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We present the hidden-layer concatenated physics informed neural network (HLConcPINN) 
method, which combines hidden-layer concatenated feed-forward neural networks, a modified 
block time marching strategy, and a physics informed approach for approximating partial 
differential equations (PDEs). We analyze the convergence properties and establish the error 
bounds of this method for two types of PDEs: parabolic (exemplified by the heat and Burgers’ 
equations) and hyperbolic (exemplified by the wave and nonlinear Klein-Gordon equations). We 
show that its approximation error of the solution can be effectively controlled by the training loss 
for dynamic simulations with long time horizons. The HLConcPINN method in principle allows 
an arbitrary number of hidden layers not smaller than two and any of the commonly-used smooth 
activation functions for the hidden layers beyond the first two, with theoretical guarantees. This 
generalizes several recent neural network techniques, which have theoretical guarantees but are 
confined to two hidden layers in the network architecture and the tanh activation function. Our 
theoretical analyses subsequently inform the formulation of appropriate training loss functions for 
these PDEs, leading to physics informed neural network (PINN) type computational algorithms 
that differ from the standard PINN formulation. Ample numerical experiments are presented based 
on the proposed algorithm to validate the effectiveness of this method and confirm aspects of the 
theoretical analyses.

1. Introduction

The rapid growth in data availability and computing resources has ushered in a transformative era in machine learning and data 
analytics, fueling remarkable advancements across diverse scientific and engineering disciplines [33]. These breakthroughs have 
a significant impact on fields such as natural language processing, robotics, computer vision, speech and image recognition, and 
genomics. Of particular promise is the use of neural network (NN) based approaches to tackle challenges such as high-dimensional 
problems, including high-dimensional partial differential equation (PDE). This is due to the intractable computational workload 
caused by the curse of dimensionality associated with conventional numerical techniques, rendering such techniques practically 
infeasible. Deep learning algorithms, on the other hand, can offer invaluable support. Pertaining to PDE problems specifically, neural 
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network methods provide implicit regularization, exhibiting a great potential to alleviate or overcome challenges related to high 
dimensionality [3,4].

This surge of progress has driven extensive research efforts in recent years, fostering the integration of deep learning tech-

niques into scientific computing [31,46,42,20,34]. Notably, the physics informed neural networks (PINNs) approach, introduced 
in [42], has demonstrated remarkable success in addressing various forward and inverse PDE problems, establishing itself as a widely 
adopted methodology in scientific machine learning [42,25,10,30,52,29,7,47,16,8,49,22,32,18,19,50,17,45,27,28,40]. Comprehen-

sive reviews of PINNs, including their benefits and limitations, can be found in [31,9].

Theoretical understanding of the physics informed neural network approach has attracted extensive research, and contributions 
to the theoretical analysis of PDEs using PINNs have grown steadily and substantially in recent years. Shin et al. [43,44] conducted 
an extensive investigation into PINNs, demonstrating their consistency when applied to linear elliptic and parabolic PDEs. Mishra and 
Molinaro proposed an abstract framework to estimate the generalization error of PINNs in forward PDE problems [37] and extended 
it to inverse PDE problems in [36]. Bai and Koley [1] focused on evaluating the approximation performance of PINNs in nonlinear 
dispersive PDEs. Biswa et al. [6] supplied error estimates and stability analysis for the incompressible Navier-Stokes equations. 
Zerbinati [53] treated PINNs as a point matching localization method and provided error estimates for elliptic problems. De Ryck 
et al. [13] presented crucial theoretical findings on PINNs with tanh activation functions and analyzed their approximation errors. 
These results underlie the theoretical studies on PINNs for the Navier-Stokes equations [12], high-dimensional radiative transfer 
problem [35], and dynamic PDEs of second order in time [41]. Hu et al. [26] provided valuable insights into the accuracy and 
convergence properties of PINNs for approximating the primitive equations. Berrone et al. [5] conducted a posteriori error analysis 
of variational PINNs for solving elliptic boundary-value problems. In [27] the generalized Barron space has been considered for the 
neural network and a priori and posteriori generalization bound on the PDE residuals are provided. Pantidis et al. [39] concentrated 
on two critical aspects: error convergence and engineering-guided hyperparameter search, aiming to optimize the performance of 
the integrated finite element neural network. Gao and Zakharian [24] shed insight into the error estimation for solving nonlinear 
equations using PINNs in the context of ℝ-smooth Banach spaces.

The analyses of PINNs in the aforementioned contributions all involve feed-forward neural networks (FNNs). The network output 
represents the PDE solution, and the neural network is trained by a “physics informed” approach, i.e. by minimizing a loss function 
related to residuals of the PDE and the boundary/initial conditions. The PINN methods of [12,35,41] (among others) theoretically 
guarantee for a class of PDEs that (i) the approximation error of the solution field will be bounded by the training loss, and (ii) there 
indeed exist FNNs that can make the training loss arbitrarily small. While these methods [12,35,41] with theoretical guarantees are 
attractive and important, they suffer from two limitations: (i) the neural network must have two hidden layers, and (ii) the activation 
function is restricted to tanh (hyperbolic tangent) only. These restrictions stem from the theoretical result about tanh neural networks 
of [12], which has been used to establish the findings in these studies.

We are interested in the following question:

• Is it possible to develop a PINN technique that retains these theoretical guarantees and additionally allows (i) an arbitrary number 
of hidden layers larger than two, and (ii) activation functions other than tanh?

In this work we develop a PINN approach to address the above question in the context stemming from the theoretical result of [12]. 
Our method provides an answer in the affirmative. It relies on the theoretical result of [12], but alleviates and largely overcomes the 
two aforementioned limitations. We would like to point out that activation functions other than tanh have long been used in practice, 
which is obviously not new. What is new lies in that, with the approach stemming from the theoretical finding of [12], the method 
presented herein removes those restrictions and allows the use of neural networks with more than two hidden layers and activation 
functions other than tanh, while preserving the theoretical guarantees.

A key strategy in our approach is the adoption of a type of modified FNNs, known as hidden-layer concatenated feed-forward neural 
networks (HLConcFNNs). HLConcFNN was proposed by [38] originally for extreme learning machines (ELMs), in order to overcome 
the issue that achieving high accuracy often necessitates a wide last hidden layer in conventional ELMs [14,19,17,51]. Building upon 
FNNs, HLConcFNNs establish direct connections between all hidden layer nodes and the output layer through a logical concatenation 
of the hidden layers. HLConcFNNs have the interesting property that, by appending hidden layers or adding extra nodes to existing 
hidden layers of a network structure, its representation capacity is guaranteed to be not decreasing (in practice strictly increasing 
with nonlinear activation functions) [38]. By contrast, conventional FNNs lack such a property. The properties of HLConcFNNs 
prove crucial to generalizing the theoretical analysis of PINN to network architectures with more than two hidden layers and with 
other activation functions than tanh. We would like to point out that the hidden-layer concatenated extreme learning machines 
(HLConcELMs) developed in [38] employ HLConcFNNs as the base architecture and have all the hidden-layer parameters randomly 
assigned and fixed (non-trainable), leaving only those parameters associated with the direct connections between the hidden-layer 
nodes and the output nodes trainable. On the other hand, the theoretical analyses presented in this work rely on HLConcFNNs in 
which all the network parameters (including those in the hidden layers) are trainable.

Another strategy in our approach and theoretical analysis is the block time marching (BTM) scheme [14] for dynamic simulations 
of time-dependent PDEs with long (or longer) time horizons. For long-time dynamic simulations, training the neural network on the 
entire spatial-temporal domain with a large dimension in time proves to be especially difficult. In this case, dividing the domain into 
“time blocks” with moderate sizes and training the neural network on the space-time domain of each time block individually and 
successively, with the initial conditions informed by computation results from the preceding time block, can significantly improve 
the accuracy and ease the training [14]. This is the essence of block time marching. We refer to e.g. [32,23,40] (among others) 
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for analogous strategies. Block time marching, as formulated in its existing form [14], is not amenable to theoretical analysis. The 
problem lies in the data regularity for the initial conditions, when multiple time blocks are present. To overcome this issue, we present 
in this work a modified BTM scheme, denoted by “ExBTM” (standing for Extended BTM), which enables the analysis of the block 
time marching strategy.

In this paper we present the hidden-layer concatenated PINN (or HLConcPINN) method, by combining hidden-layer concatenated 
FNNs, the modified block time marching strategy, and the physics informed neural network approach, for approximating parabolic and 
hyperbolic type PDEs. We analyze the convergence properties and error bounds of this method for parabolic equations, exemplified 
by the heat and viscous Burgers’ equations, and hyperbolic equations, exemplified by the wave and nonlinear Klein-Gordon equations. 
In addition, we also analyze this method, excluding the block time marching component, for the elliptic type equation, exemplified 
by the nonlinear Helmholtz equation. Our analyses show that the approximation error of the HLConcPINN solution can be effectively 
controlled by the training error for long-term dynamic simulations. The network architecture for HLConcPINNs can in principle 
contain any number of hidden layers larger than two, and the activation function for all hidden layers beyond the first two can 
essentially be any of the commonly-used activation functions with sufficient regularity, as long as the first two hidden layers adopt 
the tanh activation function.

These theoretical analyses subsequently inform the formulation of appropriate training loss functions, giving rise to PINN-type 
computational algorithms, which differ from the standard PINN and BTM formulations for these PDEs. We present ample numerical 
experiments based on the proposed algorithm. The numerical results demonstrate the effectiveness of this method in accurately 
capturing the solution field and affirm the relationship between the approximation error and the training loss from the theoretical 
analyses. Extensive numerical comparisons between the current algorithm and that employing the original BTM scheme are also 
presented.

The main contributions of this paper lie in two aspects: (i) the hidden-layer concatenated PINN methodology, and (ii) the analyses 
of the convergence properties and error estimates for this technique. The HLConcPINN method has the salient property that it allows 
an arbitrary number of hidden layers not smaller than two in the network structure, and allows essentially all of the commonly-used 
smooth activation functions, with theoretical guarantees.

The remainder of this paper is structured as follows. Section 2 provides an overview of HLConcPINN and the BTM strategy. In 
Sections 3–6, we analyze the convergence and errors of the HLConcPINN algorithm for approximating the heat equation, Burgers’ 
equation, wave equation and the nonlinear Klein-Gordon equation. Section 7 provides a set of numerical experiments with these 
PDEs to show the effectiveness of the HLConcPINN method and to supplement our theoretical analyses. Section 8 concludes the 
presentation with some further remarks. Finally, the appendix (Section 9) summarizes several auxiliary results and provides proofs 
for the theorems discussed in Section 3. In addition, the appendix provides an analysis of the HLConcPINN method for approximating 
the convection equation, as well as this method (without the block time marching component) for the nonlinear Helmholtz equation.

2. Hidden-layer concatenated physics informed neural networks and block time marching

2.1. Generic PDE

Consider a compact domain 𝐷 ⊂ℝ𝑑 (𝑑 > 0 being an integer) and the following initial/boundary value problem on this domain,

𝜕𝑢

𝜕𝑡 
(𝒙, 𝑡) +[𝑢](𝒙, 𝑡) = 0 (𝒙, 𝑡) ∈𝐷 × [0, 𝑇 ], (1a)

𝑢(𝒙, 𝑡) = 𝑢𝑑 (𝒙, 𝑡) (𝒙, 𝑡) ∈ 𝜕𝐷 × [0, 𝑇 ], (1b)

𝑢(𝒙,0) = 𝑢𝑖𝑛(𝒙) 𝒙 ∈𝐷, (1c)

Here, 𝑢 ∶𝐷×[0, 𝑇 ] ⊂ℝ𝑑+1 →ℝ𝑚 (𝑚 ≥ 1 being an integer) is the unknown field solution. 𝑢𝑑 is the boundary data, and 𝑢𝑖𝑛 is the initial 
distribution for 𝑢.  and  denote the differential and boundary operators. 𝑇 is the dimension in time.

2.2. Physics informed neural networks

Physics informed neural network (PINN) refers to the general approach for approximating a PDE problem using feedforward 
neural networks (FNNs) by minimizing the residuals involved in the problem. We first define feedforward neural networks, and then 
discuss the related machinery for the analysis of PINN.

Let 𝜎 ∶ ℝ→ ℝ denote an activation function. For any 𝑛 ∈ ℕ and 𝑧 = (𝑧1, 𝑧2,⋯ , 𝑧𝑛) ∈ ℝ𝑛, we define 𝜎(𝑧) ∶= (𝜎(𝑧1),⋯ , 𝜎(𝑧𝑛)). A 
feedforward neural network (with three hidden layers) is illustrated in Fig. 1(a) using a cartoon. It is formally defined as follows.

Definition 2.1. Let 𝑊 and 𝐿 be integers, and 1 ≤ 𝑙𝑖 ≤𝑊 (0 ⩽ 𝑖 ⩽𝐿) denote (𝐿+1) positive integers. Let 𝑅 ∈ℝ represent a bounded 
positive real number, 𝑧0 ∈ℝ𝑙0 denote the input variable, 𝜎 ∶ℝ→ℝ be a twice differentiable activation function, and 𝜗

𝑘
(1 ≤ 𝑘 ≤𝐿) 

be an affine mapping 𝜗
𝑘
∶ℝ𝑙𝑘−1 →ℝ𝑙𝑘 given by

𝑧𝑘−1 ↦𝑊𝑘𝑧𝑘−1 + 𝑏𝑘 for 1 ≤ 𝑘 ≤𝐿,

where 𝑊𝑘 ∈ [−𝑅,𝑅]𝑙𝑘×𝑙𝑘−1 ⊂ ℝ𝑙𝑘×𝑙𝑘−1 and 𝑏𝑘 ∈ [−𝑅,𝑅]𝑙𝑘 ⊂ ℝ𝑙𝑘 are referred to as the weight/bias coefficients for 1 ≤ 𝑘 ≤ 𝐿. Let Θ
denote the collection of all weights/biases and 𝜗 ∈Θ.
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Fig. 1. Illustration of network structures (with 3 hidden layers) for conventional and hidden-layer concatenated neural networks. In hidden-layer concatenated FNN, 
all the hidden nodes are exposed to the output nodes, while in conventional FNN only the last hidden-layer nodes are exposed to the output nodes.

A feedforward neural network is defined as the mapping 𝑢𝜗 ∶ℝ𝑙0 →ℝ𝑙𝐿 given by

𝑢𝜗(𝑧0) =𝜗
𝐿
◦ 𝜎 ◦𝜗

𝐿−1 ◦⋯ ◦ 𝜎 ◦𝜗
1(𝑧0) 𝑧0 ∈ℝ𝑙0 , (2)

where ◦ denotes a function composition.

The feedforward neural network in the definition contains (𝐿+1) layers (𝐿 ≥ 2) with widths (𝑙0, 𝑙1,⋯ , 𝑙𝐿), respectively. The input 
layer and the output layer have 𝑙0 and 𝑙𝐿 nodes, respectively. The (𝐿 − 1) layers between the input/output layers are the hidden 
layers, with widths 𝑙𝑘 (1 ≤ 𝑘 ≤ 𝐿− 1). From layer to layer, the network logic represents an affine transform, followed by a function 
composition with the activation function 𝜎. No activation function is applied to the output layer. Hereafter we refer to the vector of 
positive integers, 𝒍 = (𝑙0, 𝑙1,… , 𝑙𝐿), as an architectural vector, which characterizes the architecture of an FNN.

The neural network 𝑢𝜗, defined by (2), is a parameterized function of the input 𝑧0 = (𝒙, 𝑡), with the parameter 𝜗 of weights and 
biases. We represent the solution field 𝑢 to problem (1) by the neural network 𝑢𝜗, and wish to find the parameters 𝜗 such that 𝑢𝜗
approximates 𝑢 well.

It is necessary to approximate function integrals during the analysis of physics informed neural networks. Given a subset Λ ⊂ℝ𝑑

and a function 𝑓 ∈𝐿1(Λ), a quadrature rule provides an approximation of the integral by ∫Λ 𝑓 (𝑧)d𝑧 ≈ 1 
𝑀

∑𝑀
𝑛=1𝜔𝑛𝑓 (𝑧𝑛), where 𝑧𝑛 ∈Λ

(1 ≤ 𝑛 ≤𝑀) represents the quadrature points and 𝜔𝑛 (1 ≤ 𝑛 ≤𝑀) denotes the appropriate quadrature weights. The approximation 
accuracy is influenced by the regularity of 𝑓 , the type of quadrature rule and the number of quadrature points (𝑀). In the partial 
differential equations considered in this work, we assume that the problem dimension is low, thus allowing the use of standard 
deterministic values for the integrating points. Following [12,41], we employ the midpoint rule for numerical integrals. We partition 
Λ into 𝑀 ∼𝑁𝑑 cubes with an edge length 1 

𝑁
. The approximation accuracy is determined by|||||||∫Λ 

𝑓 (𝑧)d𝑧−Λ
𝑀
[𝑓 ]

||||||| ≤ 𝐶𝑓𝑀
−2∕𝑑 , (3)

where Λ
𝑀
[𝑓 ] ∶= 1 

𝑀

∑𝑀
𝑛=1 𝑓 (𝑧𝑛), 𝐶𝑓 ≲ ‖𝑓‖𝐶2(Λ) (𝑎 ≲ 𝑏 denotes 𝑎 ≤ 𝐶𝑏 for some constant 𝐶) and {𝑧𝑛}𝑀𝑛=1 denote the midpoints of 

these cubes [11].

2.3. Hidden-layer concatenated physics informed neural networks (HLConcPINNs)

We consider a type of modified FNN, termed hidden-layer concatenated feed-forward neural network (HLConcFNN) proposed 
by [38], for the PDE approximation in this work. HLConcFNNs differ from traditional FNNs by a modification that establishes direct 
connections between all hidden nodes and the output layer. The modified network, as illustrated in Fig. 1(b) with three hidden layers, 
incorporates a logical concatenation layer between the last hidden layer and the output layer. This layer aggregates the output fields 



Journal of Computational Physics 530 (2025) 113906

5

Y. Qian, Y. Zhang and S. Dong 

Fig. 2. Illustration of the block time marching (BTM) strategy. The large time domain is partitioned into multiple blocks, with each block computed individually and 
successively. Solution in one block informs the initial condition for the subsequent time block.

of all hidden nodes across the network, spanning from the first to the last hidden layers. From the logical concatenation layer to 
the output layer, a typical affine transformation is applied, possibly followed by an activation function, to obtain the output of the 
overall neural network. Notably, the logical concatenation layer does not introduce any trainable parameters. Hereafter we refer to 
the modified network as the hidden-layer concatenated FNN (HLConcFNN), as opposed to the original FNN, which serves as the base 
neural network. The incorporation of logical concatenation ensures that all the hidden nodes in the base network architecture have 
direct connections to the output nodes in HLConcFNN. This direct connectivity facilitates the flow of information from the hidden 
layers to the output layer, enhancing the network’s capacity to capture intricate relations. We refer to the approach, combining physics 
informed neural networks with hidden-layer concatenated FNNs, as hidden-layer concatenated physics informed neural networks 
(HLConcPINNs).

Given architectural vector 𝒍 = (𝑙0, 𝑙1,⋯ , 𝑙𝐿), the logical concatenation layer contains a total of 𝑁𝑐 (𝒍) =
∑𝐿−1

𝑖=1 𝑙𝑖 virtual nodes, with 
the total number of hidden-layer coefficients in the neural network given by 𝑁ℎ(𝒍) =

∑𝐿−1
𝑖=1 (𝑙𝑖−1 + 1)𝑙𝑖. The total number of network 

parameters in HLConcFNN is 𝑁𝑎(𝒍) =𝑁ℎ(𝒍)+ [𝑁𝑐(𝒍)+1]𝑙𝐿. The HLConcFNN is formally defined as the mapping 𝑢𝜃 ∶ℝ𝑙0 →ℝ𝑙𝐿 given 
by

𝑢𝜃(𝑧) =
𝐿−1∑
𝑖=1 

𝑀𝑖𝑢
𝜗
𝑖 (𝑧) + 𝑏𝐿 𝑧 ∈ℝ𝑙0 , (4)

where 𝜃 ∈ ℝ𝑁𝑎 denotes all the network parameters in HLConcFNN, and 𝜗 ∈ ℝ𝑁ℎ denotes the hidden-layer parameters. 𝑢𝜗
𝑖
(𝑧) =

𝜎 ◦𝜗
𝑖
◦ 𝜎 ◦𝜗

𝑖−1 ◦⋯ ◦ 𝜎 ◦𝜗
1(𝑧) (1 ≤ 𝑖 ≤ 𝐿− 1), with 𝑀𝑖 ∈ℝ𝑙𝐿×𝑙𝑖 (1 ≤ 𝑖 ≤𝐿− 1) denoting the connection coefficients between the 

output layer and the 𝑖-th hidden layer. 𝑏𝐿 ∈ℝ𝑙𝐿 is the bias of the output layer.

Given an architectural vector 𝒍 and an activation function 𝜎, let HLConcFNN(𝒍, 𝜎) denote the hidden-layer concatenated neural 
network associated with this architecture. For a given domain 𝐷 ⊂ℝ𝑑 , we define

𝑈 (𝐷, 𝒍, 𝜎) = { 𝑢𝜃(𝑧) | 𝑢𝜃(𝑧) is the output of HLConcFNN(𝒍, 𝜎), 𝑧 ∈𝐷, 𝜃 ∈ℝ𝑁𝑎(𝒍) } (5)

as the collection of all possible output fields of this HLConcFNN(𝒍, 𝜎). 𝑈 (𝐷, 𝒍, 𝜎) denotes the set of functions that can be exactly rep-

resented by this HLConcFNN(𝒍, 𝜎) on 𝐷. Following [38], we refer to 𝑈 (𝐷, 𝒍, 𝜎) as the representation capacity of the HLConcFNN(𝒍, 𝜎)
for the domain 𝐷.

HLConcFNNs exhibit a hierarchical structure in terms of their representation capacity, which is crucial to the current analyses. 
Specifically, given a base network architecture 𝒍, if a new hidden layer is appended to this network or if extra nodes are added to an 
existing hidden layer, the representation capacity of the HLConcFNN associated with the new architecture is guaranteed to be not 
smaller than that of the original architecture. These points are made precise by Lemmas 9.6 and 9.7 in Section 9.1. As a result, starting 
with an initial network architecture, one can attain a sequence of network architectures, by either appending one or more hidden 
layers to or adding extra nodes to existing hidden layers of the preceding architecture. Then we can conclude that the HLConcFNNs 
associated with this sequence of network architectures have non-decreasing representation capacities. By contrast, conventional FNNs 
do not have such a property. It is also noted that the HLConcFNN associated with a network architecture has a representation capacity 
at least as large as that of the conventional FNN associated with this architecture.

2.4. Block time marching (BTM)

Long-time dynamic simulation of time-dependent PDEs is a challenging issue to neural network-based methods. NN-based tech-

niques oftentimes adopt a space-time approach for solving dynamic PDEs, in which the space and time variables are treated on the 
same footing. When the temporal dimension of the space-time domain becomes large, as necessitated by the interest in long-time 
dynamics, network training can become immensely difficult, leading to grossly inaccurate NN predictions, especially toward later 
time instants.

Block time marching (BTM) [14] is an effective strategy that can alleviate the challenge posed by long time horizons and facilitate 
accurate long-term simulations with neural networks. BTM addresses the challenge by partitioning the large time domain into multiple 
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windows (time blocks) and successively advancing the solution through these blocks. Fig. 2 provides a visual representation of the 
block time marching strategy. The space-time domain, with a long time horizon, is divided into time blocks along the time axis. Each 
time block should have a moderate size in time, facilitating effective capture of the dynamics. An adaptation of the time block sizes 
based on local error control together with related strategies (e.g. continuation technique for improved initial guesses for nonlinear 
solvers) can significantly enhance the BTM performance [23]. The initial-boundary value problem is then solved individually and 
sequentially on the space-time domain of each time block using a suitable method, in particular with HLConcPINN in this work. 
The solution obtained on one time block, evaluated at the last time instant, informs the initial conditions for the computation of the 
subsequent time block. Starting with the first time block, we march in time block by block, until the last time block is traversed.

The basic BTM formulation as described above, unfortunately, is not amenable to theoretical analysis. Our analysis requires a 
modification to the basic formulation, which will be discussed in subsequent sections.

2.5. Residuals and training sets

We combine block time marching and hidden-layer concatenated PINNs for solving the system (1). We provide a theoretical 
analysis of the resultant method, and investigate the numerical algorithms as suggested by the theory.

For simplicity we consider uniform time blocks in BTM. We divide the temporal dimension 𝑇 into uniform time blocks 𝑙, where 
𝑙 ≥ 1 is chosen such that the block size Δ𝑇 = 𝑇 ∕𝑙 (Δ𝑡 or Δ𝑇 , in Sections 3-6, time block Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖) is of a moderate value. Let 
[𝑡𝑖−1, 𝑡𝑖] (1 ≤ 𝑖 ≤ 𝑙) denote the 𝑖-th block in time, where 𝑡𝑖 = 𝑖Δ𝑇 (or 𝑡𝑖 = 𝑖Δ𝑡) and 𝑡0 denotes the initial time. We march in time block 
by block, and within each time block solve the system (1) using hidden-layer concatenated PINN.

To solve (1), it is necessary to specify the residuals and the set of training collocation points. Let 𝑖 ⊂ 𝐷 × [0, 𝑡𝑖] denote the set of 
collocation points for training the HLConcPINN on the 𝑖-th time block (1 ≤ 𝑖 ≤ 𝑙). We define 𝑖 = 𝑖𝑛𝑡𝑖

∪ 𝑠𝑏𝑖
∪ 𝑡𝑏𝑖

with,

• Interior training points 𝑖𝑛𝑡𝑖
= {𝒚𝑛,1 ≤ 𝑛 ≤𝑁𝑖𝑛𝑡𝑖

}, where 𝒚𝑛 = (𝒙𝑛, 𝑡𝑛) ∈𝐷 × (𝑡𝑖−1, 𝑡𝑖).
• Spatial boundary training points 𝑠𝑏𝑖

= {𝒚𝑛,1 ≤ 𝑛 ≤𝑁𝑠𝑏𝑖
}, where 𝒚𝑛 = (𝒙𝑛, 𝑡𝑛) ∈ 𝜕𝐷 × (𝑡𝑖−1, 𝑡𝑖).

• Temporal boundary training points 𝑡𝑏𝑖
= {𝒚𝑛,1 ≤ 𝑛 ≤𝑁𝑡𝑏𝑖

}, where 𝒚𝑛 = (𝒙𝑛, 𝑡𝑛) ∈𝐷 × {𝑡0, 𝑡1,… , 𝑡𝑖−1}.

Here, (𝑁𝑖𝑛𝑡𝑖
,𝑁𝑠𝑏𝑖

,𝑁𝑡𝑏𝑖
) denote the number of interior points, spatial boundary points, and temporal boundary points for the 𝑖-th 

block, respectively.

Define space-time domains Ω𝑖 =𝐷× [𝑡𝑖−1, 𝑡𝑖] and Ω∗𝑖 = 𝜕𝐷× [𝑡𝑖−1, 𝑡𝑖] for the time block 𝑖. We employ a HLConcFNN 𝑢𝜃 ∶ Ω𝑖 →ℝ𝑚

to approximate the solution 𝑢 on Ω𝑖, and define the residual functions by (1 ≤ 𝑖 ≤ 𝑙),

𝑖𝑛𝑡𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡) =

𝜕𝑢𝜃𝑖

𝜕𝑡 
(𝒙, 𝑡) +[𝑢𝜃𝑖 ](𝒙, 𝑡) (𝒙, 𝑡) ∈ Ω𝑖, (6a)

𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡) =𝑢𝜃𝑖 (𝒙, 𝑡) − 𝑢𝑑 (𝒙, 𝑡) (𝒙, 𝑡) ∈ Ω∗𝑖, (6b)

𝑡𝑏𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡𝑖−1) = 𝑢𝜃𝑖 (𝒙, 𝑡𝑖−1) − 𝑢𝜃𝑖−1 (𝒙, 𝑡𝑖−1) 𝒙 ∈𝐷, (6c)

where 𝑢𝜃0 (𝒙, 𝑡0) = 𝑢𝑖𝑛(𝒙). These residuals characterize the extent to which a given function 𝑢 satisfies the initial/boundary value 
problem (1) for the time block 𝑖. If 𝑢 is the exact solution, then 𝑖𝑛𝑡𝑖

[𝑢] =𝑠𝑏𝑖
[𝑢] =𝑡𝑏1

[𝑢] ≡ 0. The above settings on the time block 
partitions and training sets will be employed throughout the subsequent sections.

In the forthcoming sections, we focus on four time-dependent partial differential equations: the heat equation, the viscous Burg-

ers’ equation, the wave equation and the nonlinear Klein-Gordon equation, representative of parabolic and hyperbolic type PDEs. We 
provide an analysis of the HLConcPINN method for approximating the solutions to these equations for long-time dynamic simulations, 
and investigate the PINN type computational algorithm stemming from these analyses. We implement these algorithms and numeri-

cally demonstrate the effectiveness of the HLConcPINN method using extensive experiments. The analyses herein of the HLConcPINN 
method, excluding its BTM component, equally apply to stationary PDEs of the elliptical type. An analysis for the nonlinear Helmholtz 
equation is provided in Appendix 9.3.

