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A model is defined to simulate the propagation of waves in a radially symmetric,
isotropic, composite system consisting of a fluid-filled well bore €2 through a
fluid-saturated porous solid £,. Biot’s equations of motion are chosen to describe
the propagation of waves in £,, while the standard equation of motion for
compressible inviscid fluids is used for £, with appropriate boundary conditions
at the contact surface between € and €,. Also, absorbing boundary conditions
for the artificial boundaries of €, are derived for the model, their effect being to
make them transparent for waves arriving normally. '

First, results on the existence and uniqueness of the solution of the differential
problem are given and then a discrete-time, explicit finite element procedure is
defined and analysed, with finite element spaces suited for radially symmetric
problems being used for the spatial discretisation.

1. Introduction

WE CoNSIDER the problem of acoustic and elastic wave propagation in a cylindrical
fluid-filled borehole € through a fluid-saturated porous solid £2,. The problem
arises naturally in acoustic well-logging. A compressional point source is excited
at a point on the centreline of the borehole, and the energy transmitted through
the fluid in the borehole and through the surrounding formations is recorded by
receivers located in the well bore, both above and below the source, to obtain
what is known as a full waveform acoustic log [19]. Here, in order to simplify the
problem we have assumed that the whole system Q= £, U £, is isotropic and
radially symmetric around the z-axis, located at the centre of the borehole.

To describe the propagation of waves in £2, we have chosen Biot’s equations of
motion, while in €, we have used the standard equation of motion for
compressible, inhomogeneous, inviscid fluids. Appropriate absorbing boundary

© Oxford University Press 1988




416 JUAN ENRIQUE SANTOS ET AL,

conditions for the artificial boundaries of £, are derived, making them transpar-
ent to waves arriving normally. The same type of absorbing boundary conditions
are used for the artificial boundaries of €. For the surface contact between Q
and &, we have chosen the boundary condition suggested in [14), which
represents a way of including the effects of the mud cake in the wave field. The
special cases of an open or closed interface are also considered in the model.

This paper is related to several previous works on the subject. The theory of
propagation of waves in fluid-saturated porous media was formulated by Biot in
several classic papers [1,2]. Results on the existence, uniqueness and finite
element approximation of the solution of Biot’s equations were given in [15, 17).
Also, mixed finite elements for radially symmetric three-dimensional problems
were presented and analysed in [12]. Finite element methods for wave propaga-
tion in systems composed of elastic solids with imbedded fluid-saturated porous
media were given and analysed in [11, 16], and some numerical results using those
algorithms were presented in [4].

Synthetic full waveform acoustic logs have already been obtained using
different techniques. In [14] the problem was treated assuming that the system
is homogeneous in depth and the solution was obtained via Fourier-transform
techniques and numerical integration. The same approach was used in [3] but
with €, being an elastic solid. In [18], the system £ was allowed to be
inhomogeneous in depth with 2, being again an elastic solid; an approximate
solution was computed using finite-difference techniques.

The organisation of the paper is as follows. In §2 we present the model by
giving the partial differential equations and the initial and boundary conditions.
In §3 we derive the weak form of the model and then present the results on the
existence and uniqueness of the solution of the differential problem. In §4 we
describe the finite element spaces used for the spatial discretisation and then
formulate an explicit finite element procedure by using a mass-lumping quadra-
ture rule for the first- and second-order time-derivative terms in the weak
formulation. Results on the stability and convergence of the method are also
given. Finally in §5 we derive the absorbing boundary conditions used for the
artificial boundaries of Q,.

2. The model -

We shall consider the propagation of ‘waves in a fluid-filled borehole [0
surrounded by a fluid-saturated porous medium €,. For simplicity the whole
system Q=£;U €, will be assumed to be isotropic and radially symmetric
around the z-axis, located at the centre of the borehole. The system is naturally
described using cylindrical coordinates (r, 6, z). Without loss of generality, the
artificial top and bottom boundaries of €, and 2, can be chosen to be the sets

L={(r,0,2)e32:0<r<R],0<60<2m1,2z=0, or

and 0<r<R7,0<0<2m z=2zp)},

Ly={(r,0,2z)e8Q,:Rf<r<R,, 0<6<2mz=0o0r
Rf<r=<R,,0<6<2m z=2z}.
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I R/ . I'm R, r
[0 I3 Q, Iy
% B
I} Rf F21
Z‘} \
FiG. 1

Also, the artificial exterior boundary of £2, (and Q) can be taken to be
L,={(r,6,2)€3Q,:r=R,, 0= 0<2xm, 0<z<zg}.

