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SIMULATION OF WAVES ARISING
IN ACOUSTIC WELL-LOGGING

Abstract. Waves arising in acoustic well-logging associated with Biot media are approxima-
ted by efficient finite element methods. Several numerical experiments are reported.

§1. Introduction

In this paper we are concerned with the numerical simulation of waves
arising in acoustic well-logging. The problem consists of acoustic and elastic
wave propagation in a cylindrical, fluid-filled borehole £ surrounded by a
fluid-saturated porous solid §2,. Compressional point sources are excited at
points on the centerline (and z-axis) £ of the borehole, and the pressure is
recorded by receivers also located along L, as well as various displacements
at points in the porous medium. For simplicity we assume the whole system
Q=Q;UQ, isisotropic and radially symmetric about L. The acoustic wave
equation for compressible, inviscid fluids is used to describe the propagation
of waves in ;. Biot’s equations [2], [3] are used to describe the propagation
of waves in the porous medium ,. Absorbing boundary conditions are used
on the artificial boundaries used to limit the domain (8], [12]. On the surface
between ©; and €, we have used the boundary condition suggested in [11],
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which represents a way of including the effects of the mud cake on the wave
field; in the experiments reported in §3 we used the special case for a closed
.interface.

Finite element methods for approximating the solution to this problem
were introduced and analyzed in an earlier paper [12]. In this paper we show
numerical results obtained by the implementation of this technique. We com-
pare the resulting waves when the porous medium consists of sandstone satu-
rated by different fluids.

The organization of this paper is as follows. The model and the fi-
nite element technique are described in §2. The numerical experiments are
described in §3.

§2. The model

As announced above, we shall consider the propagation of waves in the
isotropic and radially symmetric domain Q = Q; UQ,. We use the natural
cylindrical coordinates. Without loss of generality the system can be described
as follows:

Q={(r0,2z): 0<r<R,, 0<60<2r, 0<2<zp},
Qp={(r0,2): 0<r<R;, 0<0<2r, 0<2< 25},
Qp={(r,0,2): Ry<r<R,,0<0<2r,0<z2<zp}.

Let the artificial top and bottom boundaries of Q; be labeled Ty, the
artificial top and bottom boundaries of ©, be labeled Ty, the artificial
outer boundary of €, be labeled T3, and let the boundary between Q
and Q; be T3. A vertical cross section for any 6 =6, is shown in Figure 1.

Let w; = (uy,, 0, uy,) represent the fluid displacement in the borehole
and let u; = (ua, 0, uz,) and U3 = (u3r, 0, uz,) be the vectors representing,
respectively, the solid and the averaged fluid displacements in the porous
medium. Set  uz = ¢(r, z)(us — uz), where ¢(r,z) is the effective porosity.
Then, using the symmetry, the components of the strain tensor e(u;) in the
solid part of Q, can be written as follows [7] [6]:

Ou;
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Denote the total stress tensor by 7(uz,us) and the: fluid preslslure 1112 ] .Qp
by p(us, us). The stress-strain relations can then be written as follows [2]:
‘2’ .

Tor (g, ug) = AV -tz + 2N €, (u2) + QV - u3
= AV - uz + 2N g4 (u2) + QV - uz ,
= AV - -uy3+2Ne¢€,,(u)+QV-uz,
s (u3) = 2N €, (uz)

T =T9; =0,
=—QV uy— HV -u3 .

Tog (U27 US)

T2z (u21 ua)

p(ug, uz)

(2.1)

In the above expressions A, N,Q, and H are assumed to be functions of
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and z alone. They are also assumed to satisfy the following assumptions:

N(r,z) >0, H(r2) >0, (A+§-N)(r,z) >0,

2

2 —
(A+§N—%) (r2)>0, (r0,2)€Q,=90,UdQ, .

(2.2)

These assumptions are necessary for the strain energy density to be positive.
Next, let p = p(r,z) be the total mass density of the bulk material in €,
and let p; = p;(r,z) be the mass density of fluid both in 2y and in Q,.