3. HLConcPINN for approximating the heat equation

3.1. Heat equation

Let 𝐷 ⊂ℝ𝑑 denote an open connected bounded domain with a 𝐶𝑘 boundary 𝜕𝐷. We consider the heat equation:

𝜕𝑢(𝒙, 𝑡)
𝜕𝑡 

−Δ𝑢(𝒙, 𝑡) = 𝑓 (𝒙, 𝑡) (𝒙, 𝑡) ∈𝐷 × [0, 𝑇 ], (7a)

𝑢(𝒙,0) = 𝑢𝑖𝑛(𝒙) 𝒙 ∈𝐷, (7b)

𝑢(𝒙, 𝑡) = 𝑢𝑑 (𝒙, 𝑡) (𝒙, 𝑡) ∈ 𝜕𝐷 × [0, 𝑇 ]. (7c)

Here, 𝑢 is the field solution, 𝑓 is a source term, and 𝑢𝑖𝑛 and 𝑢𝑑 denote the initial distribution and the boundary data, respectively.

Remark 3.1. The existence and regularity of the solution to the heat equation can be found in [48,21]. Assuming homogeneous 
Dirichlet boundary condition (i.e. 𝑢𝑑 = 0), the following results hold:
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• [48, Theorem 3.1, Chapter II]: For 𝑢𝑖𝑛 given in 𝐿2(𝐷) and 𝑓 given in 𝐿2(0, 𝑇 ;𝐻−1(𝐷)), there exists a unique solution 𝑢 of (7)

such that

𝑢 ∈𝐿2(0, 𝑇 ;𝐻1
0 (𝐷)) ∩𝐶(0, 𝑇 ;𝐿2(𝐷)), 𝜕𝑢

𝜕𝑡 
∈𝐿2(0, 𝑇 ;𝐻−1(𝐷)).

• [48, Theorem 3.3, Chapter II] and [21, Theorem 5, Chapter 7.1]: Assume that 𝑢𝑖𝑛 ∈𝐻1
0 (𝐷) and 𝑓 ∈𝐿2(0, 𝑇 ;𝐿2(𝐷)), then

𝑢 ∈𝐿2(0, 𝑇 ;𝐻2(𝐷) ∩𝐻1
0 (𝐷)) ∩𝐶(0, 𝑇 ;𝐻1

0 (𝐷)), 𝜕𝑢

𝜕𝑡 
∈𝐿2(0, 𝑇 ;𝐿2(𝐷)).

• [21, Theorem 6, Chapter 7.1]: The regularity result for higher-order regular initial data and source terms is available.

3.2. Hidden-layer concatenated physics informed neural networks

We divide the temporal domain into 𝑙 blocks, and seek 𝑙 deep neural networks 𝑢𝜃𝑖 ∶ 𝐷 × [0, 𝑡𝑖] → ℝ, parameterized by 𝜃𝑖, to 
approximate the solution 𝑢 of (7) for 1 ≤ 𝑖 ≤ 𝑙. For any 𝑢𝜃𝑖 ∶𝐷 × [0, 𝑡𝑖]→ℝ (1 ≤ 𝑖 ≤ 𝑙), we define the residuals:

𝑅𝑖𝑛𝑡𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡) =

𝜕𝑢𝜃𝑖

𝜕𝑡 
−Δ𝑢𝜃𝑖 − 𝑓, (8a)

𝑅𝑡𝑏𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡𝑗−1) = 𝑢𝜃𝑖 (𝒙, 𝑡𝑗−1) − 𝑢𝜃𝑗−1 (𝒙, 𝑡𝑗−1) 𝑗 = 1,2,⋯ , 𝑖, (8b)

𝑅𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡) = 𝑢𝜃𝑖 (𝒙, 𝑡) − 𝑢𝑑 (𝒙, 𝑡), (8c)

Here 𝑢𝜃0 (𝒙, 𝑡0) = 𝑢𝑖𝑛(𝒙), and Ω𝑖 and Ω∗𝑖 are defined in Section 2.5. Note that for the exact solution 𝑅𝑖𝑛𝑡𝑖
[𝑢] =𝑅𝑡𝑏𝑖

[𝑢] =𝑅𝑠𝑏𝑖
[𝑢] = 0.

With HLConcPINN, we try to find a sequence of neural networks 𝑢𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑙), for which all the residuals are minimized. 
Specifically, we minimize the quantity,

𝐺𝑖
(𝜃𝑖)2 = ̃𝐺𝑖

(𝜃𝑖)2 + 𝐺𝑖−1
(𝜃𝑖−1)2, (9)

sequentially for 1 ≤ 𝑖 ≤ 𝑙, where

̃𝐺𝑖
(𝜃𝑖)2 = ∫

Ω𝑖

|𝑅𝑖𝑛𝑡𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡)|2 d𝒙d𝑡+ 𝑖 ∑

𝑗=1 ∫
𝐷

|𝑅𝑡𝑏𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡𝑗−1)|2 d𝒙

+
⎛⎜⎜⎜⎝∫Ω∗𝑖

|𝑅𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝒙, 𝑡)|2 d𝑠(𝒙)d𝑡

⎞⎟⎟⎟⎠
1
2

. (10)

In equation (9) we set 𝐺𝑖−1
(𝜃𝑖−1) = 0 for 𝑖 = 1. The quantity 𝐺𝑖

(𝜃) is commonly known as the population risk or generalization error 
of the neural networks 𝑢𝜃𝑖 .

Remark 3.2. In the original block time marching scheme from [14], when computing a particular time block, the initial condition is 
taken to be the solution data from the preceding time block evaluated at the last time instant. In light of [48,21] (see Remark 3.1), 
the regularity of the initial data influences the regularity of the solution. By Lemma 9.8 (in the appendix), the regularity of this initial 
value �̂�𝜃𝑖 |𝑡=𝑡𝑖−1

differs from the original initial data of the problem. This difference affects the regularity of the PDE solution in the 
current time block, as well as the approximation accuracy of the neural network solution, causing difficulty in the analysis.

To address this issue, we make the following crucial modification to block time marching. We employ the true initial data for 
the problem as the initial value for all time blocks within the interval [0, 𝑡𝑖] for 1 ≤ 𝑖 ≤ 𝑙, as specified by (8b). This ensures that the 
regularity of the initial value is maintained throughout the time blocks, preserving the regularity of the solution. Essentially, we 
enforce the PDE and the boundary conditions only on the interval [𝑡𝑖−1, 𝑡𝑖] in time. For the time periods [0, 𝑡𝑖−1], however, we enforce 
the residuals solely at the discrete points 𝑡𝑗−1 (1 ≤ 𝑗 ≤ 𝑖). By using the true initial data consistently and training the neural network 
within individual time blocks successively, we can maintain the regularity of the solution across all time blocks. The initial condition 
(8b) and the setting for training data points in subsequent discussions employ this modified BTM formulation.

The integrals in (9) can be approximated numerically, leading to a training loss function. Following the discussions of Section 2.5, 
the full training set consists of  =

⋃𝑙
𝑖=1 𝑖 with 𝑖 = 𝑖𝑛𝑡𝑖

∪𝑠𝑏𝑖
∪𝑡𝑏𝑖

and we employ the midpoint rule for the numerical quadrature. 
This leads to the following approximation:

𝑇𝑖
(𝜃𝑖,𝑖)2 = ̃𝑇𝑖

(𝜃𝑖,𝑖)2 + 𝑇𝑖−1
(𝜃𝑖−1,𝑖−1)2, (11)

̃𝑇𝑖
(𝜃𝑖,𝑖)2 =  𝑖𝑛𝑡𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 +  𝑡𝑏𝑖
𝑇
(𝜃𝑖,𝑡𝑏𝑖

)2 + 𝑠𝑏𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
), (12)

where
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 𝑖𝑛𝑡𝑖
𝑇

(𝜃𝑖,𝑖𝑛𝑡𝑖
)2 =

𝑁𝑖𝑛𝑡𝑖∑
𝑛=1 

𝜔𝑛
𝑖𝑛𝑡𝑖

|𝑅𝑖𝑛𝑡𝑖
[𝑢𝜃𝑖 ](𝒙

𝑛
𝑖𝑛𝑡𝑖

, 𝑡𝑛𝑖𝑛𝑡𝑖
))|2, (13a)

𝑠𝑏𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)2 =

𝑁𝑠𝑏𝑖∑
𝑛=1 

𝜔𝑛
𝑠𝑏𝑖

|𝑅𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝒙

𝑛
𝑠𝑏𝑖

, 𝑡𝑛
𝑠𝑏𝑖
))|2, (13b)

 𝑡𝑏𝑖
𝑇
(𝜃𝑖,𝑡𝑏𝑖

)2 =
𝑖 ∑

𝑗=1 

𝑁𝑡𝑏𝑖∑
𝑛=1 

𝜔𝑛
𝑡𝑏𝑖

|𝑅𝑡𝑏𝑖
[𝑢𝜃𝑖 ](𝒙

𝑛
𝑡𝑏𝑖

, 𝑡𝑗−1)|2, (13c)

with the term 𝑇𝑖−1
(𝜃𝑖−1,𝑖−1) = 0 for 𝑖 = 1. Here, the quadrature points in space-time constitute the data sets 𝑖𝑛𝑡𝑖

= {(𝒙𝑛
𝑖𝑛𝑡𝑖

, 𝑡𝑛
𝑖𝑛𝑡𝑖

)}
𝑁𝑖𝑛𝑡𝑖

𝑛=1 , 

𝑡𝑏𝑖
= {𝒙𝑛

𝑡𝑏𝑖
}
𝑁𝑡𝑏𝑖

𝑛=1 and 𝑠𝑏𝑖
= {(𝒙𝑛

𝑠𝑏𝑖
, 𝑡𝑛

𝑠𝑏𝑖
)}

𝑁𝑠𝑏𝑖

𝑛=1 , and 𝜔𝑛
⋆𝑖

are the quadrature weights with ⋆ denoting 𝑖𝑛𝑡, 𝑡𝑏 or 𝑠𝑏.

3.3. Error analysis

Let �̂�𝑖 = 𝑢𝜃𝑖 − 𝑢 denote the error of the HLConcPINN approximation (𝑢𝜃𝑖 ) against the true solution (𝑢). By using equation (7) and 
definitions of the residuals (8), we obtain

𝑅𝑖𝑛𝑡𝑖
=

𝜕�̂�𝑖

𝜕𝑡 
−Δ�̂�𝑖, (14a)

𝑅𝑡𝑏𝑖
|𝑡=𝑡𝑗−1

= �̂�𝑖|𝑡=𝑡𝑗−1
− �̂�𝑗−1|𝑡=𝑡𝑗−1

𝑗 = 1,2,⋯ , 𝑖, (14b)

𝑅𝑠𝑏𝑖
= �̂�𝑖|𝜕𝐷, (14c)

where �̂�0|𝑡=𝑡0
= 0. We define the total error of the HLConcPINN approximation by

(𝜃𝑖)2 =
𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝒙, 𝑡)|2 d𝒙d𝑡 1 ≤ 𝑖 ≤ 𝑙. (15)

The bounds on the HLConcPINN residuals and its approximation errors are provided by the following three theorems. The proofs 
for these theorems are given in the appendix (Section 9.2).

Theorem 3.3. Let Ω̃𝑖 =𝐷 × [0, 𝑡𝑖] and Ω̃∗𝑖 = 𝜕𝐷 × [0, 𝑡𝑖]. Suppose 𝑛, 𝑑, 𝑘 ∈ ℕ with 𝑛 ≥ 2 and 𝑘 ≥ 3, and 𝑢 ∈𝐻𝑘(Ω̃𝑖). For every integer 
𝑁 > 5, there exists a HLConcPINN 𝑢𝜃𝑖 such that

‖𝑅𝑖𝑛𝑡𝑖
‖
𝐿2(Ω̃𝑖)

≲𝑁−𝑘+2ln2𝑁 ; ‖𝑅𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)‖𝐿2(𝐷), ‖𝑅𝑠𝑏𝑖

‖
𝐿2(Ω̃∗𝑖)

≲𝑁−𝑘+1ln𝑁 1 ≤ 𝑗 ≤ 𝑖. (16)

Theorem 3.3 implies that one can make the HLConcPINN residuals (8) arbitrarily small by choosing 𝑁 to be sufficiently large. It 
follows that the generalization error 𝐺𝑖

(𝜃𝑖)2 in (9) can be made arbitrarily small.

The next two theorems indicate that the approximation error (𝜃𝑖)2 is also small when the generalization error 𝐺𝑖
(𝜃𝑖)2 is small 

with the HLConcPINN approximation 𝑢𝜃𝑖 . Moreover, the approximation error (𝜃𝑖)2 can be arbitrarily small, provided that the training 
error 𝑇𝑖

(𝜃𝑖,𝑖)2 is sufficiently small and the sample set is sufficiently large.

Theorem 3.4. Let 𝑑 ∈ ℕ, and 𝑢 ∈ 𝐶1(Ω̃𝑖) be the classical solution to (7). Let 𝑢𝜃𝑖 be a HLConcPINN with parameter 𝜃𝑖, 𝑡𝑖−1 ≤ 𝜏 ≤ 𝑡𝑖, and 
Δ𝑡 = 𝑡𝑖 − 𝑡𝑖−1 (time block size). Then the following relation holds,

∫
𝐷

|�̂�𝑖(𝒙, 𝜏)|2 d𝒙 ≤ 𝐶𝐺𝑖
exp(Δ𝑡), 

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝒙, 𝑡)|2 d𝒙d𝑡 ≤ 𝐶𝐺𝑖
Δ𝑡 exp(Δ𝑡), (17)

where

𝐶𝐺𝑖
= 𝐶𝐺𝑖

+ 2𝐶𝐺𝑖−1
exp(Δ𝑡), 𝐶𝐺0

= 0,

𝐶𝐺𝑖
= 2

𝑖 ∑
𝑗=1 ∫

𝐷

|𝑅𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)|2 d𝒙+

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑖
|2 d𝒙d𝑡+ 2𝐶𝜕𝐷𝑖

|Δ𝑡| 12 ( 𝑡𝑖

∫
𝑡𝑖−1

∫
𝜕𝐷 

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)d𝑡) 1

2 ,

and 𝐶𝜕𝐷𝑖
= |𝜕𝐷| 12 (‖𝑢‖𝐶1(Ω∗𝑖) + ‖𝑢𝜃𝑖‖𝐶1(Ω∗𝑖)

)
. The symbol Ω∗𝑖 = 𝜕𝐷 × [𝑡𝑖−1, 𝑡𝑖] is given in Section 2.5.



Journal of Computational Physics 530 (2025) 113906

9

Y. Qian, Y. Zhang and S. Dong 

As described in Section 2.2, we focus on training sets that adopt the midpoint rule Λ
𝑀
[𝑓 ] (see (3)) in our analysis. For 𝑓 =𝑅2

𝑖𝑛𝑡𝑖

and Λ = Ω𝑖 = 𝐷 × [𝑡𝑖−1, 𝑡𝑖], we have the quadrature Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

]. Similarly, we can obtain the quadrature Ω∗𝑖
𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏𝑖
] for 𝑓 = 𝑅2

𝑠𝑏𝑖

and Λ = Ω∗𝑖 = 𝜕𝐷 × [𝑡𝑖−1, 𝑡𝑖], and the quadrature 𝐷
𝑀𝑡𝑏𝑖

[𝑅2
𝑡𝑏𝑖
] for 𝑓 = 𝑅2

𝑡𝑏𝑖
and Λ = 𝐷. We use 𝑀𝑖𝑛𝑡𝑖

, 𝑀𝑠𝑏𝑖
and 𝑀𝑡𝑏𝑖

to denote the 
number of quadrature points for Ω𝑖, Ω∗𝑖 and 𝐷, respectively. Then, the loss function (12) can be rewritten as

̃𝑇𝑖
(𝜃𝑖,𝑖)2 =  𝑖𝑛𝑡𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 +  𝑡𝑏𝑖
𝑇
(𝜃𝑖,𝑡𝑏𝑖

)2 + 𝑠𝑏𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)

=Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

] +
𝑖 ∑

𝑗=1 
𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)] + (Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏𝑖
])

1
2 . (18)

Using the above notation, relation (3), and Theorem 3.4, we can prove below that the approximation error can be made arbitrarily 
small, with a sufficiently small training error and a sufficiently large sample set.

Theorem 3.5. Let 𝑑 ∈ ℕ and 𝑇 > 0. Let 𝑢 ∈ 𝐶4(Ω̃𝑖) be the classical solution to (7), and 𝑢𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑙) be a HLConcPINN with parameter 
𝜃𝑖. Then the total error satisfies

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝒙, 𝑡)|2 d𝒙d𝑡 ≤ 𝐶𝑇𝑖
Δ𝑡 exp(Δ𝑡)

=
(
𝑇𝑖

(𝜃𝑖,𝑖)2 +𝑀
− 2 

𝑑+1
𝑖𝑛𝑡𝑖

+𝑀
− 2 

𝑑

𝑡𝑏𝑖
+𝑀

− 1 
𝑑

𝑠𝑏𝑖

)
, (19)

where  denotes the same order of magnitude and the constant 𝐶𝑇𝑖
is defined by

𝐶𝑇𝑖
= 𝐶𝑇𝑖

+ 2𝐶𝑇𝑖−1
exp(Δ𝑡), 𝐶𝑇0

= 0, (20)

𝐶𝑇𝑖
= 2

𝑖 ∑
𝑗=1 

(
𝐶(𝑅2

𝑡𝑏𝑖
(𝒙,𝑡𝑗−1))

𝑀
− 2 

𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)]

)
+𝐶(𝑅2

𝑖𝑛𝑡𝑖
)𝑀

− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

] + 2𝐶𝜕𝐷𝑖
|Δ𝑡| 12 (𝐶(𝑅2

𝑠𝑏𝑖
)𝑀

− 2 
𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏𝑖
]
) 1
2 .

Here 𝐶(𝑓2) is a constant related to 𝑓 2 and determined by its boundedness, with 𝑓 being 𝑅𝑡𝑏𝑖
, 𝑅𝑖𝑛𝑡𝑖

, or 𝑅𝑠𝑏𝑖
.

4. HLConcPINN for approximating the Burgers’ equation

4.1. Viscous Burgers’ equation

We consider the 1D viscous Burgers’ equation on the domain 𝐷 = [𝑎, 𝑏] ⊂ℝ:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡 

− 𝜈
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
+ 𝑢(𝑥, 𝑡)𝜕𝑢(𝑥, 𝑡)

𝜕𝑥 
= 𝑓 (𝑥, 𝑡) (𝑥, 𝑡) ∈𝐷 × [0, 𝑇 ], (21a)

𝑢(𝑥,0) = 𝑢𝑖𝑛(𝑥) 𝑥 ∈𝐷, (21b)

𝑢(𝑎, 𝑡) = 𝑔1(𝑡), 𝑢(𝑏, 𝑡) = 𝑔2(𝑡), 𝑡 ∈ [0, 𝑇 ], (21c)

where the constant 𝜈 denotes the viscosity, 𝑓 is a prescribed source term, 𝑔1(𝑡) and 𝑔2(𝑡) denote the boundary data, and 𝑢𝑖𝑛(𝑥) is the 
initial distribution.

4.2. Hidden-layer concatenated physics informed neural networks

We follow the settings from Section 2.5, and seek deep neural networks 𝑢𝜃𝑖 ∶𝐷 × [0, 𝑡𝑖]→ℝ for 1 ≤ 𝑖 ≤ 𝑙 (𝑙 denoting the number 
of time blocks) to approximate the solution 𝑢 of (21). Define the following residual functions, for 1 ≤ 𝑖 ≤ 𝑙,

𝑅𝑖𝑛𝑡𝑖
[𝑢𝜃𝑖 ](𝑥, 𝑡) =

𝜕𝑢𝜃𝑖

𝜕𝑡 
− 𝜈

𝜕2𝑢𝜃𝑖

𝜕𝑥2
+ 𝑢𝜃𝑖

𝜕𝑢𝜃𝑖

𝜕𝑥 
− 𝑓, (22a)

𝑅𝑡𝑏𝑖
[𝑢𝜃𝑖 ](𝑥, 𝑡𝑗−1) = 𝑢𝜃𝑖 |𝑡=𝑡𝑗−1

− 𝑢𝜃𝑗−1 |𝑡=𝑡𝑗−1
1 ≤ 𝑗 ≤ 𝑖, (22b)

𝑅𝑠𝑏1𝑖 [𝑢𝜃𝑖 ](𝑎, 𝑡) = 𝑢𝜃𝑖 (𝑎, 𝑡) − 𝑔1(𝑡), 𝑅𝑠𝑏2𝑖 [𝑢𝜃𝑖 ](𝑏, 𝑡) = 𝑢𝜃𝑖 (𝑏, 𝑡) − 𝑔2(𝑡). (22c)

In these equations 𝑢𝜃0
|||𝑡=𝑡0

= 𝑢𝑖𝑛(𝑥). Note that 𝑅𝑖𝑛𝑡𝑖
[𝑢] =𝑅𝑡𝑏𝑖

[𝑢] =𝑅𝑠𝑏𝑖
[𝑢] = 0 for the exact solution 𝑢. With HLConcPINN we seek 

𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑙) to minimize the following quantity,
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𝐺𝑖
(𝜃𝑖)2 = ̃𝐺𝑖

(𝜃𝑖)2 + 𝐺𝑖−1
(𝜃𝑖−1)2 1 ≤ 𝑖 ≤ 𝑙, (23)

̃𝐺𝑖
(𝜃𝑖)2 =

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑖
[𝑢𝜃𝑖 ](𝑥, 𝑡)|2 d𝑥d𝑡+

𝑡𝑖

∫
𝑡𝑖−1

(|𝑅𝑠𝑏1𝑖 [𝑢𝜃𝑖 ](𝑎, 𝑡)|2 + |𝑅𝑠𝑏2𝑖 [𝑢𝜃𝑖 ](𝑏, 𝑡)|2)d𝑡

+
⎛⎜⎜⎝

𝑡𝑖

∫
𝑡𝑖−1

|𝑅𝑠𝑏1𝑖 [𝑢𝜃𝑖 ](𝑎, 𝑡)|2 d𝑡⎞⎟⎟⎠
1
2

+
⎛⎜⎜⎝

𝑡𝑖

∫
𝑡𝑖−1

|𝑅𝑠𝑏2𝑖 [𝑢𝜃𝑖 ](𝑏, 𝑡)|2 d𝑡⎞⎟⎟⎠
1
2

+
𝑖 ∑

𝑗=1 ∫
𝐷

|𝑅𝑡𝑏𝑖
[𝑢𝜃𝑖 ](𝑥, 𝑡𝑗−1)|2 d𝑥, (24)

where 𝐺𝑖−1
(𝜃𝑖−1) = 0 for 𝑖 = 1.

The training data set consists of  =
⋃𝑙

𝑖=1 𝑖, with 𝑖 = 𝑖𝑛𝑡𝑖
∪𝑠𝑏𝑖

∪𝑡𝑏𝑖
. The spatial boundary training points are 𝑠𝑏𝑖

= {𝑦𝑛} for 
1 ≤ 𝑛 ≤𝑁𝑠𝑏𝑖

, with 𝑦𝑛 = (𝑥, 𝑡)𝑛 ∈ {𝑎, 𝑏} × (𝑡𝑖−1, 𝑡𝑖). We approximate the integrals in (23) by the mid-point rule, leading to the training 
loss functions,

𝑇𝑖
(𝜃𝑖,𝑖)2 = ̃𝑇𝑖

(𝜃𝑖,𝑖)2 + 𝑇𝑖−1
(𝜃𝑖−1,𝑖−1)2 1 ≤ 𝑖 ≤ 𝑙, (25)

̃𝑇𝑖
(𝜃𝑖,𝑖)2 =  𝑖𝑛𝑡𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 + 𝑠𝑏1𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)2 + 𝑠𝑏2𝑖

𝑇
(𝜃𝑖,𝑠𝑏𝑖

)2

+ 𝑠𝑏1𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
) + 𝑠𝑏2𝑖

𝑇
(𝜃𝑖,𝑠𝑏𝑖

) +  𝑡𝑏𝑖
𝑇
(𝜃𝑖,𝑡𝑏𝑖

)2, (26)

where 𝑠𝑏1𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)2 =

∑𝑁𝑠𝑏𝑖

𝑛=1 𝜔𝑛
𝑠𝑏𝑖

|𝑅𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝑎, 𝑡

𝑛
𝑠𝑏𝑖
)|2, 𝑠𝑏2𝑖

𝑇
(𝜃𝑖,𝑠𝑏𝑖

)2 =
∑𝑁𝑠𝑏𝑖

𝑛=1 𝜔𝑛
𝑠𝑏𝑖

|𝑅𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝑏, 𝑡

𝑛
𝑠𝑏𝑖
)|2, and the remaining terms are de-

fined according to equation (13). Note that 𝑇𝑖−1
(𝜃𝑖−1,𝑖−1) = 0 for 𝑖 = 1.

4.3. Error analysis

Let �̂�𝑖 = 𝑢𝜃𝑖 −𝑢 denote the error of the HLConcPINN approximation (𝑢 denoting the exact solution). Applying the Burgers’ equation 
(21) and the definitions of the different residuals, we obtain for 1 ≤ 𝑖 ≤ 𝑙,

𝑅𝑖𝑛𝑡𝑖
=

𝜕�̂�𝑖

𝜕𝑡 
− 𝜈

𝜕2�̂�𝑖

𝜕𝑥2
+ 𝑢𝜃𝑖

𝜕𝑢𝜃𝑖

𝜕𝑥 
− 𝑢

𝜕𝑢 
𝜕𝑥

, (27a)

𝑅𝑡𝑏𝑖
|𝑡=𝑡𝑗−1

= �̂�𝑖|𝑡=𝑡𝑗−1
− �̂�𝑗−1|𝑡=𝑡𝑗−1

𝑗 = 1,2,⋯ , 𝑖, (27b)

𝑅𝑠𝑏1𝑖 (𝑎, 𝑡) = �̂�𝑖(𝑎, 𝑡), 𝑅𝑠𝑏2𝑖 (𝑏, 𝑡) = �̂�𝑖(𝑏, 𝑡), (27c)

where �̂�0|𝑡=𝑡0
= 0. Then, we define the total error of the HLConcPINN approximation as

(𝜃𝑖)2 =
𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝒙, 𝑡)|2 d𝑥d𝑡. (28)

Theorem 4.1. Let Ω̃𝑖 = 𝐷 × [0, 𝑡𝑖]. Suppose 𝑛, 𝑑, 𝑘 ∈ ℕ with 𝑛 ≥ 2 and 𝑘 ≥ 3, and 𝑢 ∈ 𝐻𝑘(Ω̃𝑖). For every integer 𝑁 > 5, there exists a 
HLConcPINN 𝑢𝜃𝑖 such that

‖𝑅𝑖𝑛𝑡𝑖
‖
𝐿2(Ω̃𝑖)

≲𝑁−𝑘+2ln2𝑁, (29a)‖𝑅𝑡𝑏𝑖
(𝑥, 𝑡𝑗−1)‖𝐿2(𝐷),‖𝑅𝑠𝑏1𝑖‖𝐿2({𝑎}×[0,𝑡𝑖]),‖𝑅𝑠𝑏2𝑖‖𝐿2({𝑏}×[0,𝑡𝑖]) ≲𝑁−𝑘+1ln𝑁, 1 ≤ 𝑗 ≤ 𝑖. (29b)

Proof. By applying 𝑢 ∈𝐻𝑘(Ω̃𝑖), Lemmas 9.2 and 9.8, we can conclude the proof. □

Theorem 4.2. Let 𝑢 ∈ 𝐶1(Ω̃𝑖) be the classical solution to (21). Let 𝑢𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑙) be a HLConcPINN with parameter 𝜃𝑖. Then the following 
relation holds,

∫
𝐷

|�̂�𝑖(𝑥, 𝜏)|2 d𝑥 ≤ 𝐶𝐺𝑖
exp((1 +𝐶𝐷𝑖

)Δ𝑡) 𝜏 ∈ [𝑡𝑖−1, 𝑡𝑖], (30)

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝑥, 𝑡)|2 d𝑥d𝑡 ≤ 𝐶𝐺𝑖
Δ𝑡 exp((1 +𝐶𝐷𝑖

)Δ𝑡), (31)

where
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𝐶𝐺𝑖
= 2𝐶𝐺𝑖−1

exp((1 +𝐶𝐷𝑖−1
)Δ𝑡) +𝐶𝐺𝑖

, 𝐶𝐺0
= 0, 𝐶𝐷0

= 0,

𝐶𝐺𝑖
= 2

𝑖 ∑
𝑗=1 ∫

𝐷

|𝑅𝑡𝑏𝑖
(𝑥, 𝑡𝑗−1)|2 d𝑥+

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑖
|2 d𝑥d𝑡+𝐶𝜕𝐷1𝑖

(

𝑡𝑖

∫
𝑡𝑖−1

|𝑅𝑠𝑏1𝑖 |2 d𝑡) 12
+𝐶𝜕𝐷1𝑖

(

𝑡𝑖

∫
𝑡𝑖−1

|𝑅𝑠𝑏2𝑖 |2 d𝑡) 12 +𝐶𝜕𝐷2𝑖

𝑡𝑖

∫
𝑡𝑖−1

(|𝑅𝑠𝑏1𝑖 |2 + |𝑅𝑠𝑏2𝑖 |2)d𝑡,
𝐶𝜕𝐷1𝑖

= 2𝜈Δ𝑡
1
2 (‖𝑢‖𝐶1(Ω∗𝑖) + ‖𝑢𝜃𝑖‖𝐶1(Ω∗𝑖)), 𝐶𝐷𝑖

= 2Δ𝑡
1
2
(‖𝑢𝜃𝑖‖𝐶1(Ω𝑖) +

1
2‖𝑢‖𝐶1(Ω𝑖)

)
, and 𝐶𝜕𝐷2𝑖

= Δ𝑡
1
2 ‖𝑢‖𝐶0(Ω∗𝑖) with Ω𝑖 = 𝐷 × [𝑡𝑖−1, 𝑡𝑖]

and Ω∗𝑖 = 𝜕𝐷 × [𝑡𝑖−1, 𝑡𝑖].