Let I; denote the surface contact between £ and Q,, which may have arbitrary
shape in order to allow variations in the diameter of the borehole along the
z-direction. A vertical cross-section of € for any fixed 6 = 6, is shown in Fig. 1.

Assume cylindrical symmetry, and let u; = (uy,, 0, u,;) be the fluid displace-
ment in £, let u,= (42, 0, uz,) be the solid displacement in €,, and let
iiy = (i3, 0, ii3;) be the (averaged) fluid displacement in €,. Let

us = ¢p(x) (s — uz) = (us, 0, us;),

where ¢(x) is the effective porosity, and set u = (i, U2, u;). Here u,; represents
" the displacement in the i-direction for k = 1, 2, 3. Next, because of the cylindrical
symmetry assumption, the physical components of the strain tensor £(u,) in the
solid part of Q, are given [8, p. 114] by

ou Uy, du
£,(ux) = ‘5'2", go(U2) = _::, £, (u2) = ‘527‘1‘ »

ou du

8rz(u2) = %(_a—:r + —525) ’
1du du u

cotu) =47 5o+ 2= 5F) =0
du 10u

o) =432+, 55) =0
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Also, note that

13 o
Veuy=¢,+€gg+ €, =~ (ruz,)_'___u_zz‘
or oz

Let t(uy, us) and p(uz, u5) denote the total stress tensor and the fluid pressure in
£2,, respectively. Then the stress—strain relations in €2, can be written as follows

2]
T,,(Uz, U3) = AV-uy+2Ne, (u) + QV-us, )
Too(Uz, Us) = AV - Uy + 2NEgo(uy) + QV - us,
7. (4, U3) = AVt + 2Ne, (1) + OV - s,
T, (2) = 2N, (), ’
T, =Tp. =0,
pug, uz)=—QV-u,—HV- us. J
In these expressions, the coefficients A, N, Q and H are assumed to be functions

of r and z alone.
Next, the strain-energy density W, (u,, us) in £, is given [2] by

2.1)

W, (U2, us) = Yt.,e, + Tootoo + Tez€oz + 27,6, — PV - us). 2.2)

Since W, has to be a quadratic, positive-definite form in ¢,, £, £.., £, and
V-u,, 1t is easﬂy seen that the coefficients A, N, Q and H must satisfy the
condltlons

N(r,z)>0, H(r,z)>0, (A+3N)(r,2)>0, ’3
(A+3N—QYH)(r, 2)>0, (1, 6,2) €2, =2,U0Q, 23)

Also, dW, must be an exact differential, so that

W, v, W,
Trr = P’ Too = P’ T2z = £ >
J€,, J€gg o€,
2.4
v, oW,

p

aerz P= a(— V. u3) '

Let E,(r, z) e R¥* be the symmetric, positive-definite matrix associated with W,
and set

T =

Y(uZ! u3) = (err: Egg, Ezz, V. Us, £rz)Ta
so that
W,(r, z)=3[E,Y, Y].,

where [ , ]. denotes the usual scalar product in R".
For any matrix D(r, z) € R™*", let Api(D(r, 2)) and Ay (D(r, z)) denote the
minimum and maximum eigenvalues of D(r, z) and set

A’min(D) = inf Amin(D(r’ Z)), Amax(D) = sup A’max(D (r’ Z)).
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Under the conditions (2.3),
0 < A'min(Ep) = Amax(Ep) < @,

and consequently,
Wy, 2) > 2B (6, 4 (00 + (800 + 8+ (7 3))
> RmlBo) (o 4 (e0p )+ (60 + 2+ (V-0 @9)

Next, let p = p(r, z) denote the total mass density of bulk material in £, and let
pr = ps(r, z) be the mass density of fluid both in £ and Q,. Also, let g =g(r, z)
be a mass-coupling parameter between fluid and solid in £2, [2]. Assume that

pg(r, z) — pXr, 2)>0, (1, 60,2)€Q,, (2.6)

which is a necessary and sufficient condition for the kinetic-energy density in £,

to be positive. .
Let pu = u(r, z) denote the fluid viscosity and let k = k(r, z) denote the (scalar)

rock permeability in ©,. Both u and k will be assumed to be bounded above and

below by positive constants.
Finally, let A; = A;(r, z) denote the incompressibility modulus of the fluid in

€, assumed to be bounded above and below by positive constants:
0<Ap<Af(r,z)<Af <o
Then, we consider the following problem. Let
ul(r, 2) = @3, 0,ud), vi=(1,0,v%), Az 0=, 0 f)
be given for (r, 8, z) € £ and let
ul(r, z) = (u3, 0, u3), u(r, 2) = (3, 0, u3),

vYr, 2) = (3,0, v3), vr, 2)=(v3,0,v5),

and

fZ(rr Z) = (on Or f2:)x ﬁ&(r’ Z) = (ﬁ!r’ 0» ﬁ%z)

be given for (r, 6,z)€$2,. Then we want to find u(r, z, t) = (uy, uy, us),
teJ=(0,T), such that