Also, let g = g(r,z) be the mass coupling parameter between the fluid and
the solid in Q, [3]. Assume that

pyg(r,z) — p}'(r,z) >0, (r,0,2) €y ; (2.3)

this is a necessary and suflicient condition for the kinetic energy density in Q,
to be positive. Let s = u(r,z) represent the fluid viscosity, K = K(r,z) the
scalar rock permeability, and A s = Ay(r,z) the incompressibility modulus
of the fluid in Q,. The three functions p, K, and A; are assumed to be
bounded above and below by positive constants.

" Let initial conditions up(r,2) = (uf,,0,ul,) and (9u;/0t)° = W) =
(v9,,0,49,) and forces fi(r,2,t) = (fir, 0, f1.) be given for (r,6,2) € Q.
Initial conditions and forces are assumed to be zeroin Q,. Then the problem
can be stated as follows. We want to find u(r, z,t) = (w1, uz,uz), t € J = (0,T),
such that

) Py 6;?;’ - 3% (AsV -u1) = fir(r,2,1) ,
it) py 8;% - 6% (AfV-w) = fi.(r,2,t), for (r,0,21)€ QrxJ,
and
i) p 3;;122, +py 6;:‘5’ - % 327 (r7rr(uz, u3)) — 6%- Tra(u2) + Too (2, U3) =0,
iv) ‘9;‘22’ +p; ‘9;;‘23‘ - } a% rres(uz) — a% 7.2 (g, ug) = 0,
v) oy 6;;‘22’ +g 6;;"23' + L 6;;" + a%P(Uz,us) =0,
vi) py 6;?:, + 6;;13,_'_ % agfz + a%p(uz,ua) =0, for (r,6,2)€Q, xJ,

(2

subject to the boundary

z) - AfV c U
i) (—Tvp vy,
alt
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Ou
i) -A,v.ulz,/p,Afa—t‘.u,, (r,0,z,8) €Ty x J ,
i1) (_TVP'VP’ _TVp'X,lia "'TVp'Xz’ p)t:

dup  Oup , Oup o Oug '
ot Ve o Xer Ty Xer T P)

(r0,2,t) € T2 UTg) x J=Tax J , (2:9)
111) Tvp + AfV ouyvy =0, (r,0,2,t) €3 xJ,
v) (uz+ug) - vp+u vy =0, (r,8,z,t) €Tz x J,
v) —p+m%";-up:AfV~u1 , (rn8,z,t)elzxJ,
and the initial conditions
| i) uy(r,2,0) =ul(r, 2) , (r,0,2) €y,
it) (uz,u3)(r,2,0) =0, (r,0,2) €Qp ,
117) -38%1- (r,2,0) = vi(r,2) , (r,0,2) € Q5 , (2:6)
iv) %(UQ,U3)(7‘, 2,0)=0, (r,8,2) €, .

In the above v = (Vir, Vig, Viz) = (Vir, 0, ¥iz), © = f,p, denotes the unit
outward normal along 8Q; and x} and x} denote orthogonal unit tangent
vectors along 09,.

Equations (2.4)(i)-(ii) are the standard equations of motion for com-
pressible, inviscid fluids. The equations (2.4)(iii)-(vi) are Biot’s equations for
the fluid-saturated porous medium €, [2], [3]. The boundary conditions
(2.5)(i-ii) are artificial boundary conditions. They. are derived by requiring
that waves arriving normally to an artificial boundary be absorbed comple-
tely (i.e., passed through transparently). The first, (2.51), is well known, and
the second, (2.5ii), is derived in [12]. The matrix B(r,t) € R*** in (2.5ii) is
a symmetric and positive-definite matrix whose terms depend upon the phy-
sical parameters A,N,Q, H,p,py, and g. The exact form of B is given in
[12]. The third boundary condition, (2.5iii), imposes continuity on the normal
stresses and requires the vanishing of the tangential stresses along I3, and
(2.5iv) imposes continuity on the normal displacement along T3. The last
boundary conditions, (2.5v), was suggested in [11] to relate the fluid pressure
on both sides of TI's. The nonnegative coefficient m = m(z) is used to
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describe the behavior of the mudcake; it represents a surface impedance. In
the numerical experiments we choose the limit case m = 400, corresponding
to a closed interface, which in most cases is a good approximation to the real
conditions inside the borehole. Thus, (2.5v) is replaced by

uz-v=0, on IgxJ,

and (2.5iv) reduces to

ug-l/p+u1~1/f=0 on I'3xJ.