Proof. Equation (27a) can be re-written as

𝑅𝑖𝑛𝑡𝑖
=

𝜕�̂�𝑖

𝜕𝑡 
− 𝜈

𝜕2�̂�𝑖

𝜕𝑥2
+ �̂�𝑖

𝜕�̂�𝑖

𝜕𝑥 
+ �̂�𝑖

𝜕𝑢 
𝜕𝑥

+ 𝑢
𝜕�̂�𝑖

𝜕𝑥 
. (32)

Note the following relation,

∫
𝐷

𝑢
𝜕�̂�𝑖

𝜕𝑥 
�̂�𝑖d𝑥 = 1

2 ∫
𝐷

𝑢
𝜕�̂�2

𝑖

𝜕𝑥 
d𝑥 = 1

2
𝑢�̂�2𝑖

|||𝑏𝑎 − 1
2 ∫

𝐷

|�̂�2𝑖 | 𝜕𝑢 𝜕𝑥
d𝑥.

The rest of the proof follows the same approach in the proof of Theorem 3.4. □

Theorem 4.3. Let 𝑢 ∈ 𝐶4(Ω̃𝑖) be the classical solution of the Burgers’ equation (21), and let 𝑢𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑙) be a HLConcPINN with parameter 
𝜃𝑖. Then the total approximation error satisfies

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝑥, 𝑡)|2 d𝑥d𝑡 ≤ 𝐶𝑇𝑖
Δ𝑡 exp((1 +𝐶𝐷𝑖

)Δ𝑡)

=(𝑇𝑖
(𝜃𝑖,𝑖)2 +𝑀

− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+𝑀

− 2 
𝑑

𝑡𝑏𝑖
+𝑀

− 1 
𝑑

𝑠𝑏𝑖
), (33)

where 𝐶𝐷𝑖
is defined in Theorem 4.2 and

𝐶𝑇𝑖
= 𝐶𝑇𝑖

+ 2𝐶𝑇𝑖−1
exp((1 +𝐶𝐷𝑖−1

)Δ𝑡), 𝐶𝑇0
= 0, (34)

𝐶𝑇𝑖
= 2

𝑖 ∑
𝑗=1 

(
𝐶(𝑅2

𝑡𝑏𝑖
(𝑥,𝑡𝑗−1))

𝑀
− 2 

𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏𝑖
(𝑥, 𝑡𝑗−1)]

)
+𝐶(𝑅2

𝑖𝑛𝑡𝑖
)𝑀

− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

]

+𝐶𝜕𝐷1𝑖

(
𝐶(𝑅2

𝑠𝑏1𝑖
)𝑀

− 2 
𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏1𝑖

]
) 1
2 +𝐶𝜕𝐷1𝑖

(
𝐶(𝑅2

𝑠𝑏2𝑖
)𝑀

− 2 
𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏2𝑖

]
) 1
2

+𝐶𝜕𝐷2𝑖

(
𝐶(𝑅2

𝑠𝑏1𝑖
)𝑀

− 2 
𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏1𝑖

] +𝐶(𝑅2
𝑠𝑏2𝑖

)𝑀
− 2 

𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏2𝑖

]
)
. (35)

Similar to (18), here the quadrature Λ
𝑀
[𝑓 ] is defined for different functions (𝑓 =𝑅2

𝑡𝑏𝑖
, 𝑅2

𝑖𝑛𝑡𝑖
, 𝑅2

𝑠𝑏1𝑖
and 𝑅𝑠𝑏2𝑖 ), different domains (Λ=Ω𝑖, 

Ω∗𝑖 and 𝐷) and the corresponding numbers of quadrature points (𝑀 =𝑀𝑖𝑛𝑡𝑖
, 𝑀𝑠𝑏𝑖

and 𝑀𝑡𝑏𝑖
).

Proof. The proof follows from Lemma 9.3, Theorem 4.2, and the quadrature error formula (3). □

5. HLConcPINN for approximating the wave equation

5.1. Wave equation

Consider the wave equation on the torus 𝐷 = [0,1)𝑑 ⊂ℝ𝑑 with periodic boundary conditions:

𝜕𝑢(𝒙, 𝑡)
𝜕𝑡 

− 𝑣(𝒙, 𝑡) = 0 (𝒙, 𝑡) ∈𝐷 × [0, 𝑇 ], (36a)

𝜕𝑣(𝒙, 𝑡)
𝜕𝑡 

−Δ𝑢(𝒙, 𝑡) = 𝑓 (𝒙, 𝑡) (𝒙, 𝑡) ∈𝐷 × [0, 𝑇 ], (36b)

𝑢(𝒙,0) = 𝜓1(𝒙) 𝒙 ∈𝐷, (36c)

𝑣(𝒙,0) = 𝜓2(𝒙) 𝒙 ∈𝐷, (36d)
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𝑢(𝒙, 𝑡) = 𝑢(𝒙+ 1, 𝑡) (𝒙, 𝑡) ∈ 𝜕𝐷 × [0, 𝑇 ], (36e)

∇𝑢(𝒙, 𝑡) = ∇𝑢(𝒙+ 1, 𝑡) (𝒙, 𝑡) ∈ 𝜕𝐷 × [0, 𝑇 ], (36f)

where (𝑢, 𝑣) are the field functions to solve, 𝑓 is a source term, and (𝜓1, 𝜓2) denote the initial data for (𝑢, 𝑣).

5.2. Hidden-layer concatenated physics informed neural networks

Following the settings from Section 2.5, we seek neural networks 𝑢𝜃𝑖 ∶ 𝐷 × [0, 𝑡𝑖] → ℝ and 𝑣𝜃𝑖 ∶ 𝐷 × [0, 𝑡𝑖] → ℝ with 1 ≤ 𝑖 ≤ 𝑙, 
parameterized by 𝜃𝑖, that approximate the solutions 𝑢 and 𝑣 of (36). We define the residuals (for 1 ≤ 𝑖 ≤ 𝑙 and 1 ≤ 𝑗 ≤ 𝑖),

𝑅𝑖𝑛𝑡1𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡) =
𝜕𝑢𝜃𝑖

𝜕𝑡 
− 𝑣𝜃𝑖 , 𝑅𝑖𝑛𝑡2𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡) =

𝜕𝑣𝜃𝑖

𝜕𝑡 
−Δ𝑢𝜃𝑖 − 𝑓, (37a)

𝑅𝑡𝑏1𝑖 [𝑢𝜃𝑖 ](𝒙, 𝑡𝑗−1) = 𝑢𝜃𝑖 (𝒙, 𝑡𝑗−1) − 𝑢𝜃𝑗−1 (𝒙, 𝑡𝑗−1), 𝑅𝑡𝑏2𝑖 [𝑣𝜃𝑖 ](𝒙, 𝑡𝑗−1) = 𝑣𝜃𝑖 (𝒙, 𝑡𝑗−1) − 𝑣𝜃𝑗−1 (𝒙, 𝑡𝑗−1), (37b)

𝑅𝑠𝑏1𝑖 [𝑣𝜃𝑖 ](𝒙, 𝑡) = 𝑣𝜃𝑖 (𝒙, 𝑡) − 𝑣𝜃𝑖 (𝒙+ 1, 𝑡), 𝑅𝑠𝑏2𝑖 [𝑢𝜃𝑖 ](𝒙, 𝑡) = ∇𝑢𝜃𝑖 (𝒙, 𝑡) − ∇𝑢𝜃𝑖 (𝒙+ 1, 𝑡), (37c)

where 𝑢𝜃0 (𝒙, 𝑡0) = 𝜓1(𝒙) and 𝑣𝜃0 (𝒙, 𝑡0) = 𝜓2(𝒙). For the exact solution (𝑢, 𝑣), we have 𝑅𝑖𝑛𝑡1𝑖 [𝑢, 𝑣] = 𝑅𝑖𝑛𝑡2𝑖 [𝑢, 𝑣] = 𝑅𝑡𝑏1𝑖 [𝑢] = 𝑅𝑡𝑏2𝑖 [𝑣] =
𝑅𝑠𝑏1𝑖 [𝑣] =𝑅𝑠𝑏2𝑖 [𝑢] = 0.

With the HLConcPINN algorithm, we minimize the quantity (for 1 ≤ 𝑖 ≤ 𝑙),

𝐺𝑖
(𝜃𝑖)2 = ̃𝐺𝑖

(𝜃𝑖)2 + 𝐺𝑖−1
(𝜃𝑖−1)2, (38)

̃𝐺𝑖
(𝜃𝑖)2 = ∫

Ω𝑖

(|𝑅𝑖𝑛𝑡1𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡)|2 + |𝑅𝑖𝑛𝑡2𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡)|2 + |∇𝑅𝑖𝑛𝑡1𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡)|2)d𝒙d𝑡
+

𝑖 ∑
𝑗=1 ∫

𝐷

(|𝑅𝑡𝑏1𝑖 [𝑢𝜃𝑖 ](𝒙, 𝑡𝑗−1)|2 + |𝑅𝑡𝑏2𝑖 [𝑣𝜃𝑖 ](𝒙, 𝑡𝑗−1)|2 + |∇𝑅𝑡𝑏1𝑖 [𝑢𝜃𝑖 ](𝒙, 𝑡𝑗−1)|2)d𝒙

+
⎛⎜⎜⎜⎝∫Ω∗𝑖

|𝑅𝑠𝑏1𝑖 [𝑣𝜃𝑖 ](𝒙, 𝑡)|2 d𝑠(𝒙)d𝑡
⎞⎟⎟⎟⎠
1
2

+
⎛⎜⎜⎜⎝∫Ω∗𝑖

|𝑅𝑠𝑏2𝑖 [𝑢𝜃𝑖 ](𝒙, 𝑡)|2 d𝑠(𝒙)d𝑡
⎞⎟⎟⎟⎠
1
2

. (39)

Here, 𝐺0
(𝜃0) = 0.

Adopting the full training set  =
⋃𝑙

𝑖=1 𝑖 with 𝑖 = 𝑖𝑛𝑡𝑖
∪𝑠𝑏𝑖

∪𝑡𝑏𝑖
as given in Section 2.5, we approximate the integrals in (38)

by the midpoint rule, resulting in the training loss,

𝑇𝑖
(𝜃𝑖,𝑖)2 = ̃𝑇𝑖

(𝜃𝑖,𝑖)2 + 𝑇𝑖−1
(𝜃𝑖−1,𝑖−1)2, (40)

̃𝑇𝑖
(𝜃𝑖,𝑖)2 =  𝑖𝑛𝑡1𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 +  𝑖𝑛𝑡2𝑖
𝑇

(𝜃𝑖,𝑖𝑛𝑡𝑖
)2 +  𝑖𝑛𝑡3𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 +  𝑡𝑏1𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2

+  𝑡𝑏2𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2 +  𝑡𝑏3𝑖

𝑇
(𝜃𝑖,𝑡𝑏𝑖

)2 + 𝑠𝑏1𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
) + 𝑠𝑏2𝑖

𝑇
(𝜃𝑖,𝑠𝑏𝑖

), (41)

where

 𝑖𝑛𝑡1𝑖
𝑇

(𝜃𝑖,𝑖𝑛𝑡𝑖
)2 =

𝑁𝑖𝑛𝑡𝑖∑
𝑛=1 

𝜔𝑛
𝑖𝑛𝑡𝑖

|𝑅𝑖𝑛𝑡1𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙
𝑛
𝑖𝑛𝑡𝑖

, 𝑡𝑛𝑖𝑛𝑡𝑖
)|2, (42a)

 𝑖𝑛𝑡2𝑖
𝑇

(𝜃𝑖,𝑖𝑛𝑡𝑖
)2 =

𝑁𝑖𝑛𝑡𝑖∑
𝑛=1 

𝜔𝑛
𝑖𝑛𝑡𝑖

|𝑅𝑖𝑛𝑡2𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ]](𝒙
𝑛
𝑖𝑛𝑡𝑖

, 𝑡𝑛𝑖𝑛𝑡𝑖
)|2, (42b)

 𝑖𝑛𝑡3𝑖
𝑇

(𝜃𝑖,𝑖𝑛𝑡𝑖
)2 =

𝑁𝑖𝑛𝑡𝑖∑
𝑛=1 

𝜔𝑛
𝑖𝑛𝑡𝑖

|∇𝑅𝑖𝑛𝑡1𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙
𝑛
𝑖𝑛𝑡𝑖

, 𝑡𝑛𝑖𝑛𝑡𝑖
)|2, (42c)

 𝑡𝑏1𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2 =

𝑖 ∑
𝑗=1 

𝑁𝑡𝑏𝑖∑
𝑛=1 

𝜔𝑛
𝑡𝑏𝑖

|𝑅𝑡𝑏1𝑖 [𝑢𝜃𝑖 ](𝒙
𝑛
𝑡𝑏𝑖

, 𝑡𝑗−1)|2, (42d)

 𝑡𝑏2𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2 =

𝑖 ∑
𝑗=1 

𝑁𝑡𝑏𝑖∑
𝑛=1 

𝜔𝑛
𝑡𝑏𝑖

|𝑅𝑡𝑏2𝑖 [𝑣𝜃𝑖 ](𝒙
𝑛
𝑡𝑏𝑖

, 𝑡𝑗−1)|2, (42e)

 𝑡𝑏3𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2 =

𝑖 ∑
𝑗=1 

𝑁𝑡𝑏𝑖∑
𝑛=1 

𝜔𝑛
𝑡𝑏𝑖

|∇𝑅𝑡𝑏1𝑖 [𝑢𝜃𝑖 ](𝒙
𝑛
𝑡𝑏𝑖

, 𝑡𝑗−1)|2, (42f)
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𝑠𝑏1𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)2 =

𝑁𝑠𝑏𝑖∑
𝑛=1 

𝜔𝑛
𝑠𝑏𝑖

|𝑅𝑠𝑏1𝑖 [𝑣𝜃𝑖 ](𝒙
𝑛
𝑠𝑏𝑖

, 𝑡𝑛
𝑠𝑏𝑖
)|2, (42g)

𝑠𝑏2𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)2 =

𝑁𝑠𝑏𝑖∑
𝑛=1 

𝜔𝑛
𝑠𝑏𝑖

|𝑅𝑠𝑏2𝑖 [𝑢𝜃𝑖 ](𝒙
𝑛
𝑠𝑏𝑖

, 𝑡𝑛
𝑠𝑏𝑖
)|2. (42h)

Here, the quadrature points in space-time constitute the data sets 𝑖𝑛𝑡𝑖
= {(𝒙𝑛

𝑖𝑛𝑡𝑖
, 𝑡𝑛

𝑖𝑛𝑡𝑖
)}

𝑁𝑖𝑛𝑡𝑖

𝑛=1 , 𝑡𝑏𝑖
= {𝒙𝑛

𝑡𝑏𝑖
}
𝑁𝑡𝑏𝑖

𝑛=1 and 𝑠𝑏𝑖
= {(𝒙𝑛

𝑠𝑏𝑖
, 𝑡𝑛

𝑠𝑏𝑖
)}

𝑁𝑠𝑏𝑖

𝑛=1 , 
and 𝜔𝑛

⋆𝑖
are suitable quadrature weights with ⋆ denoting 𝑖𝑛𝑡, 𝑡𝑏 or 𝑠𝑏. Notice that 𝑇𝑖−1

(𝜃𝑖−1,𝑖−1) = 0 for 𝑖 = 1.

5.3. Error analysis

Let �̂�𝑖 = 𝑢𝜃𝑖 − 𝑢, �̂�𝑖 = 𝑣𝜃𝑖 − 𝑣 denote the error of the HLConcPINN approximation of the solution (𝑢, 𝑣). We define the total approx-

imation error by

(𝜃𝑖)2 =
𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

(|�̂�𝑖(𝒙, 𝑡)|2 + |∇�̂�𝑖(𝒙, 𝑡)|2 + |�̂�𝑖(𝒙, 𝑡)|2)d𝒙d𝑡. (43)

In light of the wave equations (36) and the definitions of residuals (37), we have

𝑅𝑖𝑛𝑡1𝑖 =
𝜕�̂�𝑖

𝜕𝑡 
− �̂�𝑖, (44a)

𝑅𝑖𝑛𝑡2𝑖 =
𝜕�̂�𝑖

𝜕𝑡 
−Δ�̂�𝑖, (44b)

𝑅𝑡𝑏1𝑖 |𝑡=𝑡𝑗−1
= �̂�𝑖|𝑡=𝑡𝑗−1

− �̂�𝑗−1|𝑡=𝑡𝑗−1
𝑗 = 1,2,⋯ , 𝑖, (44c)

𝑅𝑡𝑏2𝑖 |𝑡=𝑡𝑗−1
= �̂�𝑖|𝑡=𝑡𝑗−1

− �̂�𝑗−1|𝑡=𝑡𝑗−1
𝑗 = 1,2,⋯ , 𝑖, (44d)

𝑅𝑠𝑏1𝑖 = �̂�𝑖(𝒙, 𝑡) − �̂�𝑖(𝒙+ 1, 𝑡), 𝑅𝑠𝑏2𝑖 =∇�̂�𝑖(𝒙, 𝑡) − ∇�̂�𝑖(𝒙+ 1, 𝑡). (44e)

Theorem 5.1. Let Ω̃𝑖 =𝐷× [0, 𝑡𝑖] and Ω̃∗𝑖 = 𝜕𝐷× [0, 𝑡𝑖] (1 ≤ 𝑖 ≤ 𝑙). Let 𝑛, 𝑑, 𝑘∈ℕ with 𝑛 ≥ 2 and 𝑘≥ 3, 𝑢∈𝐻𝑘(Ω̃𝑖) and 𝑣 ∈𝐻𝑘−1(Ω̃𝑖). 
For every integer 𝑁 > 5 and 1≤ 𝑗 ≤ 𝑖 ≤ 𝑙, there exist HLConcPINNs 𝑢𝜃𝑖 and 𝑣𝜃𝑖 , such that

‖𝑅𝑖𝑛𝑡1𝑖‖𝐿2(Ω̃𝑖)
,‖𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)‖𝐿2(𝐷) ≲𝑁−𝑘+1ln𝑁, (45a)‖𝑅𝑖𝑛𝑡2𝑖‖𝐿2(Ω̃𝑖)
,‖∇𝑅𝑖𝑛𝑡1𝑖‖𝐿2(Ω̃𝑖)

,‖∇𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)‖𝐿2(𝐷),‖𝑅𝑠𝑏2𝑖‖𝐿2(Ω̃∗𝑖)
≲𝑁−𝑘+2ln2𝑁, (45b)‖𝑅𝑡𝑏2𝑖 (𝒙, 𝑡𝑗−1)‖𝐿2(𝐷),‖𝑅𝑠𝑏1𝑖‖𝐿2(Ω̃∗𝑖)

≲𝑁−𝑘+2ln𝑁. (45c)

Proof. Similar to Theorem 3.3, the proof follows by noting 𝑢 ∈𝐻𝑘(Ω̃𝑖), 𝑣 ∈𝐻𝑘−1(Ω̃𝑖), Lemmas 9.3 and 9.8. □

Theorem 5.1 implies that one can make the HLConcPINN residuals (37) arbitrarily small by choosing 𝑁 to be sufficiently large. 
It follows that the generalization error 𝐺𝑖

(𝜃𝑖)2 in (38) can be made arbitrarily small. The next two theorems show that: (i) the total 
approximation error (𝜃𝑖)2 is small when the generalization error 𝐺𝑖

(𝜃𝑖)2 is small with the HLConcPINN approximation (𝑢𝜃𝑖 , 𝑣𝜃𝑖 ), and 
(ii) the total approximation error (𝜃𝑖)2 can be arbitrarily small if the training error 𝑇𝑖

(𝜃𝑖,𝑖)2 is sufficiently small and the sample 
set is sufficiently large.

Theorem 5.2. Let 𝑑 ∈ℕ, 𝑢 ∈ 𝐶1(Ω̃𝑖) and 𝑣 ∈ 𝐶0(Ω̃𝑖) be the classical solution to (36). Let 𝑢𝜃𝑖 and 𝑣𝜃𝑖 denote the HLConcPINN approximation 
with parameter 𝜃𝑖. For all 1≤ 𝑖 ≤ 𝑙, the following relation holds,

∫
𝐷

(|�̂�𝑖(𝒙, 𝜏)|2 + |∇�̂�𝑖(𝒙, 𝜏)|2 + |�̂�𝑖(𝒙, 𝜏)|2)d𝒙 ≤ 𝐶𝐺𝑖
exp(2Δ𝑡) 𝜏 ∈ [𝑡𝑖−1, 𝑡𝑖], (46)

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

(|�̂�𝑖(𝒙, 𝑡)|2 + |∇�̂�𝑖(𝒙, 𝑡)|2 + |�̂�𝑖(𝒙, 𝑡)|2)d𝒙d𝑡 ≤ 𝐶𝐺𝑖
Δ𝑡 exp(2Δ𝑡), (47)

where Δ𝑡 = 𝑡𝑖 − 𝑡𝑖−1 and for 1≤ 𝑖 ≤ 𝑙,

𝐶𝐺𝑖
= 𝐶𝐺𝑖

+ 2𝐶𝐺𝑖−1
exp(2Δ𝑡), 𝐶𝐺0

= 0,

𝐶𝐺𝑖
= ∫

Ω𝑖

(|𝑅𝑖𝑛𝑡1𝑖 |2 + |𝑅𝑖𝑛𝑡2𝑖 |2 + |∇𝑅𝑖𝑛𝑡1𝑖 |2)d𝒙d𝑡



Journal of Computational Physics 530 (2025) 113906

14

Y. Qian, Y. Zhang and S. Dong 

+ 2
𝑖 ∑

𝑗=1 ∫
𝐷

(|𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)|2 + |𝑅𝑡𝑏2𝑖 (𝒙, 𝑡𝑗−1)|2 + |∇𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)|2)d𝒙

+ 2|Δ𝑡| 12 𝐶𝜕𝐷1𝑖

⎛⎜⎜⎜⎝∫Ω∗𝑖

|𝑅𝑠𝑏1𝑖 |2 d𝑠(𝒙)d𝑡
⎞⎟⎟⎟⎠
1
2

+ 2|Δ𝑡| 12 𝐶𝜕𝐷2𝑖

⎛⎜⎜⎜⎝∫Ω∗𝑖

|𝑅𝑠𝑏2𝑖 |2 d𝑠(𝒙)d𝑡
⎞⎟⎟⎟⎠
1
2

,

𝐶𝜕𝐷1𝑖
= |𝜕𝐷| 12 (‖𝑢‖𝐶1(Ω∗𝑖) + ‖𝑢𝜃𝑖‖𝐶1(Ω∗𝑖)) and 𝐶𝜕𝐷2𝑖

= |𝜕𝐷| 12 (‖𝑣‖𝐶(Ω∗𝑖) + ‖𝑣𝜃𝑖‖𝐶(Ω∗𝑖)).

Proof. The proof follows the same techniques as in the proof of Theorem 3.4 and in the proof of Theorem 3.4 of [41]. □

Using the midpoint rule Λ
𝑀
[𝑓 ] as described in Section 2.2, we can express the training loss function (41) as

̃𝑇𝑖
(𝜃𝑖,𝑖)2 =  𝑖𝑛𝑡1𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 +  𝑖𝑛𝑡2𝑖
𝑇

(𝜃𝑖,𝑖𝑛𝑡𝑖
)2 +  𝑖𝑛𝑡3𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 + 𝑠𝑏1𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
) + 𝑠𝑏2𝑖

𝑇
(𝜃𝑖,𝑠𝑏𝑖

)

+  𝑡𝑏1𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2 +  𝑡𝑏2𝑖

𝑇
(𝜃𝑖,𝑡𝑏𝑖

)2 +  𝑡𝑏3𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2,

=Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡1𝑖

] +Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡2𝑖

] +Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[|∇𝑅𝑖𝑛𝑡1𝑖 |2] + (Ω∗𝑖
𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏1𝑖

])
1
2 + (Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏2𝑖

])
1
2

+
𝑖 ∑

𝑗=1 

(𝐷
𝑀𝑡𝑏𝑖

[𝑅2
𝑡𝑏1𝑖

(𝒙, 𝑡𝑗−1)] +𝐷
𝑀𝑡𝑏𝑖

[𝑅2
𝑡𝑏2𝑖

(𝒙, 𝑡𝑗−1)] +𝐷
𝑀𝑡𝑏𝑖

[|∇𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)|2]) .

Then by applying Theorem 5.2, we obtain the following result, which bounds the total error of HLConcPINN in terms of the training 
loss and the number of training points.