. . u;,, 9
(l) pf atzl _5;(Afv' ul) =flr(rx Z, t),

Pu 3 (2.7a)
(ii) prpt =5, AT w) =fulr, 2, 0)

B
3
#
ES
i
H
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for(r, 6,z,t) e £ xJ, and

veo azu;), 82u3, 10
(i) p 5zt P’ 32 75 (re,(uz, us))

_ 97, (u2) | Too(uz, us) _
>t . =flr, 2, 0),

82u2, 82u3z 10

3
or 9z

(lV) p? + prtz' - ;_ (rrrz(uZ)) - tzz(u2: u3) =f7z(rr z, t)) g (27b)

Pu,, . Pus, podus,, 3
(V) pf at2 +g at2 +k at +5’:p(u2’ u3)_f.:3r(r’ z, t))

. Uy, 32u3z E 8u3, _2 _
(vi) Py 32 +g Y +k ot + azp(uz, u3)=fi.(r, z, t)

for(r, 6,2, t) e £2, x J, with boundary conditions
. 1 Ouy
@ —AV-uy=(pAs): o v (r, 0,2z, t)eI; X J,

(il) (_tvp : VP’ —'L'Vp : XII” —TVP y x;’ p)T

auz au2 3u2 8u3 T
=B<—.v}—. 1’_. 2,_. )
a7 o Xe Ty Xe g Ve) s

(r, 0, z, t)E(BIUI;z)XJ=F2XJ,

(iji) ™, +AV-uv, =0, (r, 0,2, ) e G x J,
(iv) (up+us)-v,+uy-v=0,(r,0,2, ) e X J,
3
(vl —p+m—$-vp=A,V-u1, (r,6,z,t)e L xJ,
and initial conditions
)] uy(r, z, 0) = ui(r, 2), (r, 6, z) € &2,
(ii) (u2, us)(r, z, 0) = (u3, u)(r, 2), (r, 6, z) € Q,,
) Su
(iif) ?t‘ (r, z,0)=vi(r, 2), (r, 6, 2) e Q,,
o(us,
(@iv) Sz, u5) (r,2,0)=(v3, v3)(r, 2), (1, 6, 2) € ©,.

ot

P

(2.8)

(2.9)

In the above, v;=(v,, vig, v.) =(¥;,, 0, v,), i = f, p, denotes the unit outward
normal along 3, and xJ, m=1,2, denotes orthogonal unit tangent vectors
along 3%,. Also, v, denotes the stress tensor on 3%, and TV, * Vp and v, - x,
m =1, 2, are the normal and two tangent components of TV, on 3%Q,.

Equations (2.7a) are the standard equations of motion for compressible,
inviscid, inhomogeneous fluids, while equations (2.7b) are Biot’s equations of
motion for the fluid-saturated porous medium £, [1, 2]). The boundary condition
(2.8.i) is simply the equation of momentum for I, so that waves arriving
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normally to I; will be absorbed completely (that is, passed through transpar-
ently). Equation (2.8.ii) is an absorbing boundary condition for the artificial
boundary I of £,; this relation is derived in §5. Again, its effect is to absorb the
energy of waves arriving normally to I;. The matrix B(r, z) e R** in the
right-hand side of (2.8.ii) is symmetric and positive definite. Equation (2.8.iii)
states the continuity of the normal stress and the vanishing of tangential stresses
along I3, while (2.8.iv) expresses the continuity of the normal displacement on
I, '
Finally, (2.8.v) relates the fluid pressure on both sides of I. This boundary
condition is suggested in [14] to describe the behaviour of the mud cake using the
non-negative coefficient m = m(z) representing a surface impedance. The analysis
of the model will be carried out for the case in which 0<m,<sm(z)sm* <o,
and we shall indicate briefly the change in the argument for the limit cases m = 0
and m = + corresponding to an open or sealed interface, respectively. Note that
in the case of an open interface (m =0), (2.8.v) simply states the continuity of the
fluid pressure on I3. Such a boundary condition was analysed in [10] and was
shown to be energy-flux preserving. For a sealed interface (m = +w), it is

necessary that
us- v, =0, (r, 8,z, ) e X J. (2.10)
In this case (2.8.v) should be replaced by (2.10), and (2.8.iv) reduces to
uy- v, +uy - vy =0, (r, 8, z, ) e X J.