Existence and uniqueness results for the above system were stated and
proved in [12]. Also, in the same paper, a finite element procedure for obtai-
ning an approximate solution was defined and analyzed. We summarize this
procedure below.

Let H(div,9;), i = f,p, be the closed subspace of H(div, ;) given by

H(div, %) = {p = (¢r, vs, p:) € H(div, %), 05 = 0} .
Similarly, let

Opr _ Op,
HI(QP)S:{¢:((PM ¥e, Wz)E]{l(Qp)a: we=0, 20 = 30

:o};

1(9,)? is clearly a closed subspace of HY(9,)3. Next, let V = H(div, Q) x
HY(Q,)? x H(div, Q,), which is a separable Hilbert space under the natural
norm. Since the boundary condition (2.5iv) is an essential boundary condition,
it must be imposed on the test space. Hence, we need to restrict the admissible
test functions to the set V = {(v1, v, v3) € V: (va+v3—v) -vy=00nT3}; V
is a closed subspace of V.

The weak form of the problem is found as usual by multiplying the
equations (2.4) by admissible test functions and then integrating by parts.
The resulting equation is

Oy ) ( 9% (u2, u3) O(u2,u3)
p_f y U1 + A ) (UZ)'UJS) + c ) (UZ)US)
( o "), FIE , a1

du du
+ A(u,v) + (\V/pr Ay —67{ vy, vy, + (m 0_t3 “Vp, V3 Vp)Iy

4

2 6U3

Quz Ot Oup
+<B<6t RCARFTIS

= (fl)vl)f )‘

Xp) —é_t—'Xp) _a_t‘
‘U:(vl,vg,v3)€V, teJ.

t
1 2 t
Vp) y (UZ'VpsvZ‘Xp,vZ'Xp:va'Vp) )I‘a'
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In the above equation A(r,z) and C(r,z) are matrices in R*** and are

el ppl 1] 0 0
'A_[pfl gI]’ C=pK [0 11"

given by

where I isthe identity matrix in R?*2, C is nonnegative, and A is positive
definite. Also, A(v,w) is the symmetric, bilinear form defined on V by

A(v, w) = (A!V ‘v, Vo wl)] + (Trr(v21 7)3) ) 5rr(w2))p
+ (706 (v2,v3) , €00(w2))p + (T22(v2,v3), €:2(w2))p

+ Q(Trz(")?’ 1)3) ) €rz(w2))p - (P(Uz, 1)3) y V. w3)p .

As a result of Korn’s second inequality and the physical assumptions on the
coefficients, it can be shown [12] that

A(v,v) 2 alloll% = ex(lluallg o, + (v, v3)ll5,0,), vEV .

The finite element procedure can then be formulated as follows. For
0<h<l, let f =r{(Q) and ¥ =§(Q,) be quasiregular partitions of Q;
and €, into elements generated by rotating rectangles in r and 2z about
the z-axis. Let the rectangles be bounded in diameter by h. Let Py y(r,z2)
denote the piecewise bilinear polynomial functions in r and 2, and set

My = {p = (¢r, 0, p,) € CO(Q) : oy € TPy 1(r,2) and @, € Py y(r,2)} .

Clearly, M, Cc HY(®Q,)®. The r component is multiplied by r in order
to ensure that all the terms of ¢(p) remain piecewise polynomials. The
approximation property

inf {|[v=ello,a, +2|lv—ellia,} < ch’|lvlls0,, s=1,2 (2.8)
WEM)

holds; this result is proved in [9].

Let Wi(S%), i=f, p, be the vector part of the lowest order mixed finite
element space defined by one of the authors in [9]. Away from r =0, the
elements in Wj(€;) are locally of the form (ar~! +br, 0, c+dz), while the
innermost elements near r = 0 have the local form (br, 0, c+dz). These
have the same approximation properties as the usual zero order mixed finite
element spaces [9]:

; inf v - iv.0:) < ch(||v 4|V - )
i) e llv = ellarcaivnn < ch(llvllia: + IV - vll0:) 09
i1) inf Ilv = ¢lloq; < Ch”v”l.ﬂa .