Theorem 5.3. Let 𝑑 ∈ℕ and 𝑇 > 0. Let 𝑢 ∈ 𝐶4(Ω̃𝑖) and 𝑣 ∈ 𝐶3(Ω̃𝑖) be the classical solution to (36), and let (𝑢𝜃𝑖 , 𝑣𝜃𝑖 ) denote the HLConcPINN 
approximation with parameter 𝜃𝑖. Then the total approximation error satisfies

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

(|�̂�𝑖(𝒙, 𝑡)|2 + |∇�̂�𝑖(𝒙, 𝑡)|2 + |�̂�𝑖(𝒙, 𝑡)|2)d𝒙d𝑡 ≤ 𝐶𝑇𝑖
Δ𝑡 exp(2Δ𝑡)

=(𝑇𝑖
(𝜃𝑖,𝑖)2 +𝑀

− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+𝑀

− 2 
𝑑

𝑡𝑏𝑖
+𝑀

− 1 
𝑑

𝑠𝑏𝑖
), (48)

where

𝐶𝑇𝑖
= 𝐶𝑇𝑖

+ 2𝐶𝑇𝑖−1
exp(2Δ𝑡), 𝐶𝑇0

= 0,

𝐶𝑇𝑖
= 2

𝑖 ∑
𝑗=1 

(
𝐶(𝑅2

𝑡𝑏1𝑖
(𝒙,𝑡𝑗−1))

𝑀
− 2 

𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏1𝑖
(𝒙, 𝑡𝑗−1)] +𝐶(𝑅2

𝑡𝑏2𝑖
(𝒙,𝑡𝑗−1))

𝑀
− 2 

𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏2𝑖
(𝒙, 𝑡𝑗−1)]

)
+ 2

𝑖 ∑
𝑗=1 

(
𝐶(|∇𝑅𝑡𝑏1𝑖 (𝒙,𝑡𝑗−1)|2)𝑀− 2 

𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[|∇𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)|2])+𝐶(𝑅2

𝑖𝑛𝑡1𝑖
)𝑀

− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡1𝑖

]

+𝐶(𝑅2
𝑖𝑛𝑡2𝑖

)𝑀
− 2 

𝑑+1
𝑖𝑛𝑡𝑖

+Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡2𝑖

] +𝐶(|∇𝑅𝑖𝑛𝑡1𝑖 |2)𝑀− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[|∇𝑅𝑖𝑛𝑡1𝑖 |2]
+ 2|Δ𝑡| 12 (𝐶𝜕𝐷1𝑖

(𝐶(𝑅2
𝑠𝑏1𝑖

)𝑀
− 2 

𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏1𝑖

])
1
2 +𝐶𝜕𝐷2𝑖

(𝐶(𝑅2
𝑠𝑏2𝑖

)𝑀
− 2 

𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏2𝑖

])
1
2
)
. (49)

Proof. Using Lemma 9.3, Theorem 5.2 and the quadrature error formula (3) leads to this result. □

6. HLConcPINN for approximating the nonlinear Klein-Gordon equation

6.1. Nonlinear Klein-Gordon equation

Let 𝐷 ⊂ℝ𝑑 be an open connected bounded set with boundary 𝜕𝐷. We consider the nonlinear Klein-Gordon equation:

𝜕𝑢(𝒙, 𝑡)
𝜕𝑡 

− 𝑣(𝒙, 𝑡) = 0 (𝒙, 𝑡) ∈𝐷 × [0, 𝑇 ], (50a)

𝜀2
𝜕𝑣(𝒙, 𝑡)

𝜕𝑡 
= 𝑎2Δ𝑢(𝒙, 𝑡) − 𝜀21𝑢(𝒙, 𝑡) − 𝑔(𝑢(𝒙, 𝑡)) + 𝑓 (𝒙, 𝑡) (𝒙, 𝑡) ∈𝐷 × [0, 𝑇 ], (50b)

𝑢(𝒙,0) = 𝜓1(𝒙) 𝒙 ∈𝐷, (50c)
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𝑣(𝒙,0) = 𝜓2(𝒙) 𝒙 ∈𝐷, (50d)

𝑢(𝒙, 𝑡) = 𝑢𝑑 (𝒙, 𝑡) (𝒙, 𝑡) ∈ 𝜕𝐷 × [0, 𝑇 ], (50e)

where 𝑢 and 𝑣 are the field functions to be solved for, 𝑓 is a source term, and 𝑢𝑑 , 𝜓1 and 𝜓2 denote the boundary/initial conditions. 
𝜀 > 0, 𝑎 > 0 and 𝜀1 ≥ 0 are constants. 𝑔(𝑢) is a nonlinear term. We assume that 𝑔 is globally Lipschitz, i.e. there exists a constant 𝐿
(independent of 𝑣 and 𝑤) such that

|𝑔(𝑣) − 𝑔(𝑤)| ≤𝐿|𝑣−𝑤| ∀𝑣, 𝑤 ∈ℝ. (51)

6.2. Hidden-layer concatenated physics informed neural networks

Following the settings in Section 2.5, we define the following residuals for the HLConcPINN approximation 𝑢𝜃𝑖 ∶𝐷 × [0, 𝑡𝑖]→ℝ
and 𝑣𝜃𝑖 : 𝐷× [0, 𝑡𝑖] →ℝ (for 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑙) of the equations in (50):

𝑅𝑖𝑛𝑡1𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡) =
𝜕𝑢𝜃𝑖

𝜕𝑡 
− 𝑣𝜃𝑖 , 𝑅𝑖𝑛𝑡2𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡) = 𝜀2

𝜕𝑣𝜃𝑖

𝜕𝑡 
− 𝑎2Δ𝑢𝜃𝑖 + 𝜀21𝑢𝜃𝑖 + 𝑔(𝑢𝜃𝑖 ) − 𝑓, (52a)

𝑅𝑡𝑏1𝑖 [𝑢𝜃𝑖 ](𝒙, 𝑡𝑗−1) = 𝑢𝜃𝑖 (𝒙, 𝑡𝑗−1) − 𝑢𝜃𝑗−1 (𝒙, 𝑡𝑗−1), 𝑅𝑡𝑏2𝑖 [𝑣𝜃𝑖 ](𝒙, 𝑡𝑗−1) = 𝑣𝜃𝑖 (𝒙, 𝑡𝑗−1) − 𝑣𝜃𝑗−1 (𝒙, 𝑡𝑗−1), (52b)

𝑅𝑠𝑏𝑖
[𝑣𝜃𝑖 ](𝒙, 𝑡) = 𝑣𝜃𝑖 (𝒙, 𝑡)|𝜕𝐷 − 𝑢𝑑𝑡(𝒙, 𝑡), (52c)

where 𝑢𝑑𝑡 =
𝜕𝑢𝑑
𝜕𝑡 , 𝑢𝜃0 (𝒙, 𝑡0) = 𝜓1(𝒙) and 𝑣𝜃0 (𝒙, 𝑡0) = 𝜓2(𝒙). Notice that 𝑅𝑖𝑛𝑡1𝑖 [𝑢, 𝑣] = 𝑅𝑖𝑛𝑡2𝑖 [𝑢, 𝑣] = 𝑅𝑡𝑏1𝑖 [𝑢] = 𝑅𝑡𝑏2𝑖 [𝑣] = 𝑅𝑠𝑏𝑖

[𝑣] = 0 for 
the exact solution (𝑢, 𝑣). We minimize the following generalization error (for 1 ≤ 𝑖 ≤ 𝑙),

𝐺𝑖
(𝜃𝑖)2 = ̃𝐺𝑖

(𝜃𝑖)2 + 𝐺𝑖−1
(𝜃𝑖−1)2, (53)

̃𝐺𝑖
(𝜃𝑖)2 = ∫

Ω𝑖

(|𝑅𝑖𝑛𝑡1𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡)|2 + |𝑅𝑖𝑛𝑡2𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡)|2 + |∇𝑅𝑖𝑛𝑡1𝑖 [𝑢𝜃𝑖 , 𝑣𝜃𝑖 ](𝒙, 𝑡)|2) d𝒙d𝑡

+
𝑖 ∑

𝑗=1 ∫
𝐷

(|𝑅𝑡𝑏1𝑖 [𝑢𝜃𝑖 ](𝒙, 𝑡𝑗−1)|2 + |𝑅𝑡𝑏2𝑖 [𝑣𝜃𝑖 ](𝒙, 𝑡𝑗−1)|2 + |∇𝑅𝑡𝑏1𝑖 [𝑢𝜃𝑖 ](𝒙, 𝑡𝑗−1)|2) d𝒙

+
⎛⎜⎜⎜⎝∫Ω∗𝑖

|𝑅𝑠𝑏𝑖
[𝑣𝜃𝑖 ](𝒙, 𝑡)|2 d𝑠(𝒙)d𝑡

⎞⎟⎟⎟⎠
1
2

, (54)

where 𝐺0
(𝜃0) = 0.

Employing the training set  =
⋃𝑙

𝑖=1 𝑖 with 𝑖 = 𝑖𝑛𝑡𝑖
∪𝑠𝑏𝑖

∪𝑡𝑏𝑖
as given in Section 2.5 and the midpoint rule for approximating 

the residuals, we arrive at the training loss as follows (for 1 ≤ 𝑖 ≤ 𝑙),

𝑇𝑖
(𝜃𝑖,𝑖)2 = ̃𝑇𝑖

(𝜃𝑖,𝑖)2 + 𝑇𝑖−1
(𝜃𝑖−1,𝑖−1)2, (55)

̃𝑇𝑖
(𝜃𝑖,𝑖)2 =  𝑖𝑛𝑡1𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 +  𝑖𝑛𝑡2𝑖
𝑇

(𝜃𝑖,𝑖𝑛𝑡𝑖
)2 +  𝑖𝑛𝑡3𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 +  𝑡𝑏1𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2

+  𝑡𝑏2𝑖
𝑇

(𝜃𝑖,𝑡𝑏𝑖
)2 +  𝑡𝑏3𝑖

𝑇
(𝜃𝑖,𝑡𝑏𝑖

)2 + 𝑠𝑏𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
), (56)

where 𝑠𝑏𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)2 =

∑𝑁𝑠𝑏𝑖

𝑛=1 𝜔𝑛
𝑠𝑏𝑖

|𝑅𝑠𝑏𝑖
[𝑣𝜃𝑖 ](𝒙

𝑛
𝑠𝑏𝑖

, 𝑡𝑛
𝑠𝑏𝑖
)|2 and the other terms are defined in (42). Notice that 𝑇0

(𝜃0,0) = 0.

Remark 6.1. The parameter 𝜀 can influence the stiffness of the problem and the practical difficulty in solving the problem. When 
𝜀 is small, the wavelength decreases and the frequency increases. To improve accuracy, one can reduce the size of the time blocks, 
effectively increasing the number of time blocks to account for the higher frequency.

6.3. Error analysis

Let �̂�𝑖 = 𝑢𝜃𝑖 − 𝑢 and �̂�𝑖 = 𝑣𝜃𝑖 − 𝑣 denote the errors of HLConcPINN approximation, where (𝑢, 𝑣) are the exact solutions. We define 
the total approximation error of HLConcPINN as,

(𝜃𝑖)2 =
𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

(|�̂�𝑖(𝒙, 𝑡)|2 + 𝑎2|∇�̂�𝑖(𝒙, 𝑡)|2 + 𝜀2|�̂�𝑖(𝒙, 𝑡)|2)d𝒙d𝑡. (57)

Subtracting the equations (50) from the residual equations (52) leads to,
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𝑅𝑖𝑛𝑡1𝑖 =
𝜕�̂�𝑖

𝜕𝑡 
− �̂�𝑖, (58a)

𝑅𝑖𝑛𝑡2𝑖 = 𝜀2
𝜕�̂�𝑖

𝜕𝑡 
− 𝑎2Δ�̂�𝑖 + 𝜀21�̂�𝑖 + 𝑔(𝑢𝜃𝑖 ) − 𝑔(𝑢), (58b)

𝑅𝑡𝑏1𝑖 |𝑡=𝑡𝑗−1
= �̂�𝑖|𝑡=𝑡𝑗−1

− �̂�𝑗−1|𝑡=𝑡𝑗−1
𝑗 = 1,2,⋯ , 𝑖, (58c)

𝑅𝑡𝑏2𝑖 |𝑡=𝑡𝑗−1
= �̂�𝑖|𝑡=𝑡𝑗−1

− �̂�𝑗−1|𝑡=𝑡𝑗−1
𝑗 = 1,2,⋯ , 𝑖, (58d)

𝑅𝑠𝑏𝑖
= �̂�𝑖|𝜕𝐷. (58e)

The following theorems summarize the results of the HLConcPINN approximation for the nonlinear Klein-Gordon equation.

Theorem 6.2. Let 𝑛 ≥ 2, 𝑑, 𝑘 ∈ ℕ with 𝑘 ≥ 3. Suppose that 𝑔(𝑢) is Lipschitz continuous, 𝑢 ∈ 𝐶𝑘(𝐷 × [0, 𝑡𝑖]) and 𝑣 ∈ 𝐶𝑘−1(𝐷 × [0, 𝑡𝑖])
(1 ≤ 𝑖 ≤ 𝑙). Then for every integer 𝑁 > 5, there exist HLConcPINNs 𝑢𝜃𝑖 and 𝑣𝜃𝑖 , such that

‖𝑅𝑖𝑛𝑡1𝑖‖𝐿2(𝐷×[0,𝑡𝑖]),‖𝑅𝑡𝑏1𝑖‖𝐿2(𝐷) ≲𝑁−𝑘+1ln𝑁, (59a)‖𝑅𝑖𝑛𝑡2𝑖‖𝐿2(𝐷×[0,𝑡𝑖]),‖∇𝑅𝑖𝑛𝑡1𝑖‖𝐿2(𝐷×[0,𝑡𝑖]),‖∇𝑅𝑡𝑏1𝑖‖𝐿2(𝐷) ≲𝑁−𝑘+2ln2𝑁, (59b)‖𝑅𝑡𝑏2𝑖‖𝐿2(𝐷),‖𝑅𝑠𝑏𝑖
‖𝐿2(𝜕𝐷×[0,𝑡𝑖]) ≲𝑁−𝑘+2ln𝑁. (59c)

Proof. Similar to that of Theorem 3.3, the proof follows by noting 𝑢 ∈ 𝐶𝑘(𝐷× [0, 𝑡𝑖]), 𝑣 ∈ 𝐶𝑘−1(𝐷× [0, 𝑡𝑖]), Lemmas 9.3, 9.5 and 9.8, 
and the globally Lipschitz condition (51). □

This theorem implies that the HLConcPINN residuals in (52) can be made arbitrarily small by choosing a sufficiently large 𝑁 . 
Therefore, the generalization error 𝐺𝑖

(𝜃𝑖)2 can be made arbitrarily small. We next show that the HLConcPINN total approxima-

tion error (𝜃𝑖)2 can be controlled by the generalization error 𝐺𝑖
(𝜃𝑖)2 (Theorem 6.3 below), and by the training error 𝑇𝑖

(𝜃𝑖,𝑖)2
(Theorem 6.4 below).

Theorem 6.3. Let 𝑑 ∈ℕ, 𝑢 ∈ 𝐶1(𝐷× [0, 𝑡𝑖]) and 𝑣∈ 𝐶0(𝐷× [0, 𝑡𝑖]) be the classical solution of (50). Let (𝑢𝜃𝑖 , 𝑣𝜃𝑖 ) denote the HLConcPINN 
approximation with parameter 𝜃𝑖. For 1≤ 𝑖 ≤ 𝑙, the following relation holds,

∫
𝐷

(|�̂�𝑖(𝒙, 𝑡)|2 + 𝑎2|∇�̂�𝑖(𝒙, 𝑡)|2 + 𝜀2|�̂�𝑖(𝒙, 𝑡)|2)d𝒙 ≤ 𝐶𝐺𝑖
exp

(
(2 + 𝜀21 +𝐿+ 𝑎2)Δ𝑡

)
, (60)

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

(|�̂�𝑖(𝒙, 𝑡)|2 + 𝑎2|∇�̂�𝑖(𝒙, 𝑡)|2 + 𝜀2|�̂�𝑖(𝒙, 𝑡)|2)d𝒙d𝑡 ≤ 𝐶𝐺𝑖
Δ𝑡 exp

(
(2 + 𝜀21 +𝐿+ 𝑎2)Δ𝑡

)
, (61)

where

𝐶𝐺𝑖
= 𝐶𝐺𝑖

+ 2𝐶𝐺𝑖−1
exp((2 + 𝜀21 +𝐿+ 𝑎2)Δ𝑡), 𝐶𝐺0

= 0,

𝐶𝐺𝑖
= ∫

Ω𝑖

(|𝑅𝑖𝑛𝑡1𝑖 |2 + |𝑅𝑖𝑛𝑡2𝑖 |2 + 𝑎2|∇𝑅𝑖𝑛𝑡1𝑖 |2)d𝒙d𝑡+ 2𝐶𝜕𝐷𝑖
|Δ𝑡| 12 ⎛⎜⎜⎜⎝∫Ω∗𝑖

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)d𝑡⎞⎟⎟⎟⎠

1
2

+ 2
𝑖 ∑

𝑗=1 ∫
𝐷

(|𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)|2 + 𝜀2|𝑅𝑡𝑏2𝑖 (𝒙, 𝑡𝑗−1)|2 + 𝑎2|∇𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)|2)d𝒙,
and 𝐶𝜕𝐷𝑖

= 𝑎2|𝜕𝐷| 12 (‖𝑢‖𝐶1(𝜕𝐷×[𝑡𝑖−1 ,𝑡𝑖]) + ‖𝑢𝜃𝑖‖𝐶1(𝜕𝐷×[𝑡𝑖−1 ,𝑡𝑖])).

Proof. The proof is similar to that of Theorem 3.4, by noting (51). □

Theorem 6.4. Let 𝑑 ∈ ℕ and 𝑇 > 0, and let 𝑢∈ 𝐶4(𝐷× [0, 𝑡𝑖]) and 𝑣 ∈ 𝐶3(𝐷× [0, 𝑡𝑖]) be the classical solution to (50). Let (𝑢𝜃𝑖 , 𝑣𝜃𝑖 ) denote 
the HLConcPINN approximation with parameter 𝜃𝑖. Then the following relation holds (1≤ 𝑖 ≤ 𝑙),

∫
Ω𝑖

(|�̂�𝑖(𝒙, 𝑡)|2 + 𝑎2|∇�̂�𝑖(𝒙, 𝑡)|2 + 𝜀2|�̂�𝑖(𝒙, 𝑡)|2)d𝒙d𝑡 ≤ 𝐶𝑇𝑖
Δ𝑡 exp

(
(2 + 𝜀21 +𝐿+ 𝑎2)Δ𝑡

)
=(𝑇𝑖

(𝜃𝑖,𝑖)2 +𝑀
− 2 

𝑑+1
𝑖𝑛𝑡𝑖

+𝑀
− 2 

𝑑

𝑡𝑏𝑖
+𝑀

− 1 
𝑑

𝑠𝑏𝑖
), (62)

where



Journal of Computational Physics 530 (2025) 113906

17

Y. Qian, Y. Zhang and S. Dong 

Table 1
Summary of neural network settings (network architecture, activation functions, train-

ing data points) used within each time block for the test problems in Section 7. Shown 
in the second column are the nodes in the hidden layers only. This configuration is ap-

plied consistently across all time blocks.

𝑁𝑐 Hidden layers Activation functions Figures/Tables 
varied [90, 90] [tanh, tanh] Table 2

[90, 90, 10] [tanh, tanh, sine] Tables 5, 8, 10

2000 varied all tanh Table 3
[90, 90] [tanh, tanh] Fig. 6a 
[90, 90, 10] [tanh, tanh, tanh] Figs. 3–5, 6b 
[90, 90, 10, 10] [tanh, tanh, tanh, tanh] Table 4

[tanh, tanh, Gaussian, Gaussian] Fig. 6c 
[tanh, tanh, softplus, softplus] Fig. 6d

2500 [90, 90, 10] varied Tables 6, 9, 11

[90, 90, 10] [tanh, tanh, sine] Figs. 7–18

𝐶𝑇𝑖
= 𝐶𝑇𝑖

+ 2𝐶𝑇𝑖−1
exp

(
(2 + 𝜀21 +𝐿+ 𝑎2)Δ𝑡

)
, 𝐶𝑇0

= 0,

𝐶𝑇𝑖
= 2

𝑖 ∑
𝑗=1 

(
𝐶(𝑅2

𝑡𝑏1𝑖
(𝒙,𝑡𝑗−1))

𝑀
− 2 

𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏1𝑖
(𝒙, 𝑡𝑗−1)] + 𝜀2𝐶(𝑅2

𝑡𝑏2𝑖
(𝒙,𝑡𝑗−1))

𝑀
− 2 

𝑑

𝑡𝑏𝑖
+ 𝜀2𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏2𝑖
(𝒙, 𝑡𝑗−1)]

)
+ 2𝑎2

𝑖 ∑
𝑗=1 

(
𝐶(|∇𝑅𝑡𝑏1𝑖 (𝒙,𝑡𝑗−1)|2)𝑀− 2 

𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[|∇𝑅𝑡𝑏1𝑖 (𝒙, 𝑡𝑗−1)|2])+𝐶(𝑅2

𝑖𝑛𝑡1𝑖
)𝑀

− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡1𝑖

]

+𝐶(𝑅2
𝑖𝑛𝑡2𝑖

)𝑀
− 2 

𝑑+1
𝑖𝑛𝑡

+Ω𝑖

𝑀𝑖𝑛𝑡
[𝑅2

𝑖𝑛𝑡2𝑖
] + 𝑎2

(
𝐶(|∇𝑅𝑖𝑛𝑡1𝑖 |2)𝑀− 2 

𝑑+1
𝑖𝑛𝑡

+Ω𝑖

𝑀𝑖𝑛𝑡
[|∇𝑅𝑖𝑛𝑡1𝑖 |2]) ,

+ 2𝐶𝜕𝐷𝑖
|Δ𝑡| 12 (

𝐶(𝑅2
𝑠𝑏𝑖

)𝑀
− 2 

𝑑

𝑠𝑏
+Ω∗𝑖

𝑀𝑠𝑏
[𝑅2

𝑠𝑏𝑖
]
) 1

2
.

Here, Λ
𝑀
[𝑓 ] represents the corresponding quadrature for different functions (𝑓 = 𝑅2

𝑡𝑏1𝑖
, 𝑅2

𝑡𝑏2𝑖
, |∇𝑅𝑡𝑏1𝑖 |2, 𝑅2

𝑖𝑛𝑡1𝑖
, 𝑅2

𝑖𝑛𝑡2𝑖
, |∇𝑅𝑖𝑛𝑡1𝑖 |2 and 

𝑅2
𝑠𝑏𝑖

) and the numbers of quadrature points (𝑀 =𝑀𝑖𝑛𝑡𝑖
, 𝑀𝑠𝑏𝑖

and 𝑀𝑡𝑏𝑖
) with respect to the relevant domain (Λ=Ω𝑖, Ω∗𝑖 and 𝐷).

Proof. The proof follows from Lemma 9.3, Theorem 6.3 and the quadrature error formula (3). □

It follows from Theorem 6.4 that the HLConcPINN approximation error (𝜃𝑖)2 can be arbitrarily small, provided that the training 
error 𝑇𝑖

(𝜃𝑖,𝑖)2 is sufficiently small and the sample set is sufficiently large.

7. Computational examples

We next present a set of numerical examples to test the performance of the HLConcPINN method developed herein. This method 
has several distinctive features, distinguishing it from the standard PINN and recent neural networks with theoretical guarantees. 
Specifically, these include:

• The method is based on hidden-layer concatenated FNNs (HLConcFNN), in which the output nodes and all the hidden nodes 
are logically connected. This architecture is critical to the theoretical analyses, and it endows the method with the subsequent 
properties.

• The current error analyses hold for network architectures with two or more hidden layers, and with essentially any activation 
function having a sufficient regularity for all hidden layers beyond the first two. This generalized capability contrasts starkly with 
the recent PINN methods that have a theoretical guarantee for solving PDEs but are confined to network architectures having two 
hidden layers and the tanh activation function (see e.g. [12,41]).

• The method espouses a modified block time marching (ExBTM) strategy for long-time dynamic simulations. In the modified 
scheme, the “initial condition” for a particular time block is informed by the approximations from all previous time blocks 
evaluated at a set of discrete time instants. The modified BTM scheme is crucial for the error analyses. In contrast, the original 
BTM formulation as given in e.g. [14] is not amenable to theoretical analysis.

We consider the heat, Burgers’, wave and the nonlinear Klein-Gordon equations in one spatial dimension plus time. For each 
problem, the algorithm involves the following procedure:

• Divide the space-time domain of the problem in time into a number of blocks.
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• Choose a set of random collocation points on the interior, the spatial boundaries, and the initial boundary of each time block for 
network training.

• Loop over the time blocks successively, and on each time block:

(a) Construct a HLConcFNN with a prescribed architecture and prescribed activation functions.

(b) Formulate the loss function based on the forms from theoretical analyses of Sections 3–6, and compute the loss over 
appropriate collocation points.

(c) Train the HLConcPINN by minimizing the loss function using the combined Adam and L-BFGS optimizers.

The following are the common settings in the numerical tests. We partition the temporal dimension into five uniform time blocks. 
Within each time block, we utilize 𝑁𝑐 collocation points sampled from a uniform random distribution within the spatial-temporal 
domain. Additionally, 𝑁𝑐 uniform random points are selected along each spatial boundary and the initial boundary. Simulations were 
performed by systematically varying 𝑁𝑐 between 1500 and 3000. After the neural networks are trained, we compare the HLConcPINN 
solution with the exact solution on a set of 𝑁𝑒𝑣 = 1000 × 1000 uniform grid points (test/evaluation points) within each time block 
that encompasses the problem domain and its boundaries.

The HLConcPINN errors reported below have been calculated as follows. Suppose 𝑧𝑛 = (𝒙, 𝑡)𝑛 ∈𝐷 × [0, 𝑇 ] (𝑛 = 1,⋯ ,𝑁𝑒𝑣) denote 
the set of test points. The errors are then defined by

𝑙2-error =

√∑𝑁𝑒𝑣

𝑛=1 |𝑢(𝑧𝑛) − 𝑢𝜃(𝑧𝑛)|2√∑𝑁𝑒𝑣

𝑛=1 𝑢(𝑧𝑛)
2

, 𝑙∞-error =
max{|𝑢(𝑧𝑛) − 𝑢𝜃(𝑧𝑛)|}𝑁𝑒𝑣

𝑛=1√(∑𝑁𝑒𝑣

𝑛=1 𝑢(𝑧𝑛)
2
)
∕𝑁𝑒𝑣

, (63)

where 𝑢𝜃 denotes the HLConcPINN solution and 𝑢 denotes the exact solution.

Following the analyses in previous sections, we employ network architectures with two or more hidden layers in the numerical 
tests, with the tanh activation function for the first two hidden layers. For the subsequent hidden layers, we have tested a range 
of activation functions. Table 1 provides an overview of the neural network settings for the test results reported in the subsequent 
subsections.

As discussed in Remark 3.2, we adopt a modified block time marching scheme in this work. This is different from the original 
block time marching scheme of [14], which uses the solution data of the preceding time block at the last time instant as the initial 
condition. Both the original and the modified block time marching schemes have been tested in the simulations, with their results 
marked by “HLConcPINN-BTM” and “HLConcPINN-ExBTM” in the following discussions, respectively.

In the following simulations, the neural network has been trained by a combination of the Adam optimizer and the L-BFGS 
optimizer. Within each time block, the network is trained first by Adam for 100 epochs. The training then continues with the L-BFGS 
optimizer for another 30,000 iterations. Our application code is implemented in Python with the PyTorch library. All the numerical 
examples are executed on a Ubuntu 22.04 system (3.6 GHz Intel Core i9 CPU, 32 GB memory).

7.1. Heat equation

We test the HLConcPINN scheme for solving the heat equation in one spatial dimension (plus time). Consider the spatial-temporal 
domain Ω= {(𝑥, 𝑡)|𝑥 ∈ [0,1], 𝑡 ∈ [0,10]}, and the following initial/boundary-value problem,

𝜕𝑢

𝜕𝑡 
− 𝜈

𝜕2𝑢 
𝜕𝑥2

= 𝑓 (𝑥, 𝑡), (64a)

𝑢(0, 𝑡) = 𝑔1(𝑡), 𝑢(1, 𝑡) = 𝑔2(𝑡), (64b)

𝑢(𝑥,0) = ℎ(𝑥), (64c)

where 𝑢(𝑥, 𝑡) is the field function to be solved for, 𝑓 (𝑥, 𝑡) is a source term, and 𝜈 = 0.1 is the diffusion coefficient. 𝑔1(𝑥) and 𝑔2(𝑥) are 
the boundary conditions, and ℎ(𝑥) is the initial field distribution. In this test, we choose the source term 𝑓 such that the following 
field function satisfies (64),

𝑢(𝑥, 𝑡) =
(
2cos(𝜋𝑥+ 𝜋

5 
) + 3

2
cos(2𝜋𝑥− 3𝜋

5 
)
)(

2cos(𝜋𝑡+ 𝜋

5 
) + 3

2
cos(2𝜋𝑡− 3𝜋

5 
)
)
, (65)

and we choose the initial/boundary conditions by restricting (65) to the corresponding boundaries.

We consider two forms for the HLConcPINN loss function, corresponding to the original block time marching (BTM) scheme 
from [14] and the modified BTM scheme (denoted by ExBTM) developed in this work. The loss function for the current ExBTM 
scheme is given by, for time block 𝑖 (1 ≤ 𝑖 ≤ 𝑙),

𝐿𝑜𝑠𝑠𝐼
𝑖
=
𝑊1
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛

𝑖𝑛𝑡
) − Δ𝑢𝜃𝑖 (𝑥

𝑛
𝑖𝑛𝑡

, 𝑡𝑛
𝑖𝑛𝑡
) − 𝑓 (𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛

𝑖𝑛𝑡
)
]2

+
𝑊2
𝑁𝑐

𝑖 ∑
𝑗=1 

𝑁𝑐∑
𝑛=1 

[
𝑢𝜃𝑖 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1) − 𝑢𝜃𝑗−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1)

]2
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Fig. 3. Heat equation: Distributions of the true solution (a), the HLConcPINN-ExBTM solution (b) and its point-wise absolute error (c), the HLConcPINN-BTM solution 
(d) (denoted by 𝑢∗

𝜃
) and its point-wise absolute error (e), in the spacial-temporal domain. NN architecture: [2, 90, 90, 10, 1], with the tanh activation function; 

𝑁𝑐 = 2000 for the collocation points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Heat equation: Top row, comparison of profiles of the true solution, HLConcPINN-ExBTM solution, and HLConcPINN-BTM solution at several time instants. 
Bottom row, profiles of the absolute error of the HLConcPINN-ExBTM and HLConcPINN-BTM solutions. NN architecture: [2, 90, 90, 10, 1] with tanh activation 
function; 𝑁𝑐 = 2000 for the training collocation points.

+𝑊3

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
(𝑢𝜃𝑖 (0, 𝑡

𝑛
𝑠𝑏
) − 𝑔1(𝑡𝑛𝑠𝑏))

2 + (𝑢𝜃𝑖 (1, 𝑡
𝑛
𝑠𝑏
) − 𝑔2(𝑡𝑛𝑠𝑏))

2
])1∕2

+𝐿𝑜𝑠𝑠𝐼
𝑖−1, (66)

where 𝐿𝑜𝑠𝑠𝐼0 = 0, and we have added a set of penalty coefficients 𝑊𝑘 > 0 (𝑘 = 1,2,3) for different loss terms. Note also that in the 
simulations we have approximated the integral by averaging over the collocation points in the domain, while in the analysis the 
mid-point rule has been adopted. The loss form corresponding to the original BTM scheme is, for time block 𝑖 (1 ≤ 𝑖 ≤ 𝑙),
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Fig. 5. Heat equation: Training loss versus the training iterations for different time blocks with the (a) HLConcPINN-ExBTM and (b) HLConcPINN-BTM methods. NN 
architecture: [2, 90, 90, 10, 1], tanh activation function; 𝑁𝑐 = 2000 for the training collocation points. The legend shows the time block index, with e.g. 𝑇#2 denoting 
the second time block.

Table 2
Heat equation: 𝑙2 and 𝑙∞ errors in different time blocks corresponding to a range of training collocation points 𝑁𝑐 for the 
HLConcPINN-ExBTM and HLConcPINN-BTM methods. NN architecture: [2,90,90,1], with tanh activation function.