[

3. The existence and uniqueness results
For @, = Q;or Q, let

(@ v)i=[ o0, 0,290, 0,2 ar do dz

and
I plo.a= (e @)}
denote the inner product and norm in L*( ). For any I' c 8¢ let

(v, w),~=f vwdo
r
denote the inner product in L)(I'), where do is the surface measure on I. Also, if
@ =(®,, o, ;) and Y = (¥, Ve, v,), we shall denote by
((P, W)l = ((pn 1I’r)i + ((pB’ 1/’9):‘ + ((pzr Wz)i

and I@llo.a = (@, @)1}

the inner product and norm in L*(£2,)’.
Next, let

H(diV, Q,) = {(P = ((pn Qo> (pz) € L2(Qi)3: v LS LZ(Q‘.)},
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provided with the natural norm ..

l@lleaiv,2y = [l@ll5.0,+ )| V- LATEAEA
Set \
I:I(divy Q) = {‘P = (‘pn Po) (pz) € H(div’ 'Qi): Po = 0}’

which is a closed subspace of H(div, V.Q,A). Note that ¢ € H(div, £2;) implies that
@|r=0=0. Also, set

HY(Q,)’ = {¢ = (@,, @o, 9.) e H(R,): @ =0, 3¢5,/36 = 89./36 = 0}
={9=(9., @6, ¢.) € H(2,)*: 95 = 0, £,6(9) = £6,(¢) = 0).

Note that, for any @ eH'(Q,)’, standard calculus shows that in R3 with
Cylindrical symmetry,

) : 2 F) , 2 ; 2
191h0,= [ [+ @7+ (32) + (32) 4 ()
gl r oz r
o)+ () arase]
+(=2) + (== .
( 3 o) |7 drdédz
It is clear that H'(£2,) is a closed subspace of H'(£2,)>.
Next, let V = H(div, 2,) X H'(2,)’ x H(div, £,), which is a separable Hilbert
space under the norm

1
flvllp= [”UIH%{(div,Q,) + Ilvzlﬁ.sz, + ”v3”%l(div,n,)]2-

Sinc;a the boundary condition (2.8.iv) will be imposed strongly, we shall restrict
the admissible test functions to the set

» V={v=(v, v, v5)eV:(v+v3-v;)- v, =00n [3};
V is a closed, separable subspace of V (with the same norm).

The weak form of problem (2.7), (2.8), and (2.9) is obtained as usual by testing
equations (2.7) against any admissible function v = (v1, v2, v3) € V, using in-
tegration by parts and applying the boundary conditions (2.8.1), (2.8.ii), (2.8.iii),
and (2.8.v). In doing so, we obtain

1 aul auz . 3u2 auz au3 T
B R R LG P e S »)

1 > Sus
(V2" Vo, V2 Xps V2" X U3° V) +(m—2-v,, 05,
5 ot 5

= (fl’ Ul)f + ((fZ: 5h), (U2) UB))p’ v= (le Uy, U3)eV, tel. (31)
Here {(r, z) and 4(r, z) are matrices in R*** given by
pl  pl _1(0 O)
o= ( . G=pk ,
pd gl o 1
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I being the identity matrix in R**2. Note that € is non-negative and s is positive
definite, thanks to (2.6). Also, A(v, w) is the symmetric, bilinear form defined on

YO AW W)= (V- vy, T )+ (v, v3), 8,00,
+ (Too (2, V3), €06(W2))p + (T.2(v2, V3), £,,(W2)),
+2(7,.(v2, v3), €.(W)),
—(p(vy, v3), V-ws), foru,weV.

Note that combining (2.2), (2.5), and Korn’s second inequality [6, 7, 13] implies

that Ain(E,)

AW, 0)> A [17- illh o+ 572 | (60 + (2o ()

+ (£2:(V2))? + 2(£,.(v2))* + (V- v3)°]r dr d6 dz
= ¢y [|vll} = co(ftvall, o + 1(v2, v3)I3,0,), veV. (3.2)

Let y=c, be any fixed constant and let A, be the bilinear symmetric form
defined over V by ‘

Ay(v’ W) = A(‘U, W) + Y[(vl’ wl)f + ((UZ: U3), (w27 W3))p]'

Then A, is V-continuous and V-coercive.

Next, set
2_||ZA P F (e H)|
0=k s ,
o lzg;axanp ot lirgswaa)ny

GG = 11313, o, + 113, ud)ll3 o, + I0°U% + N (O)IF, o+ 11((0), HODIG o, + 1.