PEWL (%)

)
bE
H
4
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Let Vi = Wi(Q)) x My x Wa(€,) and set Vi = {v € Vs : (va+va—v1)-vy = ~ Let [v,w]i and ||jvlflc
0onI'z}. Then Vi CV and it follows from (2.8) and (2.9) that (v,w); and the norm ||o|lc
rule (2.12). Also let ((v,

(2‘10) using (2.12).
- ' The discrete-time ex

Vi, n€{0,1,...,L}, sucht

qjggh (lvi = e1llo,0, + [[(v2, v3) = (2, 93)llo,0,]
< chflluilli,a, + [I(v2, v3)ll1,0,]

for ve (HY(Q;)® x H'(2,)? x HY(2))nV, and that
[ O2UT, vils + [A0° (U2, U

b Mo = ellv < chlllenlla, +11V - nllsa, @11) |+ UerAOUT vy, v
+lvzllza, +llvsllie, +11V - vsllia,] + ((B(OU3 v, OUF - x;

H H q = (f7 s Vi, 1c¢
for v e (H(Q)? x H2(,)® x H(2,)) NV such that V.v € H'(Q;) and =)y, veW, Lt

V vz € HY(Q,).

: A stability criterion At <
Let L be a positive integer, At=T/L, and U™ = U(nAt). Set

method. An upper bounc

dU"™ = (U™t - U")/At , is satisfied, and if +° an
U™ = (U™ — U™/ (2 At) _optimal order estimate hc
yn = (Ut - 20" + UMY /(AL)? AT

o°U" =(U 0m+ U /(AY) . | 15‘13/12{-1(”“{'(“1 Uy)

Mass lumping will be used for all terms involving differentiation with respect
to time in order to get an explicit procedure. This is equivalent to computing
all integrals involving time derivatives using the quadrature rule

/Q f(r,z)rdrdfdz ~ %} heho[firy + fara + fara + fard] (212) | §3. Numerical experin
where f; denotes the value of f at the node a; in the rectangle @ (see The finite element j
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Let tv, w); and |||v|llo,; » i = f,p, denote, respectively, the inner product
(v,w); and the norm llvllo.o; computed approximately using the quadrature

rule (2.12). Also let ((v,w)) denote the inner product (v,w)r computed

using (2.12).
The discrete-time explicit Galerkin procedure consists of finding U™ €

Vi, n€4{0,1,...,L}, such that

[pfazU?, Ul]j + [-Aaz(UZ, U3)ny (UZ; ”3)]p + [Ca(U27U3)n» (vz’v3)]P + A(Un: v)
+ ((Vps As OUT -wp, vi-vy))r, + ((mOUS - vy, vs-vp))rs
+ ((B((?Ug - Vp’ 6U; : X;) ) aU; ' X}Z; ) aUZ;l . VP)t ) (’U2 : Up) V2 X,l): Vg - X,Z;y v3 - Vp)t»[‘z

=(f,v1)s, vE W, 1<n<L-1.
. (2.13)

A stability criterion At < cjh s necessary because of explicit nature of the
method. An upper bound for ¢ is given in [12]. If the stability criterion
is satisfied, and if v® and o' are chosen correctly, then [12] the following
optimal order estimate holds:

max  (||lde(wr — U)Vlllog, + lldi(uz — Uz, us — Us)Vllloa, + llu = U)N|lv)

1<N<L-1
< c(u®, 0, u)[(At)2 + A] .
(2.14)

§3. Numerical experiments

The finite element procedure (2.13) was implemented with 7/ and 7
being taken to be rotations of uniform rectangles in r and 2. For all
the tests the fluid in the borehole was taken to have density 1.4 gr/cm® and
sound velocity 1250 m/sec. The mass-coupling parameter g was chosen to
be p;S/¢, where S is a structure parameter. Several authors have reported
values for S between 2.1 and 3.3, [5], [10]. Here, we have chosen S = 2.8.
The density of the bulk material can be obtained by the formula

P:(1_¢)ps+¢Pj .

