probability P(A | B) satisfies the
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Figure 2.1. Venn diagram representation of |
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A given B is the probability of the part of A inside B
(the shaded region), divided by the probability of B.

conditioning on an event. The conditional probability of




Example 2.3. Counting outcomes as in Example 1.7, the probability of getting 2
heads out of three coin flips is 3/8. Suppose the first coin flip is revealed to be

heads. Heuristically, the probability of getting exactly two heads out of the three

is now 1/2. This is because we are simply requiring the appearance of precisely
one heads in the final two flips of the coin, which has a probability ofL"l:m
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Fact 2.4. Suppose that we have an experiment Withlflnitely many equally
likelz\ outcomes and B is not the empty set. Then, for any event A
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Example 2.5. We have an urn with 4 red and 6 green balls. We choose a sample

of 3 without replacement. Find the conditional probability of having exactly 2 red

balls in the sample given that there is at least one red ball in the sample.
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Example 2.7. Suppose an urn contains 8 red and 4 white balls. Draw two balls

—
without replacement. What is the probability that both are red?
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Fact 2.6. (Multiplication rule for n events) If A;,..., A, are events and all the
conditional probabilities below make sense then we have

P(A1A; - - - Ay) = P(A1)P(A2 | A1)P(A3 | A1A2) - - - P(An | AL - - - An—1). (2.5
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Q .:f; ( ‘) ly) } Example 2.8. We have two urns. Urn I has 2 green balls and 1 red ball. Urn II has

/,\ 2 red balls and 3 yellow balls. We perform a two-stage experiment. First choose

[ one of the urns with\equal probability)l Then sample one ball uniformly at random

No7 | EL6. from the selected urn. o By <9rIH FLze
What is the probability that we draw a red ball?
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Definition 2.9. A finite collection of events {By, ..., B,} is a partition of Q if
the sets B; are pairwise disjoint and together they make up 2. That is, B;Bj = @
whenever i # j and |Ji_, B; = Q.
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Fact 2.10. Suppose that By,.. ., B,, is a partition of Q with P(B;) > 0 for i =
1,..., n. Then for any event A we have 7 [ AW GCE
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Example 2.11. There are three types of coins in circulation. 90% of coins are fair
coins that give heads and tails with equal probability. 9% of coins are moderately
biased and give tails with probability The remaining 1% of coins are heavily

biased and give tails with probability, 9/10.[ The type of a coin cannot be deter-

mined from its appearance. I have a randomly chosen coin in my pocket and I flip

it. What is the probability I get tails?
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Example 2.12. As in Example 2.8, we have two urns: urn I has 2 green balls and 1

red ball, while urn II has 2 red balls and 3 yellow balls. An urn is picked randomly

and a ball is drawn from it. Given that the chosen ball is red, what is the probability

that the ball came from urn I?
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P(B|A) =

Fact 2.13. (Bayes’ formula) If P(A), P(B), P(B€) > 0, then
P(AB) _ P(A|B) P(B)

P(A)  P(A|B)P(B) + P(A| B¢) P(BC)

(2.9)
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Example 2.14. Suppose we have a medical test that detects a particular disease
96% of the time, but gives false Bositives 2% of the time. Assume that of the

population carries the disease. If a random person tests positive for the disease,

what is the probability that they actually carry the disease?
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Fact 2.15. (General version of Bayes’ formula) Let By, ..., B, be a partition of

the sample space 2 such that each P(B;) > 0. Then for any event A with

P(A) > 0,and any k= 1,...,n,

P(ABx) _ P(A|Bk)P(Bx)
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Example 2.16. Return to Example 2.11 with three types of coins: fair (F), moder-
ately biased (M) and heavily biased (H), with probabilities of tails

P(tails| F) = 7, P(tails|M) =%, and Pl(tails|H)= .

We hold a coin of unknown type. The probabilities of its type were given by

P(F)= 3%, PM)= g5, and P(H) = .

These are the prior probabilities. We flip the coin once and observe tails. Bayes’

formula calculates our new posterior probabilities.
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