The well-posedness of problem (2.7), (2.8), and (2.9) follows from the following
theorem. :

TueoreM 3.1 Let f =(fi, £, f3), u®=(ug, ud, u3) and v°= (v}, v3, vJ) be given
and such that Gy<w, Q;<o, i =0, 1. Assume that I is of class C™ for some
integer m = 2. Also, assume that

support (u) N £ €2,  support (V) N Q; € Q;,
support (13, u3) € 2,,  support (v3, v3) € Q,.
Then there exists a unique solution u(r, z, t) of problem (2.7), (2.8), and (2.9)
such that u, du/dteL"(J, V); °u,/af € L’(J, L(2:))); and 5%(u,, us)/9f ¢
LX(J, LX(2,)").
Proof. Let
H(2,) = {9 e H(2:)*: ¢,],~0=0, 96 =0, 39,/90 = 3¢,/56 = 0},
HY(Q,)*={p e H(RQ,)*: o =0, 3¢,/30 = 3¢,/50 = 0},
and set ; - ~ _
E =FX(Q) x H(RQ,)* x HY(L,)".

Clearly, E c V and the argument given in [16] can be used here to show that
ENVisdense in V. The compactness argument given in [15, 16] can be used with
minor modifications to obtain the conclusions of the theorem.
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In the case in which the contact surface I between £2rand Q, is known just to
be Lipchitz continuous, the following existence and uniqueness theorem holds, its
proof being similar to that of Theorem 3.1.

THeOREM 3.2 Let f = (f,, f3, f3) be 8iven and such that Q; <, i=0,1. Assume
that u=v"=0 and that T is Lipchitz continuous. Then there exists g unique
solution u(r, z, t) of problem (2.7), (2.8), and (2.9) such that u, 5u/3t e L™(J, V);
&u/ 3¢ e L*(J, LY(2,)); and 5*(u,, u3)/3 € L™(J, LY(L,)").

Finally, let us indicate the modifications needed to treat the cases of an open or
a sealed interface I. For the open interface (m =0) the original space V is
adequate. For the sealed interface (m = +) the space V should be chosen to be

V={v=(v1, v, v3) eV : (v;-v,) - v, =0, vs* v =0on I}}

Thus, in both cases the weak form (3.1) remains formally unchanged, except that
the last term in the left-hand side disappears. Also, the conclusions of Theorems
3.1 and 3.2 remain valid.

4. An explicit finite element procedure

For 0<h <1, let o}, =t{(2,) and £ = 77(£2,) be quasiregular partitions of Q
and £, into elements generated by the rotation around the z-axis of rectangles in
the (7, z)-variables of diameter bounded by h. Set 7,=1 U1l Since the
boundary condition (2.8.iv) will be imposed strongly on the finite element spaces
to be used for the spatial discretisation, the partitions 7} and 7% will be assumed
to be compatible along the contact surface I3 in the following sense. For any
vertical cross-section 7, N {6 = Bo} of 7,, if Ryis a rectangle in 7}, N {6 = 6,} such
that one edge e of Ry is contained in I3, then e is also. an edge of some rectangle
R, in ,N{6=6,}. Let Py ((r, z) denote the bilinear polynomials in the
(r, z)-variables and set

‘/“h = {<P = (‘pn 0’, ¢z) € CO(QP) : (pr e"})1,1("; Z) and (pz EPI,I(r; Z)}.

Then, 4, « H'(2,)°.

The r-component of @ is multiplied by r in order to ensure that all components
of the strain tensor of @ remain polynomials in r and z. It does not affect the
approximation property

ini v =@llog +2lv-eligl<ch |vl,g, s=1,2 (4.1
@e

this result is proved in [12].

Let W,(£2), i =, p, be the vector part of the lowest-order mixed finite element
space associated with 7}, defined by Morley [12]. Away from 7 = 0, the elements
in W,(L,) are locally of the form (ar'+br,0,c+ dz), while the innermost
elements near r =0 have the local form (br, 0, ¢ + dz). Globally the elements
must lie in H(div, £2)), j = f or p, as appropriate. Note that the divergence of each
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element is piecewise constant. It is shown in [12] that

(i) inf  ||v — @lluiv.ay < ch(lVlh,0+ V- v]1,0),
PeW () . ,

(ll) inf v - <ch llv . )
e lv = @llo,q<ch |jvl;,q

Let V;, = W, (&27) X My, X W,(%,) and set V, = {v eV, : (v,+v;—v;)- v, =0o0n
I3}. Then V, < V and it follows from (4.1) and (4.2) that

inf (v = @illo.g + vz, v3) = (@2 @3)llo.a) < chllivallg + 1wz, v3)lln,g)
4.3)
for v e (H(2,)* x HY(R,)* x H(2,)*) N V and that

‘:E‘f’ lv - @llv <ch[llvillLo+ 1V vill,g + lV2ll2,0, + Vsl + 1V vslly0))
(]

4.49)
for v e (A'(Q)* x AX(R2,)* x H(L,)*) NV such that V- v, e H'(£) and V- v;€
H'(S,).