The main frequency of the source was taken to be 21 khz; this frequency is
more or less standard in acoustic well-logging field tests. The porous material

was chosen to be Berea sandstone saturated by gas or water. The physical

data for the formation was taken from [11] and is summarized in Table 1. For
a more effective logging, it is desirable that the energy coming from the well
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into the formation hit the interface I'; at an angle of approximately 30°.
This can be achieved by using two compressional point sources located at the

centerline of the borehole, at a distance of one wavelength and fixed with a

time delay t4 related to the main frequency and wavelength by the formula
tq = .36/main frequency. '
The compressional point sources have the form
fi(r,z,t) = g(t) Vér=0,2=2; , i=1,2,

where g(t) is any desired waveform. We chose [13]

glt) = =2t — t,) =600
with ¢ being related to the main frequency chosen. The domain Q was
taken to be 260 cm deep and to have a total radius of 24 cm. The borehole
radius above was 8 cm. The tests were run for 2.07 msec with a time step of
.0007 msec. Both Ar and Az we take to be .4 cm. As it is known [2], [3],
there are three different kinds of body waves that can propagate in a fluid-
saturated porous solid, which we will refer in the text as type I and type II
compressional waves and shear waves. Also, we have the direct compressional
wave travelling in the‘fluid in the borehole, and several other types of waves
such as the pseudo-Raleigh and Stoneley waves, which are surface-like waves
generated by the interaction of Q; and €, along TI.

In acoustic well logging a set of receivers is located along the centerline
of the borehole at a certain distance from the sources. The numerical experi-
ments locate the sources at depths .22079 m and .27921 m and 6 receivers at
increments of .2 m between 1.4 m and 2.4 m below the sources. The deeper
source was fired .017 msec after the upper source.

In Figure 3 we show the snapshot of the pressure in the well and the
trace of the total stress in the formation (i.e., 7rr + 96 + 7;) at time .1 msec.
The effect of constructive interference of the wavefronts generated by the
point sources in the well is clearly appreciated. We also see the compressional
wavefront generated in the formation starting to travel downward with the
energy concentrated near the interface.

Figure 4 displays the same quantities as Figure 3 but at times .1 msec
and .2 msec to show the evolution of the compressional wavefronts. At time .2
msec we see a better developed wavefront travelling downward in the forma-
tion at a much greater speed than the corresponding wavefront in the borehole.
The energy radiated back from the formation into the well at the bottom of
the snapshot cannot be seen because of its low amplitude compared with the
events above in the well.

W]

DEVELOPMENT

0 cm

WELL

40 cm




ngle of approximately 30°.
oint sources located at the
avelength and fixed with a
wavelength by the formula

sen. The domain Q was
is of 24 cm. The borehole
’ msec with a time step of
m. As it is known [2], [3],
can propagate in a fluid-
ext as type I and type II
e the direct compressional
veral other types of waves
lich are surface-like waves
Ts.
cated along the centerline
es. The numerical experi-
7921 m and 6 receivers at
" the sources. The deeper

ssure in the well and the
96 + 7;;) at time .1 msec.
ofronts generated by the
so see the compressional
ravel downward with the

e 3 but at times .1 msec
al wavefronts. At time .2
downward in the forma-
vavefront in the borehole.
he well at the bottom of
itude compared with the

WELL-LOGGING EXAMPLE

233

DEVELOPMENT OF COMPRESSIONAL WAVEFRONTS

0 cm

WELL

40 em

Time 0.1 msec

FORMATION

8 cm

Figure 3

24 cm

2 21 khz sources; lower source delayed




234

WELL-LOGGING EXAMPLE

DEVELOPMENT OF COMPRESSIONAL WAVEFRONTS

0 em

70 cm

0.1 msec

2 21 khz sources; lower source delayed

Figure 4

The same effects
where we show snapshot
in the well and the total
ug, + u3;) also at times
wavefronts in the forma
too early to see a separa
speeds.

In Figure 6 we sh
borehole and for the we
each geophone are mark
travelling downward thr
pl* and pl** correspon
wave.