Error Time block 𝑁𝑐 = 1500 𝑁𝑐 = 2000 𝑁𝑐 = 2500 𝑁𝑐 = 3000

ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 
𝑙2 𝑇#1 3.63e-04 3.63e-04 4.16e-04 4.16e-04 2.58e-04 2.58e-04 3.88e-04 3.88e-04 

𝑇#2 1.00e-03 5.93e-04 5.73e-04 5.93e-04 9.14e-04 7.85e-04 4.42e-04 5.51e-04 
𝑇#3 7.29e-04 6.37e-04 7.75e-04 2.93e-04 9.89e-04 1.00e-03 7.03e-04 4.86e-04 
𝑇#4 5.21e-04 7.84e-04 6.93e-04 5.52e-04 8.38e-04 6.03e-04 7.49e-04 9.14e-04 
𝑇#5 9.14e-04 1.03e-03 1.77e-03 1.40e-03 6.04e-04 6.01e-04 1.21e-03 1.21e-03

𝑙∞ 𝑇#1 1.64e-03 1.64e-03 2.49e-03 2.49e-03 1.31e-03 1.31e-03 2.34e-03 2.34e-03 
𝑇#2 5.74e-03 5.22e-03 3.02e-03 3.43e-03 6.72e-03 5.04e-03 2.09e-03 4.82e-03 
𝑇#3 4.77e-03 3.67e-03 4.16e-03 2.27e-03 4.39e-03 4.75e-03 8.61e-03 2.02e-03 
𝑇#4 3.09e-03 1.45e-02 3.81e-03 5.86e-03 9.06e-03 3.84e-03 4.23e-03 5.23e-03 
𝑇#5 4.70e-03 1.08e-02 3.22e-02 2.29e-02 5.23e-03 1.90e-03 6.52e-03 1.86e-02 

𝐿𝑜𝑠𝑠𝐼𝐼𝑖 =
𝑊1
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) − Δ𝑢𝜃𝑖 (𝑥

𝑛
𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡) − 𝑓 (𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡)

]2

+
𝑊2
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝑢𝜃𝑖 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑖−1) − 𝑢𝜃𝑖−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑖−1)

]2
+𝑊3

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
(𝑢𝜃𝑖 (0, 𝑡

𝑛
𝑠𝑏
) − 𝑔1(𝑡𝑛𝑠𝑏))

2 + (𝑢𝜃𝑖 (1, 𝑡
𝑛
𝑠𝑏
) − 𝑔2(𝑡𝑛𝑠𝑏))

2
])1∕2

, (67)

where 𝑢𝜃0 (𝑥, 𝑡0) = ℎ(𝑥). In subsequent simulations the penalty coefficients are fixed to (𝑊1,𝑊2,𝑊3) = (0.8,0.9,0.9) in both 𝐿𝑜𝑠𝑠𝐼
𝑖

and 
𝐿𝑜𝑠𝑠𝐼𝐼

𝑖
, and 5 uniform time blocks are employed in block time marching. The HLConcPINN schemes employing these two distinctive 

loss functions will be designated as HLConcPINN-ExBTM (𝐿𝑜𝑠𝑠𝐼
𝑖
) and HLConcPINN-BTM (𝐿𝑜𝑠𝑠𝐼𝐼

𝑖
), respectively.

An overview of the solution field and the training histories is provided by Figs. 3, 4, and 5 for the HLConcPINN-ExBTM and 
the HLConcPINN-BTM methods. Fig. 3 shows distributions in the space-time domain of the true solution, the HLConcPINN-ExBTM 
solution, and the HLConcPINN-BTM solution, as well as the point-wise absolute errors of the HLConcPINN-ExBTM and HLConcPINN-

BTM solutions. Fig. 4 compares profiles of the true solution, the HLConcPINN-ExBTM and HLConcPINN-BTM solutions at three time 
instants (𝑡 = 2.5, 5 and 9.5), and also show the error profiles of the HLConcPINN-ExBTM and HLConcPINN-BTM methods. Fig. 5
depicts the training loss histories for each of the 5 time blocks with the HLConcPINN-ExBTM and HLConcPINN-BTM methods. In this 
set of simulations, three hidden layers and the tanh activation function are employed in the neural network. The specific parameter 
values are provided in the captions of these figures; see also Table 1. The HLConcPINN-ExBTM and the HLConcPINN-BTM methods 
are able to capture the solution quite accurately, with the HLConcPINN-BTM solution appearing slightly better.

Table 2 shows a study of the effect of training collocation points on the results of the HLConcPINN-ExBTM and HLConcPINN-BTM 
methods. The 𝑙2 and 𝑙∞ errors of these methods in different time blocks obtained with collocation points ranging from 𝑁𝑐 = 1500 to 
𝑁𝑐 = 3000 are listed in the table. Here the neural network has an architecture [2,90,90,1], with the tanh activation function for all 
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Table 3
Heat equation: 𝑙2 and 𝑙∞ errors in different time blocks corresponding to a series of network architectures with varying number of 
hidden layers for the HLConcPINN-ExBTM and HLConcPINN-BTM methods. tanh activation function; 𝑁𝑐 = 2000 for the collocation 
points. NN architectural vectors are specified in row one of the table.

Error Time block [2,90,90,1] [2,90,90,10,1] [2,90,90,10,10,1] [2,90,90,10,10,10,1] 
ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 

𝑙2 𝑇#1 4.16e-04 4.16e-04 1.79e-04 1.79e-04 1.99e-04 1.99e-04 2.44e-04 2.44e-04 
𝑇#2 5.73e-04 5.93e-04 2.40e-04 3.46e-04 3.13e-04 2.03e-04 3.95e-04 3.02e-04 
𝑇#3 7.75e-04 2.93e-04 5.33e-04 7.24e-04 8.17e-04 7.28e-04 8.91e-04 9.68e-04 
𝑇#4 6.93e-04 5.52e-04 5.92e-04 6.30e-04 1.70e-03 7.86e-04 1.01e-03 1.44e-03 
𝑇#5 1.77e-03 1.40e-03 9.06e-04 8.46e-04 1.49e-03 9.15e-04 1.59e-03 2.29e-03

𝑙∞ 𝑇#1 2.49e-03 2.49e-03 2.97e-03 2.97e-03 9.11e-04 9.11e-04 1.47e-03 1.47e-03 
𝑇#2 3.02e-03 3.43e-03 2.62e-03 3.05e-03 1.43e-03 1.82e-03 1.89e-03 1.92e-03 
𝑇#3 4.16e-03 2.27e-03 3.90e-03 3.94e-03 4.05e-03 4.08e-03 4.79e-03 4.92e-03 
𝑇#4 3.81e-03 5.86e-03 4.24e-03 4.45e-03 1.29e-02 8.33e-03 1.04e-02 2.49e-02 
𝑇#5 3.22e-02 2.29e-02 1.62e-02 4.70e-03 8.92e-03 7.20e-03 1.29e-02 1.62e-02 

Table 4
Heat equation: 𝑙2 and 𝑙∞ errors in different time blocks of the HLConcPINN-ExBTM and HLConcPINN-BTM methods obtained 
with several activation functions. NN architecture: [2,90,90,10,10,1]; 𝑁𝑐 = 2000 for training collocation points. The activation 
function is fixed to tanh in the first two hidden layers, and is varied among sine, Gaussian, swish, and softplus in the subsequent 
hidden layers.

Error Time block Sine Gaussian Swish Softplus 
ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 

𝑙2 𝑇#1 1.34e-04 1.34e-04 1.03e-04 1.03e-04 2.61e-04 2.61e-04 2.96e-04 2.96e-04 
𝑇#2 1.53e-04 1.91e-04 1.86e-04 2.28e-04 2.56e-04 2.38e-04 3.68e-04 3.48e-04 
𝑇#3 3.06e-04 2.96e-04 4.41e-04 4.11e-04 5.27e-04 4.09e-04 3.28e-04 3.90e-04 
𝑇#4 6.03e-04 4.98e-04 5.80e-04 8.05e-04 7.75e-04 6.49e-04 8.40e-04 1.02e-03 
𝑇#5 6.94e-04 6.30e-04 7.35e-04 8.98e-04 7.45e-04 3.22e-03 1.50e-03 1.13e-03

𝑙∞ 𝑇#1 8.18e-04 8.18e-04 1.02e-03 1.02e-03 1.44e-03 1.44e-03 1.73e-03 1.73e-03 
𝑇#2 8.95e-04 1.29e-03 1.53e-03 1.52e-03 1.73e-03 1.17e-03 2.08e-03 1.33e-03 
𝑇#3 8.82e-04 2.39e-03 4.22e-03 2.65e-03 3.41e-03 1.97e-03 2.86e-03 3.96e-03 
𝑇#4 3.97e-03 3.06e-03 4.68e-03 3.86e-03 4.47e-03 3.35e-03 3.87e-03 4.19e-03 
𝑇#5 4.03e-03 4.53e-03 2.73e-03 5.57e-03 7.40e-03 1.90e-02 6.22e-03 5.66e-03 

hidden layers. The data indicate that the errors of these methods are not sensitive to the number of training collocation points. In 
most of subsequent tests we employ a fixed 𝑁𝑐 = 2000 for the training collocation points.

A salient feature of the current method lies in that the theoretical analyses are applicable to neural network architectures with 
more than two hidden layers. Table 3 shows a test of the network depth (number of hidden layers) on the HLConcPINN-ExBTM 
and HLConcPINN-BTM results for the heat equation. It lists the 𝑙2 and 𝑙∞ errors in different time blocks obtained by these methods 
using network architectures with 2 to 5 hidden layers. The network architectural vectors are given in the table. We employ the tanh
activation function for all hidden layers, and a fixed 𝑁𝑐 = 2000 for the training collocation points in these tests. We can make several 
observations. First, the errors grow over time with both methods. For example, the 𝑙2 errors increase from around 10−4 in time block 
#1 to around 10−3 in time block #5. Second, increasing the number of hidden layers only slightly influences the accuracy of results. 
The errors in general appear to decrease from two to three hidden layers. As the number of hidden layers further increases to three 
to five, the errors tend to increase slightly compared with those of two hidden layers. Third, the errors obtained with HLConcPINN-

ExBTM and HLConcPINN-BTM are generally comparable, with one slightly better than the other in different cases.

The current HLConcPINN-ExBTM method admits theoretical analyses in cases where more general activation functions are em-

ployed. Table 4 provides a study of the effect of the activation functions on the simulation results of the HLConcPINN-ExBTM and 
HLConcPINN-BTM methods. We employ a neural network architecture [2,90,90,10,10,1], and 𝑁𝑐 = 2000 for the training collocation 
points. The activation function in the first two hidden layers is fixed to tanh. For the subsequent hidden layers we vary the activation 
function among the sine, Gaussian, swish, or softplus functions. The 𝑙2 and 𝑙∞ errors of HLConcPINN-ExBTM and HLConcPINN-BTM 
in different time blocks corresponding to these activation functions are provided in the table. These results can be compared with 
those in Table 3 for the same network architecture, where the tanh activation function has been used for all hidden layers. Overall, 
the sine activation function appears to produce the best results for HLConcPINN-ExBTM and HLConcPINN-BTM. The results obtained 
with the Gaussian, tanh, swish and softplus functions seem comparable to one another in terms of the accuracy.

Theorem 3.5 indicates that the approximation error of the solution to the heat equation obtained with the HLConcPINN-ExBTM 
method scales as the square root of the training loss for all time blocks. Fig. 6 provides numerical evidence corroborating this 
statement. Here we plot the 𝑙2 errors of the solution as a function of the training loss value (in logarithmic scale) for HLConcPINN-

ExBTM from our simulations. The number of hidden layers varies from two to four in these tests, with tanh as the activation functions 
for the first two hidden layers and Gaussian or softplus for the subsequent hidden layers. We have used 𝑁𝑐 = 2000 for the collocation 
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Fig. 6. Heat equation: 𝑙2 errors of HLConcPINN-ExBTM as a function of the training loss values, obtained with different network architectures and activation functions. 
𝑁𝑐 = 2000 for the training collocation points.

Fig. 7. Burgers’ equation: Distributions of the exact solution (a), the HLConcPINN-ExBTM solution and its point-wise error (b,c), and the HLConcPINN-BTM solution 
and its point-wise error (d,e). NN: [2,90,90,10,1], with tanh, tanh and sine activation functions for the three hidden layers; 𝑁𝑐 = 2500 for the training collocation 
points.

points. The data generally signify a square root scaling consistent with the theoretical analysis, with some deviation (faster than 
square root) toward larger training loss values.
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Fig. 8. Burgers’ equation: Loss histories of HLConcPINN-ExBTM and HLConcPINN-BTM in different time blocks. NN settings and simulation parameters follow those 
of Fig. 7.

Fig. 9. Burgers’ equation: The 𝑙2 errors of 𝑢 as a function of the training loss for the HLConcPINN-ExBTM method. The NN settings and simulation parameters follow 
those of Fig. 7.

7.2. Burgers’ equation

We next consider the viscous Burgers’ equation on the spatial-temporal domain (𝑥, 𝑡) ∈ Ω =𝐷 × [0, 𝑇 ] = [0,2] × [0,10],

𝜕𝑢

𝜕𝑡 
− 𝜈

𝜕2𝑢 
𝜕𝑥2

+ 𝑢
𝜕𝑢 
𝜕𝑥

= 𝑓 (𝑥, 𝑡), (68a)

𝑢(0, 𝑡) = 𝜙1(𝑡), 𝑢(2, 𝑡) = 𝜙2(𝑡), 𝑢(𝑥,0) = 𝜓(𝑥). (68b)

Here 𝑢(𝑥, 𝑡) is the field to be solved for, 𝜈 denotes the viscosity, 𝑓 (𝑥, 𝑡) is a source term, 𝜙1(𝑡) and 𝜙2(𝑡) denote the boundary data, and 
𝜓(𝑥) is the initial distribution. We take 𝜈 = 1 and choose the source term and the boundary/initial condition such that the function

𝑢(𝑥, 𝑡) =
(1
5
+ 𝑥 

10

)(1
5
+ 𝑡 

10

)[
2 sin

(
𝜋𝑥+ 2𝜋

5 

)
+ 1

2
cos

(
𝜋𝑥− 3𝜋

5 

)][
2 sin

(
𝜋𝑡+ 2𝜋

5 

)
+ 1

2
cos

(
𝜋𝑡− 3𝜋

5 

)]
,

solves the problem (68).

The loss function for the HLConcPINN-ExBTM method is given by,

𝐿𝑜𝑠𝑠𝐼𝑖 =
𝑊1
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) − 𝜈

𝜕2𝑢𝜃𝑖

𝜕𝑥2
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) + 𝑢𝜃𝑖 (𝑥

𝑛
𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡)

𝜕𝑢𝜃𝑖

𝜕𝑥 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) − 𝑓 (𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡)

]2

+
𝑊2
𝑁𝑐

𝑖 ∑
𝑗=1 

𝑁𝑐∑
𝑛=1 

[
𝑢𝜃𝑖 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1) − 𝑢𝜃𝑗−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1)

]2
+

𝑊3
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
(𝑢𝜃𝑖 (0, 𝑡

𝑛
𝑠𝑏
) − 𝑔1(𝑡𝑛𝑠𝑏))

2 + (𝑢𝜃𝑖 (2, 𝑡
𝑛
𝑠𝑏
) − 𝑔2(𝑡𝑛𝑠𝑏))

2
]



Journal of Computational Physics 530 (2025) 113906

24

Y. Qian, Y. Zhang and S. Dong 

Table 5
Burgers’ equation: The 𝑙2 and 𝑙∞ errors corresponding to different training collocation points 𝑁𝑐 . NN: [2,90,90,10,1], with tanh, 
tanh and sine activation functions for the three hidden layers.

Error Time block 𝑁𝑐 = 1500 𝑁𝑐 = 2000 𝑁𝑐 = 2500 𝑁𝑐 = 3000

ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 
𝑙2 𝑇#1 2.26e-03 2.41e-03 1.19e-03 1.29e-03 1.14e-03 1.08e-03 1.75e-03 1.62e-03 

𝑇#2 6.31e-04 1.72e-03 6.92e-04 6.40e-04 8.35e-04 1.80e-03 6.50e-04 4.54e-04 
𝑇#3 7.05e-04 7.63e-04 7.72e-04 7.59e-04 8.32e-04 6.74e-04 8.69e-04 9.56e-04 
𝑇#4 1.60e-03 8.04e-04 6.76e-04 6.78e-04 5.61e-04 1.48e-03 7.45e-04 8.76e-04 
𝑇#5 1.74e-03 1.81e-03 4.77e-04 1.32e-03 8.50e-04 4.81e-04 8.23e-04 1.17e-03

𝑙∞ 𝑇#1 2.01e-02 1.97e-02 1.03e-02 1.17e-02 8.77e-03 7.49e-03 1.23e-02 4.28e-03 
𝑇#2 4.43e-03 9.01e-03 3.68e-03 2.84e-03 5.71e-03 1.46e-02 4.61e-03 3.63e-03 
𝑇#3 4.58e-03 6.60e-03 7.41e-03 4.13e-03 6.32e-03 3.58e-03 5.27e-03 7.47e-03 
𝑇#4 5.06e-03 3.36e-03 6.37e-03 4.61e-03 4.52e-03 1.05e-02 4.13e-03 6.44e-03 
𝑇#5 1.28e-02 1.09e-02 2.36e-03 3.40e-03 7.24e-03 1.52e-03 3.64e-03 3.31e-03 

Table 6
Burgers’ equation: The 𝑙2 and 𝑙∞ errors obtained with several different activation functions. NN: [2,90,90,10,1], with tanh activa-

tion function for the first two hidden layers, while the activation function for the last hidden layer is varied as given in the table. 
𝑁𝑐 = 2500 training collocation points.

Error Time block tanh Gaussian Swish Softplus 
ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 

𝑙2 𝑇#1 1.44e-03 1.04e-03 1.59e-03 2.23e-03 1.60e-03 2.23e-03 2.10e-03 1.80e-03 
𝑇#2 9.66e-04 1.19e-03 1.01e-03 2.15e-03 2.35e-03 3.96e-03 8.69e-04 7.42e-04 
𝑇#3 1.69e-03 8.65e-04 1.39e-03 5.70e-04 1.87e-03 1.12e-03 1.77e-03 1.37e-03 
𝑇#4 1.05e-03 1.26e-03 1.05e-03 1.07e-03 1.42e-03 1.22e-03 2.31e-03 1.04e-03 
𝑇#5 1.66e-03 2.13e-03 1.32e-03 2.89e-03 2.55e-03 1.53e-03 2.41e-03 1.39e-03

𝑙∞ 𝑇#1 9.19e-03 6.56e-03 1.69e-02 2.26e-02 1.02e-02 2.00e-02 1.87e-02 1.31e-02 
𝑇#2 8.05e-03 1.19e-02 4.97e-03 1.83e-02 3.22e-02 4.87e-02 4.43e-03 2.78e-03 
𝑇#3 2.23e-02 7.64e-03 1.68e-02 5.14e-03 2.20e-02 1.11e-02 9.10e-03 1.34e-02 
𝑇#4 5.90e-03 1.11e-02 9.88e-03 6.82e-03 1.58e-02 6.79e-03 2.00e-02 6.14e-03 
𝑇#5 1.33e-02 1.82e-02 1.14e-02 9.61e-03 1.47e-02 5.31e-03 9.31e-03 4.58e-03 

+𝑊4

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

(𝑢𝜃𝑖 (0, 𝑡
𝑛
𝑠𝑏
) − 𝑔1(𝑡𝑛𝑠𝑏))

2
)1∕2

+𝑊5

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

(𝑢𝜃𝑖 (2, 𝑡
𝑛
𝑠𝑏
) − 𝑔2(𝑡𝑛𝑠𝑏))

2
)1∕2

+𝐿𝑜𝑠𝑠𝐼
𝑖−1, (69)

where 𝐿𝑜𝑠𝑠𝐼0 = 0, and we have added a set of penalty coefficients 𝑊𝑘 > 0 (𝑘 = 1,⋯ ,5) for different loss terms. The loss function for 
HLConcPINN-BTM is,

𝐿𝑜𝑠𝑠𝐼𝐼𝑖 =
𝑊1
𝑁𝑐

𝑁𝑐∑
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+
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+
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(𝑢𝜃𝑖 (0, 𝑡

𝑛
𝑠𝑏
) − 𝑔1(𝑡𝑛𝑠𝑏))

2 + (𝑢𝜃𝑖 (2, 𝑡
𝑛
𝑠𝑏
) − 𝑔2(𝑡𝑛𝑠𝑏))

2
]

+𝑊4

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

(𝑢𝜃𝑖 (0, 𝑡
𝑛
𝑠𝑏
) − 𝑔1(𝑡𝑛𝑠𝑏))

2
)1∕2

+𝑊5

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

(𝑢𝜃𝑖 (2, 𝑡
𝑛
𝑠𝑏
) − 𝑔2(𝑡𝑛𝑠𝑏))

2
)1∕2

. (70)

For both methods, we employ (𝑊1,⋯ ,𝑊5) = (0.6,0.4,0.4,0.4,0.4) in the following simulations. Five uniform time blocks are employed 
in block time marching.

Fig. 7 shows distributions of the true solution, the HLConcPINN-ExBTM and HLConcPINN-BTM solutions and their absolute errors. 
The neural network structure and other parameters are provided in the figure caption. The histories of the training loss functions for 
HLConcPINN-ExBTM and HLConcPINN-BTM are shown in Fig. 8. Both methods have captured the solution well.

Tables 5 and 6 illustrate the effects of the training collocation points and the activation function on the simulation points. In 
these simulations the neural network structure is characterized by [2,90,90,10,1], with the activation function tanh for the first two 
hidden layers. In Table 5, the activation function for the last hidden layer is set to sine, and the number of training collocation points 
is varied systematically. In Table 6 the activation function for the last hidden layer is varied (tanh, Gaussian, swish, or softplus), with 
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Table 7
Burgers’ equation: The 𝑙2 and 𝑙∞ errors and the running time with HLConcPINN and FEM. NN architecture in HLConcPINN: 
[2,90,90,10,1]; 𝑁𝑐 = 2000 for training collocation points; the activation function is fixed to tanh in the first two hidden layers 
and sine in the third hidden layer. Temporal and spatial settings in FEM: both the temporal and spatial directions are uniformly 
divided into 90 segments in each time block. “ExBTM”: HLConcPINN-ExBTM; “BTM”: HLConcPINN-BTM.

𝑙2 𝑙∞ Wall time (seconds) 
ExBTM BTM FEM ExBTM BTM FEM ExBTM BTM FEM 

𝑇#1 1.19e-03 1.29e-03 7.05e-04 1.03e-02 1.17e-02 1.34e-03 2069.0055 2043.5774 0.1673 
𝑇#2 6.92e-04 6.40e-04 6.65e-04 3.68e-03 2.84e-03 1.33e-03 2178.0739 2070.9914 0.1688 
𝑇#3 7.72e-04 7.59e-04 6.64e-04 7.41e-03 4.13e-03 1.39e-03 2702.4028 2032.0701 0.1604 
𝑇#4 6.76e-04 6.78e-04 6.72e-04 6.37e-03 4.61e-03 1.46e-03 2792.7288 2036.1165 0.1651 
𝑇#5 4.77e-04 1.32e-03 6.85e-04 2.36e-03 3.40e-03 1.53e-03 3007.0272 2029.8013 0.1603 

fixed training collocation points 𝑁𝑐 = 2500. The simulation results appear not sensitive to the training collocation points, similar to 
observations with the previous test problem. Among the activation functions tested, the sine function appears to produce the best 
result.

Fig. 9 illustrates the relation between the 𝑙2 error of 𝑢 and the training loss value for different time blocks obtained with the 
HLConcPINN-ExBTM method in our simulations. The scaling manifested in the data is consistent with Theorem 4.3 from our analyses.

The network training in the current HLConcPINN methods, similar to other PINN type methods, requires a large number of 
iterations using the Adam or L-BFGS optimizer. As a result, the training cost would be significantly higher than that using traditional 
numerical methods such as the finite element method (FEM). In Table 7 we show a comparison of the 𝑙2 and 𝑙∞ errors between the 
current HLConcPINN-ExBTM and HLConcPINN-BTM methods and the classical FEM (2nd-order), as well as the computational cost 
(network training time of current algorithms, and FEM computation time), for solving the Burgers’ equation. For the current methods, 
we employ five uniform time blocks in block time marching. Within each time block 𝑁𝑐 = 2000 random collocation points are used in 
the interior of the space-time domain and on each of the domain boundaries (2 spatial boundaries and 1 boundary in time), leading 
to a total of 8000 collocation points. We employ a neural network architecture [2,90,90,10,1], with the tanh activation function for 
the first two hidden layers and the sine activation function for the last hidden layer. Our FEM solver is implemented in FEniCSx [2]. 
For FEM, we divide the temporal dimension into five uniform blocks and the computation is carried out block by block, in a way 
analogous to block time marching. On each time block, the Burgers’ equation is discretized using ℙ1 Lagrange elements in space 
and the second-order backward differentiation formula (BDF2) in time with a semi-implicit strategy, in which the nonlinear term is 
treated explicitly and the viscous term is treated implicitly. We employ 90 elements in space and 90 time steps within each time block. 
This amounts to approximately 90 × 91 = 8190 nodal points in FEM, which is comparable to the total number of collocation points 
employed in the current HLConcPINN methods for each time block. The 𝑙2 and 𝑙∞ errors and the wall time for different time blocks 
are listed in the table. The error levels produced by the current methods and the FEM are largely comparable, with the FEM a little 
better for a number of cases (especially with the 𝑙∞ error). On the other hand, the network training cost of the current HLConcPINN 
methods is much larger than the computation time of FEM.

7.3. Wave equation

We next simulate the wave equation in one spatial dimension (plus time) using the current method, following a configuration 
from [15]. Consider the spatial-temporal domain, (𝑥, 𝑡) ∈𝐷×[0, 𝑇 ] = [0,5]×[0,10], and the following initial-boundary value problem 
on this domain,

𝜕2𝑢

𝜕𝑡2
− 𝑐2

𝜕2𝑢 
𝜕𝑥2

= 0, (71a)

𝑢(0, 𝑡) = 𝑢(5, 𝑡), 𝜕𝑢 
𝜕𝑥

(0, 𝑡) = 𝜕𝑢 
𝜕𝑥

(5, 𝑡), 𝑢(𝑥,0) = 2 sech3
(

3 
𝛿0

(𝑥− 𝑥0)
)

, 𝜕𝑢

𝜕𝑡 
(𝑥,0) = 0, (71b)

where 𝑢(𝑥, 𝑡) is the wave field to be solved for, 𝑐 is the wave speed, 𝑥0 is the initial peak location of the wave, 𝛿0 is a constant that 
controls the width of the wave profile, and periodic boundary conditions are imposed on 𝑥= 0 and 5. We employ 𝑐 = 2, 𝛿0 = 2, and 
𝑥0 = 3 for this problem. This problem has the following solution

⎧⎪⎨⎪⎩
𝑢(𝑥, 𝑡) = sech3

(
3 
𝛿0

(−2.5 + 𝜉)
)
+ sech3

(
3 
𝛿0

(−2.5 + 𝜂)
)

,

𝜉 =mod
(
𝑥− 𝑥0 + 𝑐𝑡+ 2.5,5

)
, 𝜂 =mod

(
𝑥− 𝑥0 − 𝑐𝑡+ 2.5,5

)
,

where mod refers to the modulo operation. In the simulations we introduce the auxiliary field 𝑣(𝑥, 𝑡) and rewrite (71) into

𝜕𝑢

𝜕𝑡 
− 𝑣 = 0, 𝜕𝑣

𝜕𝑡 
− 𝑐2

𝜕2𝑢 
𝜕𝑥2

= 0, (72a)

𝑢(0, 𝑡) = 𝑢(5, 𝑡), 𝜕𝑢 
𝜕𝑥

(0, 𝑡) = 𝜕𝑢 
𝜕𝑥

(5, 𝑡), 𝑢(𝑥,0) = 2 sech3
(

3 
𝛿0

(𝑥− 𝑥0)
)

, 𝑣(𝑥,0) = 0, (72b)

where 𝑣(𝑥, 𝑡) is defined by the first equation in (72a).
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Fig. 10. Wave equation: Solution distributions (𝑢: true solution; 𝑢𝜃 : HLConcPINN-ExBTM solution; 𝑢∗
𝜃

HLConcPINN-BTM solution). NN: [2,90,90,10,2]; activation 
function: tanh for the first two hidden layers, sine for the last hidden layer; 𝑁𝑐 = 2500 for training collocation points.