Let L be a positive integer, At=T/L, and U" = U(n At). Set

d,U” =(U"*' - U"/ A, =(U"-U""")/2 A,
Ur= (Un+l —2U" + Un-—l)/(At)z
Since we want to use an explicit procedure, we shall compute all mtegrals
involving time-derivative terms using the quadrature rule

on
f f(r, 2)r dr d6 dz === hoh Lfiry + fara + firs + ford) (4.5)
Q

where f. denotes the value of f at the node g; in the rectangle Q (see Fig. 2). Note
that the rule (4.5) is exact if f(r, z)r is bilinear.
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For .the elements in 4, the rule (4.5) is the natural choice since the local
degrees of freedom for any element v = (v,, 0, v,) in M, are the values of v, and
v, at the nodes a;,, 1<i=<4. On the other hand, since the local degrees of
freedom of a mixed Morley element v = (v,, 0, v,) are the values of v - vg at the
midpoints of each side of Q (that is, the values of v, at the nodes a5 and a, and of
v, at the nodes a4 and a;), such values being constant along the sides of Q, the
mass-lumping quadrature rule (4.5) can be used for those elements as well.

Let [v, w]; and [[v]|o,q, i =, p, denote the inner product (v, w), and the norm
lluilo,o, computed approximately using the quadrature rule (4.5). Also, let
v, w)r denote the inner product (v, w) computed using (4.5).

The discrete-time explicit Galerkin procedure is defined as follows. Find
UteV,,n=0,..., L, such that
[05°U3, vy}, + [ (U, U, (v, v3)], +[63(U,, Us)”, (v,, u3)l,

+ A(U", U) + «(pfAf)%aU;' . Vf, Uy Vf»n

+{B(3U; - v,, aU3 - Xp» U3 - x2, U7 - Vo) (V2* ¥, U2t xp, U2+ X2, U3 - V)V

+ {mau; - Yor Us* ¥, 0

=L v + (319, w2, v3),,  veVi,1sn<L-1 (4.6)
We shall analyse the stability of the scheme (4.6). The choice of the test
function v = 3U" in (4.6) gives us the inequality
51 (0. U3 0~ o} UT 13,
+ o2 d(Uy, Usy |13, — ot d (U, ) 13.q,}
'\; + [€3(Us,, Us)", 8(Us, Us)"), + AU, ou™)
\' + (oA OUT - vy, 3U7 - v, )
+{B(3U; - v,, 3U3 - x;, 3U3 - x2, 3U% - Vo),
(3U3 - v, 8U3 - g3, 3U3 - 13, U3 - v,) )
+{maus-v,, 8U3 - v, ), :
< C{lIfillS,q + I(F5 FIG 0, + 4. U35, o,
+ 4 UTYIZ o+ 11U, Us)" (3., + ld(Us, Uy 'll5.0,}- 4.7
Next, note that
2A1A(U", 3U™) = J{A(U™, U1y~ A(U1, U1y
+AU-U, U - Ur - AU - Uyttt — U"3.
Then, add

Y rurm o
74 0T 13 0~ U713 6

<r{IdUTIG o+ N, UT I3 o + 1 U+ 13,0, + NU77"13.0)
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and

= (1, U™ 1B.0,= (s, UsY" 1,0}

< 3v{lld(Us, Us)" 13, a, + l1d(Us, U, Q,
+ 1(Ua, UsY* 15,0, + 1(Ua, Us)*15,0,}

to (4.7), multiply by 2A¢, and sum the resulting inequality from n=1to n =N,
1< N <L -1. Since € is a non-negative matrix and all the boundary terms in the
left-hand side of (4.7) are non-negative,

Il o2 U2 0+ ll 2 d(Us, UV I3, 0, — 3(ADA(d,UY, 4,UY)
+%{A./(UN+1, UN+1)+A1,(UN, UN)}
< 1(APA@QU°, d.U° + C{Id.U3IZ o+ ldi(Us, U3 o, + 1UPI%+ UM%

N
+ 21 W53 o+ (B £ 13,0, + 14.U513, o,

+[1d.UT 3 o+ 14U, Us)"Il5,q, + 1ALz, Us)" 15, q,
+IUT G 9+ NUT 5,0+ (Vs Us)* G q,
+||(U,, U3)"“1||§,gp] At}, 1sNsL-1 (4.8)
Next, note that '
A(dUY, dUY) < A7 V- dUY|IG o+ Amax(E,p){ll€-(d,UD)I5 o,
+ €06 (d. U130, + ll£:(d UD) 13,
+ll&(d.UDIS o, + IV - d. U35, q,}- (4.9)

