Lecture 5

Definition 1. (Free modules) Given a set T, we denote by $A^{(T)}$ the module

$$\bigoplus_{t\in T} M_t$$

where each $M_t = A$. For each $t \in T$, we denote the canonical injection $A = M_t \rightarrow A^{(T)}$ by j_t , and we denote by e_t the element $j_t(1)$. Let $\phi: T \rightarrow A^{(T)}$ denote the mapping $t \mapsto e_t$.

Proposition 2. (Universal property of $(A^{(T)}, \phi)$). For every A-module E and map $f: T \to E$, there exists one and only one linear map $g: A^{(T)} \to E$ such that

 $f = g \circ \phi.$

Definition 3. A family $(a_t)_{t\in T}$ of elements of an A-module E is said to be a free family (respectively, a basis of E) if the linear map $A^{(T)} \to E$ determined by this family is injective (respectively, bijective). A module is called free if it has a basis.

An element $x \in E$ is called free if $\{x\}$ is a free subset. It can happen that every non-zero element of a module is free without the module beong free (eg. \mathbb{Q} as a \mathbb{Z} -module).

Proposition 4. Every A-module is the quotient of a free module.

Proposition 5. Every exact sequence of A-modules

 $0 \longrightarrow E' \longrightarrow E \longrightarrow F \longrightarrow 0$

with F a free module splits.

Proposition 6. If $A^{(I)} \cong A^{(J)}$, and either I or J is infinite, then card I = card J.

The same is not necessarily true if I and J are both finite.

Definition 7. (IBN property) A ring A is said to have the IBN (invariant basis number) property if whenever $A^m \cong A^n$, with $m, n \in \mathbb{N}$, we have m = n.

Example 8. Many rings have the IBN property.

- 1. If there exists a ring homomorphism $\phi: R \to S$ and S has the IBN property then so does R.
- 2. From this it follows that all commutative rings have the IBN property (quotient by maximal ideals).
- 3. The following ring does not have the IBN property. Let V be an infinite dimensional k-vector space and let $A = \operatorname{End}_k(V)$. Then there exists an isomorphism $u: V \to V \oplus V$ (as A-modules). Applying the $\operatorname{Hom}_A(\cdot, V)$ functor to the exact sequence

$$0 \longrightarrow V \longrightarrow V \oplus V \longrightarrow 0$$

we obtain that $A \cong A \oplus A$, from which it follows that $A^m \cong A^n$ for any m, $n \in \mathbb{N}$. Note that, this is equivalent to saying that there exists matrices $P \in A^{m \times n}, Q \in A^{n \times m}$, such that $PQ = I_m, QP = I_n$.

Definition 9. The annhibitor of a subset S of an A-module E (denoted Ann(S)) is the set of elements $a \in A$ such that ax = 0 for all $x \in S$. E is called faithful if Ann(E) = 0.

Proposition 10. If $S \subset E$ is just a subset then Ann(S) is a left ideal of A. If $M \subset E$ is a sub-module then Ann(M) is a two-sided ieal of A.

Definition 11. Let E be an A-module and $\mathfrak{a} = \operatorname{Ann}(E)$. Then defining $(a + \mathfrak{a}) \cdot x = ax$, we get a (A/\mathfrak{a}) -module structure on E. The (A/\mathfrak{a}) -module thus defined is faithful, and is called the associated faithful module of E.