Figure 7 shows tl
depth 240 cm in the bc
the type I compression
ple reflections pl* an
sponds to the arrival c

wave generated by ener
1 [ boreh
s

the borehole and travel
Its arrival time can be
surface-related wave, tl
velocity smaller than tl
is the packet arriving a

gle 0,5 = sin™

To compare the
rant fluids and their efl
water-saturated Berea ¢
sandstone. The gas anc

In Figure 8 we pl
cm for both the gas —
smaller amplitude is ob
is explained by the fact
the pores is much stror
saturated sandstone, d:
the gas. Also, the arriv
gas-saturated formatio
of the water-saturated




APLE

WAVEFRONTS

e delayed

235

The same effects as in Figures 3 and 4 are appreciated in Figure 5,
where we show snapshots for the displacement in the z-direction in the fluid
he well and the total displacement in the z-direction in the formation (i.e.,
ug, + us;) also at times .1 msec and .2 msec. The compressional and shear
wavefronts in the formation cannot be distinguished in Figure 5 because it is
too early to see a separation between them as a consequence of their different

int

speeds.
In Figure 6 we show the recorded pressure traces at the center of the

borehole and for the water-saturated Berea sandstone. The arrival times at
each geophone are marked for the type I and shear waves and the direct wave
travelling downward through the fluid in the well, as well as the arrival times
pl* and pl** corresponding to multiple reflections of the type I compressional
wave.

Figure 7 shows the pressure trace recorded at the receiver located at
depth 240 cm in the borehole. Again, we have marked the arrival times for
the type 1 compressional waves, shear waves, direct waves, and the multi-
ple reflections pl* and pl1**. The strong arrival at time 1.4 msec corre-
sponds to the arrival of the so-called pseudo-Raleigh wave [14]. This is a
wave generated by energy hitting T's at angles greater than the critical an-

gle 6,5 = sin™" bore;f;:rﬂyéfoéigodiz). Such energy is reflected back in

the borehole and travels downward without leaking energy in the formation.
Its arrival time can be estimated from phase velocity tables in [14]. Another
surface-related wave, the Stoneley wave, travels with a frequency dependent
velocity smaller than the fluid velocity vy in the borehole. Thus, this wave
is the packet arriving after the direct wave.

To compare the results of a well-logging test for two different satu-
rant fluids and their effect in the recorded traces, we show the results of the

‘water-saturated Berea sandstone with the corresponding gas-saturated Berea

sandstone. The gas and water properties are given in Table 1.

In Figure 8 we plot the pressure recorded at the reveiver at depth 240
cm for both the gas — and water — saturated Berea sandstone, and a much
smaller amplitude is observed for the water trace than for the gas trace. This
is explained by the fact that the dissipative effects of the relative flow inside
the pores is much stronger in the water-saturated sandstone than in the gas-
saturated sandstone, due to the higher viscosity of the water with respect to
the gas. Also, the arrival times of the different waves are slightly later for the
gas-saturated formation due to its lower bulk modulus as compared to that
of the water-saturated formation. Similar effect can be observed in Figures 9
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and 10, where we have plotted the total displacement in the r-direction (i-e.,
usr + us,) and the trace of the total stress in the formation as functions of

time.

WELL-LOGGING EXAMPLE
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PRESSURE TRACES AT CENTER OF BOREHOLE
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PRESSURE TRACES AT CENTER OF BOREHOLE
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TRACE OF TOTAL STRESS IN FORMATION
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TABLE 1

Water Saturated
Berea

12.3170 !
m

10.1542 5
cm
10'° dynes
cm?

10'° dynes
cm?

6.2493

10.5136

2.3365 g/cm®
1 g/em’®
19
200 md
1.00 cp
14.73 g/em®
2.65 g/cm®

the recorded traces.

10! dynes

1010 dynes

Gas Saturated
Berea

10! dynes

8.7051 >
cm

10.1542 ———

cm
1010 dynes
T em?

10!° dynes
2

1728

.2908

2.1731 g/cm®
1398 g/cm®
19
200 md
.022 cp
2.06 g/cm®
2.65 g/cm®

More numerical experiments are needed to show the effects of variable
in-depth borehole diameter, inhomogenities, mud-cake, and permeability on

Also, the inclusion of frequency dependent permeabilivties folloWing the
homogenization procedure in [1], [4] to modity Biot’s equation would even-

tually lead to more accurate synthetic seismograms.
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