Also note that there exists a constant ¢, independent of & such that the following
inverse hypotheses hold:

@ V- vllo,q =< c;sh™? flvllo, 2, VeEWL(R),i=f,p,
(ii) {lle-)113,0, + leos W11}, g, + €. (W13, 0, + NE(W)II5,0,}
<csh ™ |[vlllo.q,, v € My

For a uniform grid, a calculation shows that ¢, is not greater than 6-37; this may
not be the best possible constant. In the general case ¢; will contain a factor that
measures the quasiuniformity of the grid.

Then, since Any,(£) > 0 (cf. (2.6)), it follows from (4.9) and (4.10) that

(4.10)

llp} d.UYIIZ o + Il 22 d(Us, Us)V I3, 0, — H(AL*A(d, U, 4,U™)
At
= (Pf‘ - (7) ) Af) la. UMz, Fo)

+ (i)~ (2 S A Ep)) WU, UM

=1pp- (4. U713, ot A min(2) AU, UYN13, 2,
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where p;. is the minimum of Py(r, z) in Q; and provided that At and h satisfy the

stability condition
B ((0r\E [ Amin(st) \2
ar<gomin (%) (2e3) ) ‘
om\4f) 1 “12

(A inodiﬁcaiion of the argument above would permit us to replace the term

(}.mi,,(d)/}.mu(Ep))% by the reciprocal of the maximum wave velocity in £,; the
constant c; may be different in this case.)
Also, note that for Ar and 4 as in (4.12),

HAPAGLL, AU S UM o+ s, 09I ). ca.13)

Next, an easy calculation shows that there exists a constant c, independent of A
such that

||U1||o,o,s calllvy mo,a,
and

(v, U3)llo.g, <c4lll(v,, v3) l"o,o,

for any v € V,. Thus, using (4.11), (4.12), (4.13), and the V-coercivity of A, in
(4.8), we see the following inequality holds:

d.UTNE o + WUz, GYVIIE o + U2+ UM
< C{lld.UME o+ NlAUs, U)°W3 o, + NU°IZ + | vy
i+ ”fl”%.""(J,Lz(Q,)z) +I(5, fs)”i"(l,l.z(a,,)‘)
N

* 2 WA o+ 4,051 0+ T, Tyl

AW, U136, + U112 + IRl 4,  1snNs<L-1.
Then Gronwall’s lemma implies that

max  (Na:UMlo.q,+ Ndi(Ua, U3 llo, 0, + NUM)

1=N=L~]
< C{{ld(UD) mo.n,‘*‘ ld.(U; - Us)olllo,a,,"" oy
+IU'y + filleeg, 2y + "(fz,fs)”%."u,l}(ne)‘)}, (4.14)

which shows that the scheme (4.6) is stable under the condition (4.12). It is also
obvious that (4.14) gives us existence and uniqueness for the solution
(U")r<ns<r—1 Of (4.6).

Finally, since the quadrature rule employed in the procedure is O(h®-correct,
a standard argument combining the approximating properties (4.3) and (4.4) with
the ideas leading to (4.14) would give us the optimal order error estimate

max (|||d,(x, - U)llo.q+ lldi(u, — Us, u, — Us)* o, g, + 1] (u — U)liy)

1sN=L-1
< C@)lId(u, - U)°llo, o+ lldi(u, - U, us — Us)°fl, Q,
+ @ = U)lly + I ~ UY'lly + (A% + ).
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5. Derivation of the absorbing'bonndary conditions

In this section we shall derive the absorbing boundary condition (2.8.ii) for the
artificial boundary I of ,. In this derivation we shall use some results of [9] as
well as some ideas given in [11] for obtaining absorbing boundary conditions for
anisotropic elastic solids.

Let us consider a wave front arriving normally to I; with velocity c. Following
(8], the strain tensor £(u$) on I can be written in the form

1 0us us 13uj
E,,(u;) = - _C'thr VYors EOO(“Z) = _}2—’ =0, 8zz(u; == E_atz-i Vpzs
5.1

1 /ous Aus
£, us5) = % (—gti' Vp: +%’- vp,), (r,0,2)e;, tel.

