Lecture 5

Definition 1. *(Free modules)* Given a set T, we denote by $A^{(T)}$ the module

$$
\bigoplus_{t\in T} M_t
$$

where each $M_t = A$ *. For each* $t \in T$ *, we denote the canonical injection* $A = M_t \rightarrow$ $A^{(T)}$ by j_t , and we denote by e_t the element $j_t(1)$. Let $\phi: T \to A^{(T)}$ denote the map*ping* $t \mapsto e_t$.

Proposition 2. *(Universal property of* $(A^{(T)}, \phi)$ *). For every A-module* E and *map* $f: T \to E$, there exists one and only one linear map $g: A^{(T)} \to E$ such that

 $f = a \circ \phi$.

Definition 3. *A family* $(a_t)_{t\in T}$ *of elements of an A-module* E *is said to be a free family (respectively, a basis of* E) if the linear map $A^{(T)} \to E$ determined by this *family is injective (respectively, bijective). A module is called free if it has a basis.*

An element $x \in E$ is called free if $\{x\}$ is a free subset. It can happen that every non-zero element of a module is free without the module beong free (eg. Q as a Z-module).

Proposition 4. *Every* A*-module is the quotient of a free module.*

Proposition 5. *Every exact sequence of* A*-modules*

 $0 \longrightarrow E' \longrightarrow E \longrightarrow F \longrightarrow 0$

with F *a free module splits.*

Proposition 6. If $A^{(I)} \cong A^{(J)}$, and either I or J is infinite, then card I = card J.

The same is not necessarily true if I and J are both finite.

Definition 7. *(IBN property) A ring* A *is said to have the IBN (invariant basis number)* property if whenever $A^m \cong A^n$, with $m, n \in \mathbb{N}$, we have $m = n$.

Example 8. Many rings have the IBN property.

- 1. If there exists a ring homomorphism $\phi: R \to S$ and S has the IBN property then so does R.
- 2. From this it follows that all commutative rings have the IBN property (quotient by maximal ideals).
- 3. The following ring does not have the IBN property. Let V be an infinite dimensional k-vector space and let $A = \text{End}_k(V)$. Then there exists an isomorphism $u: V \to V \oplus V$ (as A-modules). Applying the Hom_A (\cdot, V) functor to the exact sequence

$$
0\longrightarrow V\longrightarrow V\oplus V\longrightarrow 0
$$

we obtain that $A \cong A \oplus A$, from which it follows that $A^m \cong A^n$ for any m, $n \in \mathbb{N}$. Note that, this is equivalent to saying that there exists matrices $P \in A^{m \times n}, Q \in A^{n \times m}$, such that $PQ = I_m, QP = I_n$.

Definition 9. *The annhilator of a subset* S *of an A-module* E *(denoted* Ann (S)) *is the set of elements* $a \in A$ *such that* $ax = 0$ *for all* $x \in S$ *. E is called faithful if* $Ann(E) = 0.$

Proposition 10. *If* $S \subset E$ *is just a subset then* Ann(S) *is a left ideal of* A. *If* $M \subset E$ *is a sub-module then* $\text{Ann}(M)$ *is a two-sided ieal of A.*

Definition 11. Let E be an A-module and $\mathfrak{a} = \text{Ann}(E)$. Then defining $(a + \mathfrak{a})$. $x = ax$, we get a (A/\mathfrak{a}) -module structure on E. The (A/\mathfrak{a}) -module thus defined is *faithful, and is called the associated faithful module of* E*.*