To simulate the system (72), the training error in (40)− (41) leads to the following loss function with the HLConcPINN-ExBTM 
method for the 𝑖-th time block (1 ≤ 𝑖 ≤ 𝑙),

𝐿𝑜𝑠𝑠𝐼
𝑖
=
𝑊1
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛

𝑖𝑛𝑡
) − 𝑣𝜃𝑖 (𝑥

𝑛
𝑖𝑛𝑡

, 𝑡𝑛
𝑖𝑛𝑡
)
]2

+
𝑊2
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑣𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛

𝑖𝑛𝑡
) − 4

𝜕2𝑢𝜃𝑖

𝜕𝑥2
(𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛

𝑖𝑛𝑡
)

]2

+
𝑊3
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕2𝑢𝜃𝑖
𝜕𝑡𝜕𝑥 

(𝑥𝑛
𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡) −

𝜕𝑣𝜃𝑖

𝜕𝑥 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡)

]2

+
𝑊4
𝑁𝑐

𝑖 ∑
𝑗=1 

𝑁𝑐∑
𝑛=1 

[
𝑢𝜃𝑖 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1) − 𝑢𝜃𝑗−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1)

]2
+

𝑊5
𝑁𝑐

𝑖 ∑
𝑗=1 

𝑁𝑐∑
𝑛=1 

[
𝑣𝜃𝑖 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1) − 𝑣𝜃𝑗−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1)

]2
+

𝑊6
𝑁𝑐

𝑖 ∑
𝑗=1 

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑥 
(𝑥𝑛

𝑡𝑏
, 𝑡𝑗−1) −

𝜕𝑢𝜃𝑗−1

𝜕𝑥 
(𝑥𝑛

𝑡𝑏
, 𝑡𝑗−1)

]2

+𝑊7

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝑣𝜃(0, 𝑡𝑛𝑠𝑏) − 𝑣𝜃(5, 𝑡𝑛𝑠𝑏)

]2 )1∕2
+𝑊8

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑥 
(0, 𝑡𝑛

𝑠𝑏
) −

𝜕𝑢𝜃𝑖

𝜕𝑥 
(5, 𝑡𝑛

𝑠𝑏
)
]2 )1∕2

+𝐿𝑜𝑠𝑠𝐼
𝑖−1, (73)

where 𝐿𝑜𝑠𝑠𝐼0 = 0, and 𝑊𝑘 > 0 (1 ≤ 𝑘 ≤ 8) are the penalty coefficients added for different loss terms. The loss function with the 
HLConcPINN-BTM method is,

𝐿𝑜𝑠𝑠𝐼𝐼𝑖 =
𝑊1
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) − 𝑣𝜃𝑖 (𝑥

𝑛
𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡)

]2
+

𝑊2
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑣𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) − 4

𝜕2𝑢𝜃𝑖

𝜕𝑥2
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡)

]2

+
𝑊3
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕2𝑢𝜃𝑖
𝜕𝑡𝜕𝑥 

(𝑥𝑛
𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡) −

𝜕𝑣𝜃𝑖

𝜕𝑥 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡)

]2

+
𝑊4
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝑢𝜃𝑖 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑖−1) − 𝑢𝜃𝑖−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑖−1)

]2
+

𝑊5
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝑣𝜃𝑖 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑖−1) − 𝑣𝜃𝑖−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑖−1)

]2
+

𝑊6
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑥 
(𝑥𝑛

𝑡𝑏
, 𝑡𝑖−1) −

𝜕𝑢𝜃𝑖−1

𝜕𝑥 
(𝑥𝑛

𝑡𝑏
, 𝑡𝑖−1)

]2

+𝑊7

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝑣𝜃(0, 𝑡𝑛𝑠𝑏) − 𝑣𝜃(5, 𝑡𝑛𝑠𝑏)

]2 )1∕2
+𝑊8

( 1 
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑥 
(0, 𝑡𝑛

𝑠𝑏
) −

𝜕𝑢𝜃𝑖

𝜕𝑥 
(5, 𝑡𝑛

𝑠𝑏
)
]2 )1∕2

. (74)

In the simulations, we employ neural network architectures with two output nodes, representing the wave field 𝑢 and the wave 
speed 𝑣 = 𝜕𝑢

𝜕𝑡 , respectively. The penalty coefficients in the loss functions are taken to be (𝑊1, ...,𝑊8) = (0.9,0.9,0.9,0.1,0.1,0.1,0.1,0.1). 
We employ 5 uniform time blocks in block time marching. The neural network parameters (network depth/width, and activation 
functions) and the training collocation points are varied in the tests. The adopted neural network structures are listed in Table 1.

An overview of the HLConcPINN-ExBTM and HLConcPINN-BTM solutions to the wave equation and their accuracy is provided in 
Figs. 10 to 14. Figs. 10 and 11 show distributions of the wave field 𝑢 and the wave speed 𝑣, corresponding to the true solution, the 
HLConcPINN-ExBTM and HLConcPINN-BTM solutions, as well as their point-wise absolute errors, in the spatial-temporal domain. The 
neural network architecture is specified in the caption of Fig. 10, consisting of three hidden layers, with the tanh activation function for 
the first two hidden layers and the sine function for the last hidden layer. 𝑁𝑐 = 2500 has been employed for the training collocation 
points. The HLConcPINN-ExBTM method is observed to produce more accurate results than HLConcPINN-BTM, especially toward 
later time instants. The errors of both methods are observed to grow over time. In particular, the accuracy of HLConcPINN-BTM in 
the last time block becomes quite poor, with pronounced deviations from the true solution in the wave speed distribution.
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Fig. 11. Wave equation: Wave speed distributions (𝑣 = 𝜕𝑢

𝜕𝑡 : true solution; 𝑣𝜃 : HLConcPINN-ExBTM solution; 𝑣∗
𝜃
: HLConcPINN-BTM solution). Simulation parameters 

follow those of Fig. 10.

Fig. 12. Wave equation: Top row, comparison of wave profiles between the true solution and the HLConcPINN-ExBTM/-BTM solutions at several time instants. Bottom 
row, absolute-error profiles of HLConcPINN-ExBTM/-BTM. Simulation parameters follow those of Fig. 10.

Figs. 12 and 13 illustrate the solution profiles of the wave field 𝑢 and the wave speed 𝑣 obtained using HLConcPINN-ExBTM and 
HLConcPINN-BTM at three time instants (𝑡 = 2.5,5,9.5), accompanied by their corresponding absolute errors. The simulation parame-

ters here follow those of Fig. 10. The error of HLConcPINN-ExBTM is generally observed to be smaller than that of HLConcPINN-BTM. 
The training loss histories with this group of tests for HLConcPINN-ExBTM and HLConcPINN-BTM are shown in Fig. 14. It can be 
generally observed that the training process results in higher loss values in later time blocks, implying a growth in the errors over 
time consistent with what is observed in Figs. 10 and 11.

Table 8 shows a study of the effect of the training data points on the simulation accuracy of the HLConcPINN-ExBTM and 
HLConcPINN-BTM methods. Here we list the 𝑙2 and 𝑙∞ errors of HLConcPINN-ExBTM and HLConcPINN-BTM in different time blocks 
obtained with training collocation points ranging from 𝑁𝑐 = 1500 to 𝑁𝑐 = 3000 in the simulations. The neural network architecture 
is given by [2,90,90,10,2], with the tanh activation function for the first two hidden layers and sine function for the last hidden layer. 
The data suggest little sensitivity with respect to number of training data points in the range tested here.

Table 9 illustrates a test of the effect of different activation functions on the simulation results. The network architecture is 
characterized by [2,90,90,10,2], with tanh as the activation function for the first two hidden layers, while the activation function 
for the last hidden layer is varied among tanh, Gaussian, swish, and softplus functions. The training collocation points are set to 
𝑁𝑐 = 2500. The table provides the 𝑙2 and 𝑙∞ errors of the wave field in different time blocks computed using HLConcPINN-ExBTM 
and HLConcPINN-BTM corresponding to different activation functions for the last hidden layer. These data can be compared with 
that of Table 8 corresponding to 𝑁𝑐 = 2500, where the sine activation function has been used. Overall the sine function appears to 
yield the best results among the activation functions tested here.
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Fig. 13. Wave equation: Top row, comparison of wave speed (𝑣) profiles between the true solution and the HLConcPINN-ExBTM/BTM solutions at several time instants. 
Bottom row, profiles of the absolute error of HLConcPINN-ExBTM/-BTM for 𝑣. Simulation parameters follow those of Fig. 10.

Fig. 14. Wave equation: Training loss histories in different time blocks of (a) HLConcPINN-ExBTM and (b) HLConcPINN-BTM. Simulation parameters follow those of 
Fig. 10.

Table 8
Wave equation: 𝑙2 and 𝑙∞ errors of wave field 𝑢 in different time blocks obtained with HLConcPINN-ExBTM and HLConcPINN-BTM 
for a range of training data points 𝑁𝑐 . NN: [2,90,90,10,2], tanh activation in first two hidden layers and sine activation in the last 
hidden layer.

Error Time block 𝑁𝑐 = 1500 𝑁𝑐 = 2000 𝑁𝑐 = 2500 𝑁𝑐 = 3000

ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 
𝑙2 𝑇#1 9.86e-03 1.05e-02 9.76e-03 1.01e-02 1.09e-02 1.19e-02 9.87e-03 9.31e-03 

𝑇#2 1.21e-02 1.30e-02 1.14e-02 1.15e-02 1.17e-02 9.53e-03 1.01e-02 9.49e-03 
𝑇#3 1.21e-02 3.73e-02 1.39e-02 1.27e-02 1.71e-02 1.52e-02 1.38e-02 1.39e-02 
𝑇#4 1.75e-02 2.85e-01 5.91e-02 2.44e-02 1.74e-02 2.17e-02 5.26e-02 3.23e-01 
𝑇#5 3.34e-02 3.85e-01 1.25e-01 2.15e-01 1.88e-02 1.76e-01 5.70e-02 7.36e-01

𝑙∞ 𝑇#1 3.13e-02 2.73e-02 2.86e-02 2.76e-02 2.85e-02 3.13e-02 2.75e-02 2.52e-02 
𝑇#2 3.13e-02 3.57e-02 3.22e-02 3.43e-02 3.46e-02 2.64e-02 2.85e-02 2.72e-02 
𝑇#3 3.43e-02 1.00e-01 6.94e-02 3.98e-02 5.47e-02 4.59e-02 4.28e-02 4.90e-02 
𝑇#4 5.31e-02 8.33e-01 1.40e-01 7.40e-02 5.85e-02 6.56e-02 1.44e-01 1.13e+00 
𝑇#5 8.55e-02 1.14e+00 2.28e-01 6.42e-01 6.09e-02 5.04e-01 1.65e-01 2.35e+00 
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Table 9
Wave equation: 𝑙2 and 𝑙∞ errors of the wave field 𝑢 in different time blocks obtained using HLConcPINN-ExBTM and HLConcPINN-BTM 
with different activation functions in the last hidden layer. NN: [2,90,90,10,2], with tanh activation in the first two hidden layers. The 
activation function in the last hidden layer is varied, as listed in the first row of the table. 𝑁𝑐 = 2500 for the training collocation points.

Error Time block tanh Gaussian Swish Softplus 
ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 

𝑙2 𝑇#1 1.94e-02 2.08e-02 1.34e-02 8.44e-03 2.03e-02 1.88e-02 1.22e-02 1.51e-02 
𝑇#2 2.24e-02 2.12e-02 6.07e-02 3.18e-02 2.65e-02 3.20e-02 1.66e-02 2.21e-02 
𝑇#3 1.22e+00 7.27e-01 9.41e-01 4.80e-02 5.47e-02 1.65e+00 3.64e-02 3.73e-02 
𝑇#4 2.84e+00 1.52e+00 2.21e+00 4.06e-01 8.17e-02 4.18e+00 9.31e-02 3.95e-01 
𝑇#5 4.91e+00 2.34e+00 3.74e+00 5.42e-01 1.42e-01 7.25e+00 2.82e-01 5.83e-01

𝑙∞ 𝑇#1 5.46e-02 5.68e-02 3.74e-02 2.40e-02 5.57e-02 5.12e-02 3.54e-02 4.17e-02 
𝑇#2 6.13e-02 6.77e-02 2.38e-01 8.23e-02 7.70e-02 8.74e-02 4.92e-02 6.82e-02 
𝑇#3 2.66e+00 1.83e+00 2.34e+00 1.35e-01 1.27e-01 3.91e+00 1.09e-01 1.06e-01 
𝑇#4 4.65e+00 2.63e+00 3.23e+00 1.41e+00 2.35e-01 6.33e+00 2.44e-01 1.43e+00 
𝑇#5 7.40e+00 3.70e+00 5.16e+00 1.80e+00 4.23e-01 1.04e+01 7.86e-01 1.98e+00 

Fig. 15. Wave equation: 𝑙2 errors of (a) the wave field 𝑢, and (b) the wave speed 𝑣= 𝜕𝑢∕𝜕𝑡, as a function of the training loss for HLConcPINN-ExBTM. NN: [2,90,90,10,2], 
with tanh activation for the first two hidden layers and sine activation for the last hidden layer; 𝑁𝑐 = 2500 for the training data points.

Fig. 15 illustrates the relation (in logarithmic scale) between the 𝑙2 errors of the wave field 𝑢 and the wave speed 𝑣 = 𝜕𝑢

𝜕𝑡 as a 
function of the training loss value for the HLConcPINN-ExBTM method. The neural network architecture, the activation functions, 
and the training data points are provided in the figure caption. The simulation data approximately exhibit a scaling power of 1∕2, 
roughly consistent with the conclusion of Theorem 5.3.

7.4. Nonlinear Klein-Gordon equation

We consider the spatial-temporal domain (𝑥, 𝑡) ∈ Ω =𝐷×[0, 𝑇 ] = [0,1]×[0,10], and the following initial/boundary value problem 
on this domain,

𝜕2𝑢

𝜕𝑡2
− 𝜕2𝑢 

𝜕𝑥2
+ 𝑢+ sin(𝑢) = 𝑓 (𝑥, 𝑡), (75a)

𝑢(0, 𝑡) = 𝜙1(𝑡), 𝑢(1, 𝑡) = 𝜙2(𝑡), 𝑢(𝑥,0) = 𝜓1(𝑥), 
𝜕𝑢

𝜕𝑡 
(𝑥,0) = 𝜓2(𝑥). (75b)

In these equations, 𝑢(𝑥, 𝑡) is the field function to be solved for, 𝑓 (𝑥, 𝑡) is a source term, 𝜓1 and 𝜓2 are the initial conditions, and 𝜙1
and 𝜙2 are the boundary conditions. Note that a nonlinear term, 𝑔(𝑢) = sin𝑢, has been used, leading to the Sine-Gordon equation 
in (75a). The source term, initial and boundary conditions are appropriately chosen such that the problem has the following exact 
solution,

𝑢(𝑥, 𝑡) =
[
2cos

(
𝜋𝑥+ 𝜋

5 

)
+ 9

5
cos

(
2𝜋𝑥+ 7𝜋

20 

)][
2cos

(
𝜋𝑡+ 𝜋

5 

)
+ 9

5
cos

(
2𝜋𝑡+ 7𝜋

20 

)]
. (76)

To simulate this problem, we reformulate it as follows,

𝜕𝑢

𝜕𝑡 
− 𝑣 = 0, 𝜕𝑣

𝜕𝑡 
− 𝜕2𝑢 

𝜕𝑥2
+ 𝑢+ sin(𝑢) = 𝑓 (𝑥, 𝑡), (77a)

𝑢(0, 𝑡) = 𝜙1(𝑡), 𝑢(1, 𝑡) = 𝜙2(𝑡), 𝑢(𝑥,0) = 𝜓1(𝑥), 𝑣(𝑥,0) = 𝜓2(𝑥), (77b)
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Fig. 16. Nonlinear Klein-Gordon equation: Distributions of the exact solution (a,f), the HLConcPINN-ExBTM solution and its point-wise error (b,g and c,h), and the 
HLConcPINN-BTM solution and its point-wise error (d,i and e,j), for 𝑢 (top row) and 𝑣 (bottom row). NN: [2,90,90,10,2], with tanh activation function for the first 
two hidden layers and sine activation function in the last hidden layer; 𝑁𝑐 = 2500 for the training collocation points.

Fig. 17. Nonlinear Klein-Gordon equation: Histories of training loss for (a) HLConcPINN-ExBTM and (b) HLConcPINN-BTM in different time blocks. NN architecture 
and simulation parameters follow those of Fig. 16.

where 𝑣 is defined by equation (77a). In light of (55)− (56), we set the loss function for HLConcPINN-ExBTM as follows,

𝐿𝑜𝑠𝑠𝐼𝑖 =
𝑊1
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) − 𝑣𝜃𝑖 (𝑥

𝑛
𝑖𝑛𝑡, 𝑡

𝑛
𝑖𝑛𝑡)

]2

+
𝑊2
𝑁𝑐

𝑁𝑐∑
𝑛=1 

[
𝜕𝑣𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛

𝑖𝑛𝑡
) −

𝜕2𝑢𝜃𝑖

𝜕𝑥2
(𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛

𝑖𝑛𝑡
) + 𝑢𝜃𝑖 (𝑥

𝑛
𝑖𝑛𝑡

, 𝑡𝑛
𝑖𝑛𝑡
) + sin(𝑢𝜃𝑖 (𝑥

𝑛
𝑖𝑛𝑡

, 𝑡𝑛
𝑖𝑛𝑡
)) − 𝑓 (𝑥𝑛

𝑖𝑛𝑡
, 𝑡𝑛

𝑖𝑛𝑡
)

]2
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Fig. 18. Nonlinear Klein-Gordon equation: The 𝑙2 errors of (a) 𝑢 and (b) 𝑣 as a function of the training loss value for the HLConcPINN-ExBTM method. The NN 
architecture and simulation parameters follow those of Fig. 16.

+
𝑊3
𝑁𝑐

𝑁𝑐∑
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[
𝜕2𝑢𝜃𝑖
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𝑛
𝑡𝑏
, 𝑡𝑗−1) − 𝑢𝜃𝑗−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1)

]2
+

𝑊5
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𝑛
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𝑛
𝑡𝑏
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]2
+

𝑊6
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+𝑊7
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𝑖−1, (78)

where 𝑊𝑖 (𝑖 = 1,⋯ ,7) are the penalty coefficients for different loss terms. The loss function for HLConcPINN-BTM is set to,

𝐿𝑜𝑠𝑠𝐼𝐼𝑖 =
𝑊1
𝑁𝑐

𝑁𝑐∑
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[
(𝑣𝜃(0, 𝑡𝑛𝑠𝑏) −

𝜕𝜙1
𝜕𝑡 

(𝑡𝑛
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𝜕𝜙2
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. (79)

We employ the following values for the penalty coefficients, (𝑊1 ,⋯ ,𝑊7) = (0.4,0.4,0.4,0.6,0.6,0.6,0.6), for this problem. Five uni-

form time blocks are used in block time marching.

Figs. 16 and 17 provide an overview of the simulation results obtained by HLConcPINN-ExBTM and HLConcPINN-BTM for the 
nonlinear Klein-Gordon equation. Here the distributions of the HLConcPINN-ExBTM and HLConcPINN-BTM solutions for 𝑢 and 𝑣 = 𝜕𝑢

𝜕𝑡 , 
their point-wise absolute errors, as well as the exact solution field, have been shown. The loss histories for different time blocks 
obtained using these methods are shown in Fig. 17. The network architecture (consisting of three hidden layers), the activation 
functions, and the training collocation points are given in the caption of Fig. 16. The simulation results obtained with HLConcPINN-

ExBTM are markedly more accurate than those of HLConcPINN-BTM for this problem, especially at later time (the last time block). 
It is also noted that the solution accuracy for 𝜕𝑢

𝜕𝑡 is notably lower than that of 𝑢.

Table 10 summarizes a study of the training collocation points on the PINN solutions. We list the 𝑙2 and 𝑙∞ errors of both 
HLConcPINN-ExBTM and HLConcPINN-BTM in different time blocks obtained with a range of training collocation points between 
𝑁𝑐 = 1500 and 𝑁𝑐 = 3000. The neural network architecture and activation functions follow those of Fig. 16. The results are in general 
not sensitive to the number of collocation points, similar to what has been obtained with other test problems in previous subsections.

Table 11 compares the simulation results of HLConcPINN-ExBTM and HLConcPINN-BTM obtained with different activation func-

tions (tanh, Gaussian, swish, softplus) for the last hidden layer. Three hidden layers are employed in the neural network, with tanh
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Table 10

Nonlinear Klein-Gordon equation: 𝑙2 and 𝑙∞ errors of 𝑢 for HLConcPINN-ExBTM and HLConcPINN-BTM obtained with different 
training collocation points 𝑁𝑐 . The NN architecture and activation functions follow those of Fig. 16.

Error Time block 𝑁𝑐 = 1500 𝑁𝑐 = 2000 𝑁𝑐 = 2500 𝑁𝑐 = 3000

ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 
𝑙2 𝑇#1 1.14e-03 1.52e-03 1.37e-03 1.64e-03 1.21e-03 1.52e-03 1.88e-03 1.56e-03 

𝑇#2 3.08e-03 3.99e-03 3.28e-03 2.97e-03 3.94e-03 3.53e-03 6.14e-03 2.55e-03 
𝑇#3 5.44e-03 9.56e-03 7.79e-03 6.89e-03 4.89e-03 6.96e-03 6.61e-03 7.75e-03 
𝑇#4 9.69e-03 1.67e-02 1.90e-02 7.19e-03 8.31e-03 1.44e-02 1.01e-02 1.36e-02 
𝑇#5 7.03e-02 9.11e-02 3.23e-02 1.95e-02 1.33e-02 6.49e-01 2.93e-02 7.43e-02

𝑙∞ 𝑇#1 3.33e-03 3.24e-03 5.01e-03 4.75e-03 3.62e-03 4.21e-03 4.40e-03 4.54e-03 
𝑇#2 8.52e-03 8.47e-03 9.59e-03 1.07e-02 1.06e-02 9.18e-03 1.27e-02 7.50e-03 
𝑇#3 1.93e-02 2.74e-02 1.77e-02 1.78e-02 1.44e-02 2.25e-02 1.89e-02 2.10e-02 
𝑇#4 2.34e-02 4.90e-02 5.88e-02 1.57e-02 2.38e-02 4.62e-02 2.76e-02 3.37e-02 
𝑇#5 1.89e-01 2.40e-01 9.73e-02 4.58e-02 4.25e-02 1.41e+00 8.66e-02 2.03e-01 

Table 11

Nonlinear Klein-Gordon equation: 𝑙2 and 𝑙∞ errors of 𝑢 for HLConcPINN-ExBTM and HLConcPINN-BTM obtained with different 
activation functions for the last hidden layer. NN: [2,90,90,10,2], with tanh activation function for the first two hidden layers and 
the activation function in the last hidden layer varied; 𝑁𝑐 = 2500 for the training collocation points.

Error Time block tanh Gaussian Swish Softplus 
ExBTM BTM ExBTM BTM ExBTM BTM ExBTM BTM 

𝑙2 𝑇#1 2.28e-03 2.86e-03 2.52e-03 3.41e-03 9.61e-04 1.98e-03 1.81e-03 1.40e-03 
𝑇#2 5.24e-03 5.83e-03 1.82e-03 6.29e-03 4.54e-03 3.62e-03 6.21e-03 7.67e-03 
𝑇#3 8.22e-03 1.68e-02 1.11e-02 1.97e-02 7.75e-03 5.16e-03 8.18e-03 1.01e-02 
𝑇#4 1.73e-02 2.52e-02 3.25e-01 2.86e-01 1.13e-02 1.17e-02 1.72e-02 8.91e-03 
𝑇#5 1.33e-01 8.68e-02 5.56e-01 7.53e-01 1.11e-01 1.82e-02 2.98e-02 1.43e-02

𝑙∞ 𝑇#1 5.73e-03 8.85e-03 5.89e-03 8.22e-03 3.30e-03 5.00e-03 5.54e-03 4.63e-03 
𝑇#2 1.64e-02 1.74e-02 5.34e-03 1.94e-02 1.15e-02 1.61e-02 1.99e-02 2.67e-02 
𝑇#3 2.24e-02 4.67e-02 2.87e-02 4.05e-02 1.49e-02 1.60e-02 2.20e-02 2.91e-02 
𝑇#4 4.27e-02 7.18e-02 1.05e+00 7.84e-01 2.53e-02 3.32e-02 4.77e-02 2.33e-02 
𝑇#5 3.65e-01 2.47e-01 1.43e+00 1.80e+00 3.42e-01 6.28e-02 8.76e-02 4.46e-02 

activation for the first two hidden layers and the activation function of the last hidden layer varied. The network architecture and 
other simulation parameters are specified in the table caption. These results can be compared with that of Table 10 corresponding 
to 𝑁𝑐 = 2500, where the sine activation function has been used for the last hidden layer. Among the activation functions tested, the 
sine function appears to yield the best simulation results.

Finally Fig. 18 illustrates the relation between the errors for 𝑢 and 𝑣 and the training loss for the HLConcPINN-ExBTM method 
from our simulations. The simulation data signify a scaling with a power of approximately 1∕2, which is roughly consistent with the 
conclusion of Theorem 6.4.

8. Concluding remarks

We have presented a hidden-layer concatenated physics informed neural network (HLConcPINN) method for approximating PDEs, 
by combining hidden-layer concatenated feed-forward neural networks (HLConcFNN), an extended block time marching strategy, and 
the physics informed approach. We analyze the convergence properties and the errors of this method for parabolic and hyperbolic 
type PDEs. Our analyses show that with this method the approximation error of the solution field can be effectively controlled by the 
training loss for dynamic simulations with long time horizons. HLConcPINN allows network architectures with an arbitrary number of 
hidden layers of two or larger, and any of the commonly-used smooth activation functions for all hidden layers beyond the first two. 
Our method generalizes several existing PINN techniques, which have theoretical guarantees but are confined to network architectures 
with two hidden layers and the tanh activation function. We implement the HLConcPINN algorithm, and have presented a number of 
computational examples based on this method. The numerical results demonstrate the effectiveness of our method and corroborate 
the relationship between the approximation error and the training loss function from theoretical analyses.

For long-term dynamic simulations, the current work adopts the block time marching (BTM) strategy. The original block time 
marching scheme, however, is not amenable to theoretical analysis, due to the difficulty caused by the regularity of the initial con-

ditions on time blocks beyond the first one. The extended block time marching (ExBTM) strategy presented in this work circumvents 
this issue, by using the true initial data of the problem as the initial value for all time blocks and enforcing the residuals at a set of 
discrete temporal points from the preceding time blocks. This modified BTM strategy is crucial to the theoretical analysis of HLCon-

cPINN for long-time dynamic simulations. A practical question when using BTM is how to choose the number of time blocks for a 
given problem and a given temporal dimension one would like to cover in the simulation. Our past experiences with the original 
BTM and the current modified BTM methods suggest that with smaller time blocks the network training tends to be easier and it 
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would generally produce more accurate results. On the other hand, with a fixed overall temporal dimension of the problem domain, 
increasing the number of time blocks (i.e. reducing the time block size) would increase the overall computation burden. We find that 
a moderate time block size is usually preferable and would typically suffice for many problems.

Finally we would like to comment that the analysis of the HLConcPINN technique, excluding the block time marching component, 
can be extended to elliptic type equations. An analysis of the nonlinear Helmholtz equation as an example of this type of equation is 
provided in the Appendix (Section 9.3).
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9. Appendix: auxiliary results and proofs of main theorems

9.1. Some auxiliary results

Let a 𝑑-tuple of non-negative integers 𝛼 ∈ ℕ𝑑
0 be multi-index with 𝑑 ∈ℕ. For given two multi-indices 𝛼, 𝛽 ∈ℕ𝑑

0 , we say that 𝛼 ≤ 𝛽, 
if and only if, 𝛼𝑖 ≤ 𝛽𝑖 for all 𝑖 = 1,⋯ , 𝑑. Let 

∏
denote the product operator, representing the multiplication of a sequence of terms. 

Denote |𝛼| =∑𝑑
𝑖=1 𝛼𝑖, 𝛼! =

∏𝑑
𝑖=1 𝛼𝑖!, 

(
𝛼

𝛽

)
= 𝛼! 

𝛽!(𝛼−𝛽)! with 𝛽 ≤ 𝛼. Let 𝑃𝑚,𝑛 = {𝛼 ∈ℕ𝑛
0, |𝛼| =𝑚}, for which it holds |𝑃𝑚,𝑛| =(

𝑚+ 𝑛− 1
𝑚

)
.

Lemma 9.1. Let 𝑑 ∈ℕ, 𝑘 ∈ ℕ0, 𝑓 ∈𝐻𝑘(Ω) and 𝑔 ∈𝑊 𝑘,∞(Ω) with Ω ⊂ℝ𝑑 , then ‖𝑓𝑔‖𝐻𝑘(Ω) ≤ 2𝑘‖𝑓‖𝐻𝑘(Ω)‖𝑔‖𝑊 𝑘,∞(Ω).