In particular,

10uj
Veus= ———-v,. .
Yz PETIG (5-2)
Also,
10uj
Veus= ————-v,. .
us pary Vp (5 3)
Next, let us introduce the variables
_10u5 v o= 10u; | ;
Yea P 205 Xm .
_1dous , . 1ous !
w§—c ot Xps a4_c ot Ver

and set
o =(af, o5, o, )"

Combining the stress—strain relations (2.1) with (5.1), (5.2), and (5.3) shows that
the strain-energy density W, on I; can be written as a quadratic function

II(a°) = W,(e(a®), V-us(aF)) in the form
1I(e) = 4(@)'E, o, (5.4)
where Ep € R**4 is the symmetric, positive-definite matrix given by
A+2N 0 0 Q)

- 0 NO O
E,= : o
PY 0 O0ONO
Q@ 0 0 H/
Next, note that the momentum equations on I 'ar">e given by

- A(us, uf) - ( o« OW, W
o ——2 =l == P, . P )
‘ ‘ 2 dey P A(=V-uy) *

ot ij=1,0.2
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for (r, 6, z) e I, t € J. Alternatively, they can be written in the form (cf. 2.4)
® clp dus/at + p, dus/ o] = — v,
(i) clpySus/ot + g Sus/ 3] =pv,,(r,0,2)eL;, tel.

Now, we shall write equations (5.5) in terms of the new variables af, 1<i<4.

First, note that taking the inner product of (5.5.ii) with the tangent vectors Xp
m =1, 2, gives the relations

ous ous

ym— _ 1

(5.5)

“Xp» m=1,2.

Let F=(1v, - v,, ©, - 2;, ™, - 3, —p)". Then, take the inner product of (5.5.0)
with v, and x7', m =1, 2, and of (5.5.ii) with v, to get the equations

o =-F = §g= E,a", (5.6)
o € R being the symmetric, positive-definite matrix defined by
pP 0 0 Pr
a=|0 p-ge) 0 0
' 0 0 p—8 o) O
Pr 0 0 g
Let S = 4 7E, 47}, a° = s¢}a”. Then equation (5.6) becomes
' S& = 2. (5.7)
Also, in terms of &° the strain-energy density on I can be written in the form
‘ (@) = n(a) = §(a°)"Sa". (5-8)

Let ¢;, 1<i=<4, be the four positive wave velocities satisfying (5.7); that is,
solutions of the equation

det (S — ¢*I) = 0.

Two of these roots are

=)
Cr=Cr= —_—
2 - (p, )

and they correspond to the shear modes of propagation. The other two velocities
¢, and c, are distinct and they correspond to the compressional modes of
propagation and have a more complicated expression in terms of the mass and
stiffness coefficients of £2,. It can be easily checked that these values coincide with
the corresponding ones obtained in [1] by Biot using a different argument.

Let M, 1<i=<4, be the set of orthonormal eigenvectors corresponding to
¢, 1=i=<4, and let M be the matrix containing the eigenvectors M, of § as TOWS,
and D be the diagonal matrix containing the eigenvalues ¢?, 1<i<4, of S, so

that S = M"DM.




FINITE ELEMENT METHODS

Let

v

T R z_‘?fév)T
ot P Tor K Ta he Ty Ve

be a general velocity on the surface I; due to the simultaneous normal arrival of
waves of velocities ¢;, 1<i=<4. Since the M; are orthonormal, we can write
& = A} in the form

Let
&= sthas =cl M, 2ol M, 1<is<d4. (5.9)
Then, a“ satisfies
S& = c?a”, (5.10)
and v
a(as) =3(a)'sa". (5.11)

Using (5.6) and (5.11), we see that the force % on I corresponding to a“ satisfies
“the relations ‘

-1 O -~ _ ‘
l—: % <= = — T ;
.9128_ =58 =E,a" %. (5:12)

We observe that the interaction energy among the different types of waves
arriving normally to I is small compared to the total energy involved [5]. Thus,
neglecting such interaction, we can write the total strain energy density

7= (@)= }43 (&)

as the sum of the partial energies and the total force % on I as the sum of the
forces corresponding to each &%, so that, according to (5.12),

4 4
9=2 F=—ot > sas.

i=1 i=1

Since we can write 4 3% in the form
4
‘ﬂ_%g= 2 [M! 'g_%g]zMi:
i=1
it follows that
Sd’c=_[M, ﬂ_29]eM1 1=<si=<d. (5.13)

Thus, combining (5.9), (5.10) and (5.13), we see that
cla& =c[M;, Aal.M, = S&" = —[M,, AIF|M,
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so that
M, dbal. = —[M, 41F],, 1<i<a
In matrix form the equétion above becomes '
~MAF = DiMGla,
so that after multiplying by /M we obtain the relations
| ~F = dishdla = [(4'E,) bsda = Ba,

These are the equations used as boundary conditions for the artificial boundary
I;. Note that the matrix B is symmetric and positive definite.
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