Lemma 9.2 (Multiplicative trace inequality, e.g. [12]). Let 𝑑 ≥ 2, Ω ⊂ℝ𝑑 be a Lipschitz domain and let 𝛾0 ∶𝐻1(Ω)→𝐿2(𝜕Ω) ∶ 𝑢↦ 𝑢|𝜕Ω
be the trace operator. Denote by ℎΩ the diameter of Ω and by 𝜌Ω the radius of the largest 𝑑-dimensional ball that can be inscribed into Ω. 
Then it holds that

‖𝛾0𝑢‖𝐿2(𝜕Ω) ≤ 𝐶ℎΩ ,𝑑,𝜌Ω
‖𝑢‖𝐻1(Ω), where 𝐶ℎΩ ,𝑑,𝜌Ω

=
√
2max{2ℎΩ, 𝑑}∕𝜌Ω. (80)

Lemma 9.3 ([12]). Let 𝑑, 𝑛,𝐿,𝑊 ∈ ℕ and let 𝑢𝜗 ∶ℝ𝑑 → ℝ𝑙𝐿 be a neural network with 𝜗 ∈ Θ for 𝑑,𝐿 ≥ 2,𝑅,𝑊 ≥ 1, cf. Definition 2.1. 
Assume that ‖𝜎‖𝐶𝑛 ≥ 1. Then it holds for 1≤ 𝑗 ≤ 𝑙𝐿 that

‖(𝑢𝜗)𝑗‖𝐶𝑛(Ω) ≤ 16𝐿𝑑2𝑛(𝑒2𝑛4𝑊 3𝑅𝑛‖𝜎‖𝐶𝑛(Ω))𝑛𝐿. (81)

Remark 9.4. Let 𝑢𝜃 ∶ℝ𝑑 →ℝ𝑙𝐿 denote a neural network with smooth activation functions, in accordance with Definition 2.1. Suppose 
the first two hidden layers of the network are endowed with the tanh activation function, whereas (if 𝐿 > 3) the subsequent hidden 
layers utilize a variety of smooth activation functions, including (but not restricted to) e.g. the tanh, sine, sigmoid, Gaussian, and 
softplus functions. Let �̂� denote a collection of these smooth activation functions. Under the conditions specified in Lemma 9.3, by 
defining ‖𝜎‖𝐶𝑘 =max�̃�∈�̂�{‖�̃�‖𝐶𝑘}, it can be shown that Lemma 9.3 remains valid. Furthermore, thanks to the inherent properties of 
hidden-layer concatenated feedforward neural networks, the output fields of the 𝑖-th (𝑖 = 1,⋯ ,𝐿 − 1) hidden layer and the output 
layer exhibit analogous behavior based on Lemma 9.3. For the sake of conciseness, we omit the proof here and refer to the results 
presented in Lemma 9.3.

Lemma 9.5 ([12]). Let 𝑑 ≥ 2, 𝑛 ≥ 2,𝑚 ≥ 3, 𝛿 > 0, 𝑎𝑖, 𝑏𝑖 ∈ ℤ with 𝑎𝑖 < 𝑏𝑖 for 1 ≤ 𝑖 ≤ 𝑑, Ω =
∏𝑑

𝑖=1[𝑎𝑖, 𝑏𝑖] and 𝑓 ∈𝐻𝑚(Ω). Then for every 
𝑁 ∈ ℕ with 𝑁 > 5, there exists a tanh neural network 𝑓𝑁 with two hidden layers, one of widths at most 3⌈𝑚+𝑛−2

2 ⌉|𝑃𝑚−1,𝑑+1|+∑𝑑
𝑖=1(𝑏𝑖 −

𝑎𝑖)(𝑁 − 1) and another of width at most 3⌈ 𝑑+𝑛

2 ⌉|𝑃𝑑+1,𝑑+1|𝑁𝑑 ∏𝑑
𝑖=1(𝑏𝑖 − 𝑎𝑖), such that for 𝑘= 0,1,2 it holds that

‖𝑓 − 𝑓𝑁‖𝐻𝑘(Ω) ≤ 2𝑘3𝑑𝐶𝑘,𝑚,𝑑,𝑓 (1 + 𝛿)ln𝑘
(
𝛽𝑘,𝛿,𝑑,𝑓𝑁

𝑑+𝑚+2)𝑁−𝑚+𝑘, (82)

where

𝐶𝑘,𝑚,𝑑,𝑓 = max 
0≤𝑙≤𝑘

(
𝑑 + 𝑙 − 1

𝑙

)1∕2 ((𝑚− 𝑙)!)1∕2

(⌈𝑚−𝑙

𝑑
⌉!)𝑑∕2

(
3
√

𝑑

𝜋

)𝑚−𝑙 |𝑓 |𝐻𝑚(Ω), (83)

𝛽𝑘,𝛿,𝑑,𝑓 =
5 ⋅ 2𝑘𝑑 max{

∏𝑑
𝑖=1(𝑏𝑖 − 𝑎𝑖), 𝑑}max{‖𝑓‖𝑊 𝑘,∞(Ω),1}
3𝑑𝛿min{1,𝐶𝑘,𝑚,𝑑,𝑓 } 

, (84)

and ⌈⋅⌉ denotes the ceiling function, which maps a real number to the smallest integer greater than or equal to it. Moreover, the weights of 
𝑓𝑁 scale as (𝑁𝛾 +𝑁 ln𝑁) with 𝛾 =max{𝑚2∕𝑛, 𝑑(2 +𝑚+ 𝑑)∕𝑛}.
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Lemma 9.6 ([38]). Given an architectural vector 𝒍1 = (𝑙0, 𝑙1,⋯ , 𝑙𝐿−1, 𝑙𝐿) with 𝑙𝐿 = 1, define a new vector 𝒍2 = (𝑙0, 𝑙1,⋯ , 𝑙𝐿−1, 𝑛, 𝑙𝐿), where 
𝑛 ≥ 1 is an integer. For a given domain 𝐷⊂ℝ𝑙0 and an activation function 𝜎, the following relation holds

𝑈 (𝐷, 𝒍1, 𝜎) ⊆𝑈 (𝐷, 𝒍2, 𝜎), (85)

where 𝑈 is defined by (5).

Lemma 9.7 ([38]). Given an architectural vector 𝒍1 = (𝑙0, 𝑙1,⋯ , 𝑙𝐿−1, 𝑙𝐿) with 𝑙𝐿 = 1, define a new vector 𝒍2 = (𝑙0, 𝑙1,⋯ , 𝑙𝑠−1, 𝑙𝑠 +
1, 𝑙𝑠+1,⋯ , 𝑙𝐿) for some 𝑠 (1 ≤ 𝑠 ≤𝐿− 1). For a given domain 𝐷⊂ℝ𝑙0 and an activation function 𝜎, the following relation holds

𝑈 (𝐷, 𝒍1, 𝜎) ⊆𝑈 (𝐷, 𝒍2, 𝜎), (86)

where 𝑈 is defined by (5).

Lemma 9.8. Under the conditions specified in Lemma 9.5, for every 𝑁 ∈ℕ where 𝑁 > 5, there exists a hidden-layer concatenated feedfor-

ward neural network denoted as 𝑓𝑁 , defined by

𝑓𝑁 =
𝐿−1∑
𝑖=1 

𝑀𝑖𝑓
𝑁
𝑖 + 𝑏𝐿 𝐿 ≥ 3, (87)

where 𝑓𝑁
𝑖

, 𝑀𝑖 ∈ ℝ1×𝑙𝑖 (1 ≤ 𝑖 ≤ 𝐿 − 1) and 𝑏𝐿 ∈ ℝ1 represent the output of the 𝑖-th hidden layer, the connection coefficients between the 
output layer and the 𝑖-th hidden layer, and the bias of the output layer, respectively. Note that the first two hidden layers of the network 
employ the tanh activation function, while the other hidden layers can use any other smooth activation function. For 𝑘= 0,1,2, this neural 
network satisfies

‖𝑓 − 𝑓𝑁‖𝐻𝑘(Ω) ≲ ln𝑘
(
𝑁𝑑+𝑚+2)𝑁−𝑚+𝑘. (88)

Proof. Lemmas 9.6 and 9.7 imply that 𝑓𝑁 possesses a greater representational capacity compared to 𝑓𝑁 .

It should be noted that smooth functions are both continuous and bounded on a closed interval. For neural networks, activation 
function 𝜎 such as the sigmoid and hyperbolic tangent (tanh) are examples of smooth functions. These functions can be bounded by 
a constant 𝐶 in the 𝐻𝑘(Ω) norm, i.e., ‖𝜎‖𝐻𝑘(Ω) ≤ 𝐶 .

We set 𝑀1 = 01×𝑙1 ∈ℝ1×𝑙1 , 𝑀2 =𝑊3, 𝑏𝐿 = 𝑏3, and 𝑀𝑖 =
𝜀 

𝐶𝑙𝑖(𝐿−3)
11×𝑙𝑖 ∈ℝ1×𝑙𝑖 (𝑖 = 3,⋯ ,𝐿−1), while assigning 0𝑙𝑖×𝑙𝑖−1 ∈ℝ𝑙𝑖×𝑙𝑖−1 to 

the weight coefficients 𝑊𝑖 of the 𝑖-th hidden layer for all 𝑖 = 3,⋯ ,𝐿−1. By retaining the initial two hidden layers in Lemma 9.5 and 
setting 𝜀 = ln𝑘

(
𝑁𝑑+𝑚+2)𝑁−𝑚+𝑘, we obtain 𝑊3𝑓

𝑁
2 + 𝑏3 = 𝑓𝑁 (defined in Lemma 9.5) and 𝑓𝑁 = 𝑓𝑁 +

∑𝐿−1
𝑖=3 𝑀𝑖𝜎(𝑏𝑖). Consequently, 

the approximation can be bounded as follows

‖𝑓 − 𝑓𝑁‖𝐻𝑘(Ω) ≤ ‖𝑓 − 𝑓𝑁‖𝐻𝑘(Ω) +
𝐿−1∑
𝑖=3 

‖𝑀𝑖𝜎(𝑏𝑖)‖𝐻𝑘(Ω) ≲ ln𝑘
(
𝑁𝑑+𝑚+2)𝑁−𝑚+𝑘,

where 𝑙𝑖 denotes the number of nodes in the 𝑖-th hidden layer. □

9.2. Proof of main theorems from Section 3: heat equation

Proof of Theorem 3.3 :

Proof. Based on Lemma 9.8, there exists a HLConcPINN 𝑢𝜃𝑖 such that for every 0 ≤𝑚 ≤ 2,

‖𝑢𝜃𝑖 − 𝑢‖
𝐻𝑚(Ω̃𝑖)

≲𝑁−𝑘+𝑚ln𝑚(𝑁). (89)

According to Lemma 9.2, we can bound the HLConcPINN residual terms,

‖𝜕�̂�𝑖

𝜕𝑡 
‖
𝐿2(Ω̃𝑖)

≤ ‖�̂�𝑖‖𝐻1(Ω̃𝑖)
, ‖Δ�̂�𝑖‖𝐿2(Ω̃𝑖)

≤ ‖�̂�𝑖‖𝐻2(Ω̃𝑖)
,‖�̂�𝑖‖𝐿2(Ω̃∗𝑖)

≤ ‖�̂�𝑖‖𝐿2(𝜕Ω̃𝑖)
≤ 𝐶ℎΩ̃𝑖

,𝑑+1,𝜌Ω̃𝑖

‖�̂�𝑖‖𝐻1(Ω̃𝑖)
.

For 𝑗 = 1, 𝑅𝑡𝑏𝑖
|𝑡=𝑡0

= �̂�𝑖|𝑡=𝑡0
, we obtain

‖𝑅𝑡𝑏𝑖
(𝒙,0)‖𝐿2(𝐷) ≤ ‖�̂�𝑖‖𝐿2(𝜕Ω̃𝑖)

≤ 𝐶ℎΩ̃𝑖
,𝑑+1,𝜌Ω̃𝑖

‖�̂�𝑖‖𝐻1(Ω̃𝑖)
.

For 𝑗 > 1, it holds

‖𝑅𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)‖𝐿2(𝐷) ≤ ‖�̂�𝑖|𝑡=𝑡𝑗−1

‖𝐿2(𝐷) + ‖�̂�𝑗−1|𝑡=𝑡𝑗−1
‖𝐿2(𝐷) ≤ ‖�̂�𝑖‖𝐿2(𝜕Ω̃𝑗−1)

+ ‖�̂�𝑗−1‖𝐿2(𝜕Ω̃𝑗−1)

≤ 𝐶ℎΩ̃𝑗−1
,𝑑+1,𝜌Ω̃𝑗−1

(‖�̂�𝑖‖𝐻1(Ω̃𝑗−1)
+ ‖�̂�𝑗−1‖𝐻1(Ω̃𝑗−1)

) ≤ 𝐶ℎΩ̃𝑗−1
,𝑑+1,𝜌Ω̃𝑗−1

(‖�̂�𝑖‖𝐻1(Ω̃𝑖)
+ ‖�̂�𝑗−1‖𝐻1(Ω̃𝑗−1)

).
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By combining these relations with (89), we can obtain

‖𝑅𝑖𝑛𝑡𝑖
‖
𝐿2(Ω̃𝑖)

= ‖𝜕�̂�𝑖

𝜕𝑡 
−Δ�̂�𝑖‖𝐿2(Ω̃𝑖)

≤ ‖�̂�𝑖‖𝐻1(Ω̃𝑖)
+ ‖�̂�𝑖‖𝐻2(Ω̃𝑖)

≲𝑁−𝑘+2ln2𝑁,

‖𝑅𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)‖𝐿2(𝐷),‖𝑅𝑠𝑏𝑖

‖
𝐿2(Ω̃∗𝑖)

≲ ‖�̂�𝑖‖𝐻1(Ω̃𝑖)
+ ‖�̂�𝑗−1‖𝐻1(Ω̃𝑗−1)

≲𝑁−𝑘+1ln𝑁 1 ≤ 𝑗 ≤ 𝑖.

Then, we finish our proof. □

Proof of Theorem 3.4 :

Proof. Take the inner product of (14a) and �̂�𝑖 over 𝐷 to obtain,

𝑑

2𝑑𝑡 ∫
𝐷

|�̂�𝑖|2 d𝒙 = −∫
𝐷

|∇�̂�𝑖|2 d𝒙+ ∫
𝜕𝐷 

𝑅𝑠𝑏𝑖
∇�̂�𝑖 ⋅ 𝒏d𝑠(𝒙) + ∫

𝐷

𝑅𝑖𝑛𝑡𝑖
�̂�𝑖d𝒙

≤ −∫
𝐷

|∇�̂�𝑖|2 d𝒙+ 1
2 ∫

𝐷

|�̂�𝑖|2 d𝒙+ 1
2 ∫

𝐷

|𝑅𝑖𝑛𝑡𝑖
|2 d𝒙+𝐶𝜕𝐷𝑖

(
∫
𝜕𝐷 

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)) 1

2 , (90)

where 𝐶𝜕𝐷𝑖
= |𝜕𝐷| 12 (‖𝑢‖𝐶1(𝜕𝐷×[𝑡𝑖−1 ,𝑡𝑖]) + ‖𝑢𝜃𝑖‖𝐶1(𝜕𝐷×[𝑡𝑖−1 ,𝑡𝑖])).

Integrating (90) over [𝑡𝑖−1, 𝜏] for any 𝑡𝑖−1 < 𝜏 ≤ 𝑡𝑖, using the initial condition (14b), and applying Cauchy–Schwarz inequality, we 
obtain

∫
𝐷

|�̂�𝑖(𝒙, 𝜏)|2 d𝒙+ 2

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|∇�̂�𝑖|2 d𝒙d𝑡
≤ ∫

𝐷

|�̂�𝑖(𝒙, 𝑡𝑖−1)|2 d𝒙+

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖|2 d𝒙d𝑡+ 𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑖
|2 d𝒙d𝑡+ 2𝐶𝜕𝐷𝑖

|Δ𝑡| 12 ( 𝑡𝑖

∫
𝑡𝑖−1

∫
𝜕𝐷 

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)d𝑡) 1

2

≤ ∫
𝐷

|�̂�𝑖(𝒙, 𝑡𝑖−1)|2 d𝒙+
𝑖−1 ∑
𝑗=1 ∫

𝐷

|𝑅𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)|2 d𝒙+

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖|2 d𝒙d𝑡+ 𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑖
|2 d𝒙d𝑡

+ 2𝐶𝜕𝐷𝑖
|Δ𝑡| 12 ( 𝑡𝑖

∫
𝑡𝑖−1

∫
𝜕𝐷 

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)d𝑡) 1

2

≤ 2∫
𝐷

|�̂�𝑖−1(𝒙, 𝑡𝑖−1)|2 d𝒙+ 2∫
𝐷

|𝑅𝑡𝑏𝑖
(𝒙, 𝑡𝑖−1)|2 d𝒙+

𝑖−1 ∑
𝑗=1 ∫

𝐷

|𝑅𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)|2 d𝒙+

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖|2 d𝒙d𝑡
+

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑖
|2 d𝒙d𝑡+ 2𝐶𝜕𝐷𝑖

|Δ𝑡| 12 ( 𝑡𝑖

∫
𝑡𝑖−1

∫
𝜕𝐷 

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)d𝑡) 1

2 .

Then, applying the integral form of the Grönwall inequality to the above inequality, it holds

∫
𝐷

|�̂�𝑖(𝒙, 𝜏)|2 d𝒙+ 2

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|∇�̂�𝑖|2 d𝒙d𝑡
≤ (

2∫
𝐷

|�̂�𝑖−1(𝒙, 𝑡𝑖−1)|2 d𝒙+ 2
𝑖 ∑

𝑗=1 ∫
𝐷

|𝑅𝑡𝑏𝑖
(𝒙, 𝑡𝑗−1)|2 d𝒙+

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑖
|2 d𝒙d𝑡) exp(Δ𝑡)

+ 2𝐶𝜕𝐷𝑖
|Δ𝑡| 12 ( 𝑡𝑖

∫
𝑡𝑖−1

∫
𝜕𝐷 

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)d𝑡) 1

2 exp(Δ𝑡). (91)

Firstly, by (91) and integrating (91) over [𝑡0, 𝑡1], Theorem 3.4 holds for 𝑖 = 1 according to the fact that 𝐺𝑖−1
(𝜃) = 0 and �̂�𝑖−1|𝑡=𝑡𝑖−1

=
0 for 𝑖 = 1.
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Secondly, we assume that Theorem 3.4 holds for all 𝑖 ≤ 𝑙 − 1, i.e.,

∫
𝐷

|�̂�𝑖(𝒙, 𝜏)|2 d𝒙 ≤ 𝐶𝐺𝑖
exp(Δ𝑡), 

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝒙, 𝜏)|2 d𝒙d𝑡 ≤ 𝐶𝐺𝑖
Δ𝑡 exp(Δ𝑡).

For 𝑖 = 𝑙 − 1, as it should be,

∫
𝐷

|�̂�𝑙−1(𝒙, 𝜏)|2 d𝒙 ≤ 𝐶𝐺𝑙−1
exp(Δ𝑡) 𝑡𝑙−2 ≤ 𝜏 ≤ 𝑡𝑙−1. (92)

Finally, we begin to verify that Theorem 3.4 is true at 𝑖 = 𝑙.

Let 𝑖 = 𝑙 in (91), under the established conditions (92) and the Grönwall inequality, we derive

∫
𝐷

|�̂�𝑙(𝒙, 𝜏)|2 d𝒙+ 2

𝑡𝑙

∫
𝑡𝑙−1

∫
𝐷

|∇�̂�𝑙|2 d𝒙d𝑡
≤ (

2∫
𝐷

|�̂�𝑙−1(𝒙, 𝑡𝑙−1)|2 d𝒙+ 2
𝑙∑

𝑗=1 ∫
𝐷

|𝑅𝑡𝑏𝑙
(𝒙, 𝑡𝑗−1)|2 d𝒙+

𝑡𝑙

∫
𝑡𝑙−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑙
|2 d𝒙d𝑡) exp(Δ𝑡)

+ 2𝐶𝜕𝐷𝑙
|Δ𝑡| 12 ( 𝑡𝑙

∫
𝑡𝑙−1

∫
𝜕𝐷 

|𝑅𝑠𝑏𝑙
|2 d𝑠(𝒙)d𝑡) 1

2 exp(Δ𝑡)

≤ (
2𝐶𝐺𝑙−1

exp(Δ𝑡) + 2
𝑙∑

𝑗=1 ∫
𝐷

|𝑅𝑡𝑏𝑙
(𝒙, 𝑡𝑗−1)|2 d𝒙+

𝑡𝑙

∫
𝑡𝑙−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑙
|2 d𝒙d𝑡) exp(Δ𝑡)

+ 2𝐶𝜕𝐷𝑙
|Δ𝑡| 12 ( 𝑡𝑙

∫
𝑡𝑙−1

∫
𝜕𝐷 

|𝑅𝑠𝑏𝑙
|2 d𝑠(𝒙)d𝑡) 1

2 exp(Δ𝑡)

≤ (𝐶𝐺𝑙
+ 2𝐶𝐺𝑙−1

exp(Δ𝑡)) exp(Δ𝑡),

where

𝐶𝐺𝑙
= 2

𝑙∑
𝑗=1 ∫

𝐷

|𝑅𝑡𝑏𝑙
(𝒙, 𝑡𝑗−1)|2 d𝒙+

𝑡𝑙

∫
𝑡𝑙−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑙
|2 d𝒙d𝑡+ 2𝐶𝜕𝐷𝑙

|Δ𝑡| 12 ( 𝑡𝑙

∫
𝑡𝑙−1

∫
𝜕𝐷 

|𝑅𝑠𝑏𝑙
|2 d𝑠(𝒙)d𝑡) 1

2 .

By using the mathematical induction and deduction methods, we finish the proof. □

Proof of Theorem 3.5 :

Proof. By combining Theorem 3.4 with the quadrature error formula (3), we have

∫
𝐷

|𝑅𝑡𝑏𝑖
|2 d𝒙 = ∫

𝐷

|𝑅𝑡𝑏𝑖
|2 d𝒙−𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏𝑖
] +𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏𝑖
] ≤ 𝐶(𝑅2

𝑡𝑏𝑖
)𝑀

− 2 
𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏𝑖
],

∫
Ω𝑖

|𝑅𝑖𝑛𝑡𝑖
|2 d𝒙d𝑡 = ∫

Ω𝑖

|𝑅𝑖𝑛𝑡𝑖
|2 d𝒙d𝑡−Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

] +Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

] ≤ 𝐶(𝑅2
𝑖𝑛𝑡𝑖

)𝑀
− 2 

𝑑+1
𝑖𝑛𝑡𝑖

+Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

],

∫
Ω∗𝑖

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)d𝑡 = ∫

Ω∗𝑖

|𝑅𝑠𝑏𝑖
|2 d𝑠(𝒙)d𝑡−Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏𝑖
] +Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏𝑖
] ≤ 𝐶(𝑅2

𝑠𝑏𝑖
)𝑀

− 2 
𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏𝑖
].

Combining the fact that 𝐶(𝑅2
𝑡𝑏𝑖

) ≲ ‖𝑅2
𝑡𝑏𝑖

‖𝐶2 and ‖𝑅2
𝑡𝑏𝑖

‖𝐶𝑛 ≤ 2𝑛‖𝑅𝑡𝑏𝑖
‖2
𝐶𝑛 with Lemma 9.3, it holds

𝐶(𝑅2
𝑡𝑏𝑖

(𝒙,𝑡𝑗−1))
≲ ‖𝑅𝑡𝑏𝑖

(𝒙, 𝑡𝑗−1)‖2𝐶2 ≤ 2(‖�̂�𝑖|𝑡=𝑡𝑗−1
‖2
𝐶2 + ‖�̂�𝑗−1|𝑡=𝑡𝑗−1

‖2
𝐶2 )

≲ ‖𝑢‖2
𝐶2 + (𝑒224𝑊 3𝑅2‖𝜎‖𝐶2 )4𝐿. (93)

In a similar way, we can estimate the terms ∫Ω𝑖
|𝑅𝑖𝑛𝑡𝑖

|2 d𝒙d𝑡 and ∫Ω∗𝑖
|𝑅𝑠𝑏𝑖

|2 d𝑠(𝒙)d𝑡.
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Then, combining the above inequalities with (17), it holds that

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝒙, 𝑡)|2 d𝒙d𝑡 ≤ 𝐶𝑇𝑖
Δ𝑡 exp(Δ𝑡),

where the constant 𝐶𝑇𝑖
is defined in (20). □

9.3. HLConcPINN for approximating the nonlinear Helmholtz equation

9.3.1. Nonlinear Helmholtz equation

Let 𝐷 ⊂ℝ𝑑 (𝑑 ≥ 2) be an open connected bounded domain with a 𝐶𝑘 boundary 𝜕𝐷. We consider the following nonlinear Helmholtz 
equation:

−Δ𝑢(𝒙) + 𝜆𝑢(𝒙) + 𝛼𝑔(𝑢(𝒙)) = 𝑓 (𝒙) 𝒙 ∈𝐷, (94a)

𝑢(𝒙) = 𝑢𝑑 (𝒙) 𝒙 ∈ 𝜕𝐷, (94b)

where 𝑓 is a source term, 𝑢𝑑 denotes the boundary data, and the nonlinear term 𝑔(𝑢) is globally Lipschitz, i.e. there exists a constant 
𝐿 (independent of 𝑣 and 𝑤) such that

|𝑔(𝑣) − 𝑔(𝑤)| ≤𝐿|𝑣−𝑤| ∀𝑣, 𝑤 ∈ℝ. (95)

Here, 𝛼 ≥ 0 and 𝜆 > 0 are constants that satisfy 𝜆 > 2𝐿𝛼.

9.3.2. Hidden-layer concatenated physics informed neural networks

We seek a HLConcPINN 𝑢𝜃 to approximate the solution 𝑢 of (94) and define the following residuals:

𝑅𝑖𝑛𝑡[𝑢𝜃](𝒙) = −Δ𝑢𝜃 + 𝜆𝑢𝜃 + 𝛼𝑔(𝑢𝜃) − 𝑓 𝒙 ∈𝐷, (96a)

𝑅𝑠𝑏[𝑢𝜃](𝒙) = 𝑢𝜃 − 𝑢𝑑 𝒙 ∈ 𝜕𝐷. (96b)

Note that 𝑅𝑖𝑛𝑡[𝑢] =𝑅𝑠𝑏[𝑢] = 0 for the exact solution 𝑢.

With HLConcPINN we minimize the quantity,

𝐺(𝜃)2 = ∫
𝐷

|𝑅𝑖𝑛𝑡[𝑢𝜃](𝒙)|2 d𝒙+
⎛⎜⎜⎝∫𝜕𝐷 |𝑅𝑠𝑏[𝑢𝜃](𝒙)|2 d𝑠(𝒙)⎞⎟⎟⎠

1
2

. (97)

For the nonlinear Helmholtz equation (94), we choose the training set  ⊂𝐷 with  = 𝑖𝑛𝑡 ∪𝑠𝑏, based on suitable quadrature points:

• Interior training points 𝑖𝑛𝑡 = {𝒙𝑛
𝑖𝑛𝑡

∈𝐷,1 ≤ 𝑛 ≤𝑁𝑖𝑛𝑡}.

• Spatial boundary training points 𝑠𝑏 = {𝒙𝑛
𝑠𝑏
∈ 𝜕𝐷,1 ≤ 𝑛 ≤𝑁𝑠𝑏}.

With the training set  , the integrals in (97) are approximated by a numerical quadrature, resulting in the training loss function,

𝑇 (𝜃,)2 =  𝑖𝑛𝑡
𝑇
(𝜃,𝑖𝑛𝑡)2 + 𝑠𝑏

𝑇
(𝜃,𝑠𝑏), (98)

where

 𝑖𝑛𝑡
𝑇
(𝜃,𝑖𝑛𝑡)2 =

𝑁𝑖𝑛𝑡∑
𝑛=1 

𝜔𝑛
𝑖𝑛𝑡|𝑅𝑖𝑛𝑡[𝑢𝜃](𝒙𝑛

𝑖𝑛𝑡)|2, 𝑠𝑏
𝑇
(𝜃,𝑠𝑏)2 =

𝑁𝑠𝑏∑
𝑛=1 

𝜔𝑛
𝑠𝑏
|𝑅𝑠𝑏[𝑢𝜃](𝒙𝑛

𝑠𝑏
)|2, (99)

with the data sets 𝑖𝑛𝑡 = {𝒙𝑛
𝑖𝑛𝑡
}𝑁𝑖𝑛𝑡

𝑛=1 and 𝑠𝑏 = {𝒙𝑛
𝑠𝑏
}𝑁𝑠𝑏

𝑛=1 and the corresponding quadrature weights 𝜔𝑛
𝑖𝑛𝑡

and 𝜔𝑛
𝑠𝑏

.

9.3.3. Error analysis

Let �̂� = 𝑢𝜃 − 𝑢 denote the error of the HLConcPINN solution 𝑢𝜃 against the true solution 𝑢. Combining equation (94) and the 
definitions of different residuals (96), we have

𝑅𝑖𝑛𝑡 = −Δ�̂�+ 𝜆�̂�+ 𝛼(𝑔(𝑢𝜃) − 𝑔(𝑢)), (100a)

𝑅𝑠𝑏 = �̂�|𝜕𝐷. (100b)

Theorem 9.9. Suppose 𝑛, 𝑑, 𝑘∈𝑁 with 𝑛, 𝑑 ≥ 2 and 𝑘 ≥ 3, and 𝑢 ∈𝐻𝑘(𝐷). For every integer 𝑁 > 5, there exists a HLConcPINN 𝑢𝜃 , such 
that

‖𝑅𝑖𝑛𝑡‖𝐿2(𝐷) ≲𝑁−𝑘+2ln2𝑁, ‖𝑅𝑠𝑏‖𝐿2(𝜕𝐷) ≲𝑁−𝑘+1ln𝑁. (101)
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Proof. The conclusion follows from 𝑢 ∈𝐻𝑘(𝐷), and the Lemmas 9.2 and 9.8. □

Theorem 9.10. Let 𝑑 ∈ ℕ with 𝑑 ≥ 2, and 𝑢 ∈ 𝐶1(𝐷) be the classical solution to the nonlinear Helmholtz equation (94). Let 𝑢𝜃 denote a 
HLConcPINN with parameter 𝜃. Then the following relation holds

∫
𝐷

|∇�̂�|2 d𝒙+
(
𝜆

2 
−𝐿𝛼

)
∫
𝐷

|�̂�|2 d𝒙 ≤ 1 
2𝜆 ∫

𝐷

|𝑅𝑖𝑛𝑡|2 d𝒙+𝐶𝜕𝐷

⎛⎜⎜⎝∫𝜕𝐷 |𝑅𝑠𝑏|2 d𝑠(𝒙)⎞⎟⎟⎠
1
2

, (102)

where 𝐶𝜕𝐷 = |𝜕𝐷| 12 (‖𝑢‖𝐶1(𝜕𝐷) + ||𝑢𝜃||𝐶1(𝜕𝐷)).

Proof. By following a similar approach to the proof of Theorem 3.4 and using the conditions (95) and 𝜆 > 2𝐿𝛼, one can arrive at 
the relation (102). □

Theorem 9.11. Let 𝑑 ∈ ℕ with 𝑑 ≥ 2, and 𝑢 ∈ 𝐶4(𝐷) be the classical solution of the nonlinear Helmholtz equation (94). Let 𝑢𝜃 be a 
HLConcPINN with parameter 𝜃. Then the following relation holds,

∫
𝐷

|∇�̂�|2 d𝒙+
(
𝜆

2 
−𝐿𝛼

)
∫
𝐷

|�̂�|2 d𝒙 ≤ 1 
2𝜆

(
𝐶(𝑅2

𝑖𝑛𝑡
)𝑀

− 2 
𝑑

𝑖𝑛𝑡
+𝐷

𝑀𝑖𝑛𝑡
[𝑅2

𝑖𝑛𝑡]
)
+𝐶𝜕𝐷

(
𝐶(𝑅2

𝑠𝑏
)𝑀

− 2 
𝑑−1

𝑠𝑏
+𝜕𝐷

𝑀𝑠𝑏
[𝑅2

𝑠𝑏
]
) 1

2

=
(
𝑇 (𝜃,)2 +𝑀

− 2 
𝑑

𝑖𝑛𝑡
+𝑀

− 1 
𝑑−1

𝑠𝑏

)
,

where 𝐷
𝑀𝑖𝑛𝑡

[𝑅2
𝑖𝑛𝑡
] and 𝜕𝐷

𝑀𝑠𝑏
[𝑅2

𝑠𝑏
] represent the midpoint rule applied to the respective functions 𝑅2

𝑖𝑛𝑡
and 𝑅2

𝑠𝑏
.

Proof. The result follows directly from Theorem 9.10, Lemma 9.3 and the quadrature error formula (3). □

Remark 9.12. For 𝛼 = 0, the nonlinear Helmholtz equation (94) reduces to a linear equation. The above analyses, including Theo-

rems 9.9 to 9.11, all carry over to the linear case.

9.4. HLConcPINN for approximating the convection equation

9.4.1. Convection equation

Consider the following convection equation on the domain 𝐷 = [𝑎, 𝑏] ⊂ℝ1:

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡 

+ 𝜕𝑢(𝑥, 𝑡)
𝜕𝑥 

= 0 (𝑥, 𝑡) ∈𝐷 × [0, 𝑇 ], (103a)

𝑢(𝑥,0) = 𝑢𝑖𝑛(𝑥) 𝑥 ∈𝐷, (103b)

𝑢(𝑎, 𝑡) = 𝑔(𝑡) 𝑡 ∈ [0, 𝑇 ], (103c)

where 𝑔(𝑡) denotes the boundary data and 𝑢𝑖𝑛(𝑥) is the initial distribution.

9.4.2. Hidden-layer concatenated physics informed neural networks

Based on the settings from Section 2.5, we seek HLConcPINN 𝑢𝜃𝑖 ∶ 𝐷 × [0, 𝑡𝑖]→ ℝ for 1 ≤ 𝑖 ≤ 𝑙 (𝑙 denoting the number of time 
blocks) to approximate the solution 𝑢 of (103). Define the following residual functions, for 1 ≤ 𝑖 ≤ 𝑙,

𝑅𝑖𝑛𝑡𝑖
[𝑢𝜃𝑖 ](𝑥, 𝑡) =

𝜕𝑢𝜃𝑖

𝜕𝑡 
+

𝜕𝑢𝜃𝑖

𝜕𝑥 
, (104a)

𝑅𝑡𝑏𝑖
[𝑢𝜃𝑖 ](𝑥) = 𝑢𝜃𝑖 |𝑡=𝑡𝑗−1

− 𝑢𝜃𝑗−1 |𝑡=𝑡𝑗−1
1 ≤ 𝑗 ≤ 𝑖, (104b)

𝑅𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝑡) = 𝑢𝜃𝑖 (𝑎, 𝑡) − 𝑔(𝑡). (104c)

In these equations 𝑢𝜃0
|||𝑡=𝑡0

= 𝑢𝑖𝑛(𝑥). Note that 𝑅𝑖𝑛𝑡𝑖
[𝑢] = 𝑅𝑡𝑏𝑖

[𝑢] = 𝑅𝑠𝑏𝑖
[𝑢] = 0 for the exact solution 𝑢. With HLConcPINN we 

determine 𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑙) by minimizing the following quantities,

𝐺𝑖
(𝜃𝑖)2 = ̃𝐺𝑖

(𝜃𝑖)2 + 𝐺𝑖−1
(𝜃𝑖−1)2 1 ≤ 𝑖 ≤ 𝑙, (105)

̃𝐺𝑖
(𝜃𝑖)2 =

𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|𝑅𝑖𝑛𝑡𝑖
[𝑢𝜃𝑖 ](𝑥, 𝑡)|2 d𝑥d𝑡+

𝑡𝑖

∫
𝑡𝑖−1

|𝑅𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝑎, 𝑡)|2 d𝑡+ 𝑖 ∑

𝑗=1 ∫
𝐷

|𝑅𝑡𝑏𝑖
[𝑢𝜃𝑖 ](𝑥, 𝑡𝑗−1)|2 d𝑥, (106)

where 𝐺𝑖−1
(𝜃𝑖−1) = 0 for 𝑖 = 1.
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The training set consists of  =
⋃𝑙

𝑖=1 𝑖 with 𝑖 = 𝑖𝑛𝑡𝑖
∪ 𝑠𝑏𝑖

∪ 𝑡𝑏𝑖
. The spatial boundary training points are 𝑠𝑏𝑖

= {𝑦𝑛} for 
1 ≤ 𝑛 ≤𝑁𝑠𝑏𝑖

, with 𝑦𝑛 = (𝑥, 𝑡)𝑛 ∈ {𝑎} × (𝑡𝑖−1, 𝑡𝑖). We approximate the integrals in (105) by the mid-point rule, leading to the training 
loss functions,

𝑇𝑖
(𝜃𝑖,𝑖)2 = ̃𝑇𝑖

(𝜃𝑖,𝑖)2 + 𝑇𝑖−1
(𝜃𝑖−1,𝑖−1)2 1 ≤ 𝑖 ≤ 𝑙, (107)

̃𝑇𝑖
(𝜃𝑖,𝑖)2 =  𝑖𝑛𝑡𝑖

𝑇
(𝜃𝑖,𝑖𝑛𝑡𝑖

)2 + 𝑠𝑏𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)2 +  𝑡𝑏𝑖

𝑇
(𝜃𝑖,𝑡𝑏𝑖

)2, (108)

where 𝑠𝑏𝑖
𝑇

(𝜃𝑖,𝑠𝑏𝑖
)2 =

∑𝑁𝑠𝑏𝑖

𝑛=1 𝜔𝑛
𝑠𝑏𝑖

|𝑅𝑠𝑏𝑖
[𝑢𝜃𝑖 ](𝑎, 𝑡

𝑛
𝑠𝑏𝑖
)|2, and the remaining terms are defined according to equation (13). Note that 

𝑇𝑖−1
(𝜃𝑖−1,𝑖−1) = 0 for 𝑖 = 1.

9.4.3. Error analysis

Let �̂�𝑖 = 𝑢𝜃𝑖 − 𝑢 denote the error between the HLConcPINN approximation 𝑢𝜃𝑖 and the exact solution 𝑢. By applying the convection 
equation (103) and the definition of the different residuals, we obtain for 1 ≤ 𝑖 ≤ 𝑙,

𝑅𝑖𝑛𝑡𝑖
=

𝜕�̂�𝑖

𝜕𝑡 
+

𝜕�̂�𝑖

𝜕𝑥 
, (109a)

𝑅𝑡𝑏𝑖
|𝑡=𝑡𝑗−1

= �̂�𝑖|𝑡=𝑡𝑗−1
− �̂�𝑗−1|𝑡=𝑡𝑗−1

𝑗 = 1,2,⋯ , 𝑖, (109b)

𝑅𝑠𝑏𝑖
(𝑎, 𝑡) = �̂�𝑖(𝑎, 𝑡), (109c)

where �̂�0|𝑡=𝑡0
= 0. We define the total error of the HLConcPINN approximation as (1 ≤ 𝑖 ≤ 𝑙)

(𝜃𝑖)2 =
𝑡𝑖

∫
𝑡𝑖−1

∫
𝐷

|�̂�𝑖(𝒙, 𝑡)|2 d𝑥d𝑡. (110)

Theorem 9.13. Let Ω̃𝑖 =𝐷 × [0, 𝑡𝑖]. Suppose 𝑛, 𝑑, 𝑘 ∈ ℕ with 𝑛 ≥ 2 and 𝑘 ≥ 3, and 𝑢 ∈𝐻𝑘(Ω̃𝑖). For every integer 𝑁 > 5, there exists a 
HLConcPINN 𝑢𝜃𝑖 such that

‖𝑅𝑖𝑛𝑡𝑖
‖
𝐿2(Ω̃𝑖)

, ‖𝑅𝑠𝑏𝑖
‖𝐿2({𝑎}×[0,𝑡𝑖]), ‖𝑅𝑡𝑏𝑖

(𝑥, 𝑡𝑗−1)‖𝐿2(𝐷) ≲𝑁−𝑘+1ln𝑁 1 ≤ 𝑗 ≤ 𝑖. (111)

Proof. The proof follows from 𝑢 ∈𝐻𝑘(Ω̃𝑖), Lemmas 9.2 and 9.8. □

Theorem 9.14. Let 𝑢 ∈ 𝐶1(Ω̃𝑖) be the classical solution to (103). Let 𝑢𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑙) be a HLConcPINN with parameter 𝜃𝑖. Then the following 
relation holds,

𝑏 

∫
𝑎 

|�̂�𝑖(𝑥, 𝜏)|2 d𝑥 ≤ 𝐶𝐺𝑖
exp(Δ𝑡) 𝜏 ∈ [𝑡𝑖−1, 𝑡𝑖], 

𝑡𝑖

∫
𝑡𝑖−1

𝑏 

∫
𝑎 

|�̂�𝑖(𝑥, 𝑡)|2 d𝑥d𝑡 ≤ 𝐶𝐺𝑖
Δ𝑡 exp(Δ𝑡), (112)

where

𝐶𝐺𝑖
= 2𝐶𝐺𝑖−1

exp(Δ𝑡) +𝐶𝐺𝑖
, 𝐶𝐺0

= 0,

𝐶𝐺𝑖
= 2

𝑖 ∑
𝑗=1 

𝑏 

∫
𝑎 

|𝑅𝑡𝑏𝑖
(𝑥, 𝑡𝑗−1)|2𝑑𝑥+

𝑡𝑖

∫
𝑡𝑖−1

𝑏 

∫
𝑎 

|𝑅𝑖𝑛𝑡𝑖
|2𝑑𝑥𝑑𝑡+ 𝑡𝑖

∫
𝑡𝑖−1

|𝑅𝑠𝑏𝑖
|2𝑑𝑡. (113)

Proof. The result (112) can be attained by following the same strategy as in the proofs of Theorems 3.4 and 4.2. □

Theorem 9.15. Let 𝑢 ∈ 𝐶3(Ω̃𝑖) be the classical solution of the convection equation (103), and let 𝑢𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑙) be a HLConcPINN with 
parameter 𝜃𝑖. Then the total approximation error satisfies

𝑡𝑖

∫
𝑡𝑖−1

𝑏 

∫
𝑎 

|�̂�𝑖(𝑥, 𝑡)|2 d𝑥d𝑡 ≤ 𝐶𝑇𝑖
Δ𝑡 exp(Δ𝑡)

=(𝑇𝑖
(𝜃𝑖,𝑖)2 +𝑀

− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+𝑀

− 2 
𝑑

𝑡𝑏𝑖
+𝑀

− 2 
𝑑

𝑠𝑏𝑖
), (114)

where
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Fig. 19. Convection equation: Distributions of the HLConcPINN solution 𝑢 with (a) the continuous initial distribution, and (b) the discontinuous (square-wave) initial 
distribution. NN: [2,90,90,10,1], with tanh activation function for all hidden layers.

Fig. 20. Convection equation (case I): Top row, comparison of profiles between the true solution and the HLConcPINN solution at (a) 𝑡 = 0, (b) 𝑡 = 0.5, and (c) 𝑡 = 1. 
Bottom row, absolute-error profiles of the HLConcPINN solution for 𝑢. Simulation parameters follow those of Fig. 19.

𝐶𝑇𝑖
= 2𝐶𝑇𝑖−1

exp(Δ𝑡) +𝐶𝑇𝑖
, 𝐶𝑇0

= 0, (115)

𝐶𝑇𝑖
= 2

𝑖 ∑
𝑗=1 

(
𝐶(𝑅2

𝑡𝑏𝑖
(𝑥,𝑡𝑗−1))

𝑀
− 2 

𝑑

𝑡𝑏𝑖
+𝐷

𝑀𝑡𝑏𝑖
[𝑅2

𝑡𝑏𝑖
(𝑥, 𝑡𝑗−1)]

)
+𝐶(𝑅2

𝑖𝑛𝑡𝑖
)𝑀

− 2 
𝑑+1

𝑖𝑛𝑡𝑖
+Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

]

+𝐶(𝑅2
𝑠𝑏𝑖

)𝑀
− 2 

𝑑

𝑠𝑏𝑖
+Ω∗𝑖

𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏𝑖
]. (116)

The symbols 𝐷
𝑀𝑡𝑏𝑖

[𝑅2
𝑡𝑏𝑖
], Ω𝑖

𝑀𝑖𝑛𝑡𝑖

[𝑅2
𝑖𝑛𝑡𝑖

] and Ω∗𝑖
𝑀𝑠𝑏𝑖

[𝑅2
𝑠𝑏𝑖
] denote the midpoint rule, as described in (3).

Proof. The proof follows from Lemma 9.3, Theorem 9.14, and the quadrature error formula (3). □

9.4.4. Numerical examples

We apply the HLConcPINN-ExBTM method to simulate the convection problem (103a)− (103c) with a continuous and a dis-

continuous initial distribution. Consider a space-time domain 𝐷 × [0, 𝑇 ] = [0,1] × [0,1], and we first employ one time block in the 
simulations. An architecture [2,90,90,10,1] has been used for HLConcPINN-ExBTM with the tanh activation function for all hidden 
layers. In the numerical experiments, we distribute 3000 uniform random collocation points in the interior of domain and on the 
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boundary 𝑥 = 0. The collocation points on the initial boundary (𝑡 = 0) are distributed differently depending on the initial distribution, 
as follows:

• Case I: The continuous initial distribution 𝑢𝑖𝑛(𝑥) given by,

𝑢𝑖𝑛(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
cos

(5𝜋
2 

𝑥− 𝜋
)
, 0 ≤ 𝑥 < 0.4,

1, 0.4 ≤ 𝑥 < 0.6,

cos
(5𝜋

2 
𝜋𝑥− 3𝜋

2 

)
, 0.6 ≤ 𝑥 ≤ 1,

with the boundary condition 𝑔(𝑡) ∶= 𝑢(0, 𝑡) = 0. The top plot of Fig. 20(a) visualizes this distribution. For this case, we employ 
600 uniform grid points on each sub-interval (i.e. 0 ≤ 𝑥 < 0.4, 0.4≤ 𝑥 < 0.6 and 0.6 ≤ 𝑥 ≤ 1) of the initial boundary.

• Case II: The discontinuous (square wave) initial distribution 𝑢𝑖𝑛(𝑥) given by

𝑢𝑖𝑛(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1, 0 ≤ 𝑥 < 0.3,

0, 0.3 ≤ 𝑥 < 0.6,

cos
(5𝜋

2 
𝜋𝑥− 3𝜋

2 

)
, 0.6 ≤ 𝑥 ≤ 1,

with the boundary condition 𝑔(𝑡) ∶= 𝑢(0, 𝑡) = 1. The top plot of Fig. 21(a) illustrates this initial distribution. We similarly employ 
600 uniform grid points on each sub-interval (i.e. 0 ≤ 𝑥 < 0.3, 0.3≤ 𝑥 < 0.6 and 0.6 ≤ 𝑥 ≤ 1).

With the above settings, the training loss function in (105)− (106) reduces to the following form:

𝐿𝑜𝑠𝑠 =
𝑊1
𝑁𝑐1

𝑁𝑐1∑
𝑛=1 

[
𝜕𝑢𝜃

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) +

𝜕𝑢𝜃

𝜕𝑥 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡)

]2
+

𝑊2
𝑁𝑐2

𝑁𝑐2∑
𝑛=1 

[
𝑢𝜃(𝑥𝑛

𝑡𝑏
,0) − 𝑢𝑖𝑛(𝑥𝑛

𝑡𝑏
)
]2

(117)

+
𝑊3
𝑁𝑐3

𝑁𝑐3∑
𝑛=1 

[
𝑢𝜃(0, 𝑡𝑛𝑠𝑏) − 𝑔(𝑡𝑛

𝑠𝑏
)
]2

, (118)

where the penalty coefficients are set as (𝑊1,𝑊2,𝑊3) = (0.1,0.9,0.9) and (𝑁𝑐1,𝑁𝑐2,𝑁𝑐3) = (3000,3000,1800). We train the neural 
network with the Adam optimizer for 1000 epochs, followed by the L-BFGS optimizer for 4000 iterations.

Fig. 19 depicts the distributions of the solution field in the space-time domain corresponding to the continuous (case I) and 
discontinuous (case II) initial distributions, showing the transport of the initial bump (case I) or the square well (case II) rightward 
over time and the eventual exit from the domain. Figs. 20 and 21 illustrate profiles of the HLConcPINN-ExBTM solution 𝑢 at several 
time instants (𝑡 = 0,0.5,1 in Fig. 20, and 𝑡 = 0,0.1,0.2,0.3,0.5,1 in Fig. 21), along with their absolute errors, corresponding to these 
two cases. The profiles of the true solution for both cases are included for comparison. The numerical results indicate that, for 
the continuous initial distribution (Case I) the HLConcPINN solution is quite accurate. For case II with the discontinuous initial 
distribution, the HLConcPINN solution is less accurate compared with the first case. Large errors are induced near the points of 
physical discontinuity. However, away from the physical discontinuities, the HLConcPINN solution is in good agreement with the 
physical solution. Overall, the current method has captured the characteristics of the discontinuous physical solution of this problem 
reasonably well. On the other hand, the large errors at the discontinuity also highlight the challenges facing the method for this type 
of problems.

We next focus on the discontinuous initial distribution (case II) and consider the use of multiple time blocks in HLConcPINN-

ExBTM for simulating this problem. The training loss function in (105)− (106) for HLConcPINN-ExBTM on time block 𝑖 (1 ≤ 𝑖 ≤ 𝑙, 𝑙
denoting the number of time blocks) then becomes,

𝐿𝑜𝑠𝑠𝑖 =
𝑊1
𝑁𝑐1

𝑁𝑐1∑
𝑛=1 

[
𝜕𝑢𝜃𝑖

𝜕𝑡 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡) +

𝜕𝑢𝜃𝑖

𝜕𝑥 
(𝑥𝑛

𝑖𝑛𝑡, 𝑡
𝑛
𝑖𝑛𝑡)

]2
+

𝑊2
𝑁𝑐2

𝑁𝑐2∑
𝑛=1 

[
𝑢𝜃𝑖 (𝑥

𝑛
𝑡𝑏
,0) − 𝑢𝑖𝑛(𝑥𝑛

𝑡𝑏
)
]2

+
𝑊3
𝑁𝑐3

𝑁𝑐3∑
𝑛=1 

[
𝑢𝜃𝑖 (0, 𝑡

𝑛
𝑠𝑏
) − 𝑔(𝑡𝑛

𝑠𝑏
)
]2

+
𝑊4
𝑁𝑐4

𝑖 ∑
𝑗=1 

𝑁𝑐4∑
𝑛=1 

[
𝑢𝜃𝑖 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1) − 𝑢𝜃𝑗−1 (𝑥

𝑛
𝑡𝑏
, 𝑡𝑗−1)

]2
+𝐿𝑜𝑠𝑠𝑖−1,

where 𝐿𝑜𝑠𝑠0 = 0, and 𝑢𝜃0 (𝑥, 𝑡0) = 𝑢𝑖𝑛(𝑥). Here we employ the same 𝑊𝑘, 𝑁𝑐𝑘 (𝑘 = 1,2,3) values as in (117) (for the case of one time 
block), together with 𝑊4 = 0.9 and 𝑁𝑐4 = 3000. In each time block, the training process is similar to that with a single time block, 
with the same parameters (e.g. number of epochs, optimizers) as described above.

Fig. 22 shows distributions of the HLConcPINN-ExBTM solutions obtained using two uniform time blocks and four uniform time 
blocks in the space-time domain, respectively. Fig. 23 compares the 𝑢 profiles between the true solution and the HLConcPINN-ExBTM 
solution at time instants 𝑡 = 0,0.2,0.45, and 0.8, and shows the corresponding absolute-error profiles of the HLConcPINN solution. 
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Fig. 21. Convection equation (case II): In each sub-figure, top row: comparison of profiles between the true solution and the HLConcPINN solution at (a) 𝑡 = 0, (b) 
𝑡 = 0.1, (c) 𝑡 = 0.2, (d) 𝑡 = 0.3, (e) 𝑡 = 0.5, and (f) 𝑡 = 1; bottom row: absolute-error profiles of the HLConcPINN solution for 𝑢. Simulation parameters follow those of 
Fig. 19 (a single time block in domain). 

It is evident that the solutions obtained using multiple time blocks are very close to that obtained with a single time block in the 
domain.
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Fig. 22. Convection equation (case II): Distributions of the HLConcPINN solution for 𝑢 obtained with (a) two and (b) four uniform time blocks in the space-time 
domain. NN: [2,90,90,10,1], with tanh activation function for all hidden layers.

Fig. 23. Convection equation (case II): In each sub-figure, top plot: comparison of profiles between the true solution and the HLConcPINN solution for 𝑢 at (a,e) 𝑡 = 0, 
(b,f) 𝑡 = 0.2, (c,g) 𝑡 = 0.45, (d,h) 𝑡 = 0.8; bottom plot: absolute-error profiles of the HLConcPINN solution for 𝑢. Plots (a)-(d) are obtained with two time blocks and 
(e)-(h) are obtained with four time blocks in HLConcPINN.



Journal of Computational Physics 530 (2025) 113906

44

Y. Qian, Y. Zhang and S. Dong 

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] G. Bai, U. Koley, S. Mishra, R. Molinaro, Physics informed neural networks (PINNs) for approximating nonlinear dispersive PDEs, J. Comput. Math. 39 (6) (2021) 
816–847.

[2] I.A. Baratta, J.P. Dean, J.S. Dokken, M. Habera, J.S. Hale, C.N. Richardson, M.E. Rognes, M.W. Scroggs, N. Sime, G.N. Wells, DOLFINx: the next generation 
FEniCS problem solving environment, 2023.

[3] C. Beck, W. E, A. Jentzen, Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order 
backward stochastic differential equations, J. Nonlinear Sci. 29 (4) (2019) 1563–1619.

[4] J. Berner, P. Grohs, A. Jentzen, Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the curse of 
dimensionality in the numerical approximation of Black-Scholes partial differential equations, SIAM J. Math. Data Sci. 2 (3) (2020) 631–657.

[5] S. Berrone, C. Canuto, M. Pintore, Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis, Ann. Univ. Ferrara, Sez. 7: Sci. 
Mat. 68 (2) (2022) 575–595.

[6] A. Biswas, J. Tian, S. Ulusoy, Error estimates for deep learning methods in fluid dynamics, Numer. Math. 151 (3) (2022) 753–777.

[7] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys. 420 
(2020) 109707.

[8] F. Calabro, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients, Comput. Methods Appl. 
Mech. Eng. 387 (2021) 114188.

[9] S. Cuomo, V. Schiano Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine learning through physics-informed neural networks: where we 
are and what’s next, J. Sci. Comput. 92 (3) (2022) 88.

[10] E. Cyr, M. Gulian, R. Patel, M. Perego, N. Trask, Robust training and initialization of deep neural networks: an adaptive basis viewpoint, Proc. Mach. Learn. Res. 
107 (2020) 512–536.

[11] P. Davis, P. Rabinowitz, Methods of Numerical Integration, Dover Publications, Inc, 2007.

[12] T. De Ryck, A.D. Jagtap, S. Mishra, Error estimates for physics-informed neural networks approximating the Navier–Stokes equations, IMA J. Numer. Anal. 44 (1) 
(2023) 83–119.

[13] T. De Ryck, S. Lanthaler, S. Mishra, On the approximation of functions by tanh neural networks, Neural Netw. 143 (2021) 732–750.

[14] S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations, Comput. Methods 
Appl. Mech. Eng. 387 (2021) 114129.

[15] S. Dong, Z. Li, A modified batch intrinsic plasticity method for pre-training the random coefficients of extreme learning machines, J. Comput. Phys. 445 (2021) 
110585.

[16] S. Dong, N. Ni, A method for representing periodic functions and enforcing exactly periodic boundary conditions with deep neural networks, J. Comput. Phys. 
435 (2021) 110242.

[17] S. Dong, Y. Wang, A method for computing inverse parametric PDE problems with random-weight neural networks, J. Comput. Phys. 489 (2023) 112263, also 
arXiv:2210.04338.

[18] S. Dong, J. Yang, Numerical approximation of partial differential equations by a variable projection method with artificial neural networks, Comput. Methods 
Appl. Mech. Eng. 398 (2022) 115284, also arXiv:2201.09989.

[19] S. Dong, J. Yang, On computing the hyperparameter of extreme learning machines: algorithms and applications to computational PDEs, and comparison with 
classical and high-order finite elements, J. Comput. Phys. 463 (2022) 111290, also, arXiv:2110.14121.

[20] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.

[21] L.C. Evans, Partial Differential Equations, second edn., American Mathematical Society, Providence, RI, 2010.

[22] G. Fabiani, F. Calabro, L. Russo, C. Siettos, Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines, 
J. Sci. Comput. 89 (2021) 44.

[23] G. Fabiani, E. Galaris, L. Russo, C. Siettos, Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 
DAEs, Chaos 33 (4) (2023) 043128.

[24] J. Gao, Y. Zakharian, PINNs error estimates for nonlinear equations in R-smooth Banach spaces, arXiv:2305.11915.

[25] J. He, J. Xu, MgNet: a unified framework for multigrid and convolutional neural network, Sci. China Math. 62 (2019) 1331–1354.

[26] R. Hu, Q. Lin, A. Raydan, S. Tang, Higher-order error estimates for physics-informed neural networks approximating the primitive equations, Part. Differ. Equ. 
Appl. 4 (4) (2023) 34.

[27] Z. Hu, A.D. Jagtap, G.E. Karniadakis, K. Kawaguchi, When do extended physics-informed neural networks (XPINNs) improve generalization?, SIAM J. Sci. Comput. 
44 (5) (2022) A3158–A3182.

[28] Z. Hu, C. Liu, Y. Wang, Z. Xu, Energetic variational neural network discretizations to gradient flows, arXiv:2206.07303.

[29] A. Jagtap, G. Karniadakis, Extended physics-informed neural network (XPINNs): a generalized space-time domain decomposition based deep learning framework 
for nonlinear partial differential equations, Commun. Comput. Phys. 28 (2020) 2002–2041.

[30] A. Jagtap, E. Kharazmi, G. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and 
inverse problems, Comput. Methods Appl. Mech. Eng. 365 (2020) 113028.

[31] G. Karniadakis, G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (2021) 422–440.

[32] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, M. Mahoney, Characterizing possible failure modes in physics-informed neural networks, Adv. Neural Inf. Process. 
Syst. 34 (2021) 26548–26560.

[33] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444.

[34] L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, DeepXDE: a deep learning library for solving differential equations, SIAM Rev. 63 (1) (2021) 208–228.

[35] S. Mishra, R. Molinaro, Physics informed neural networks for simulating radiative transfer, J. Quant. Spectrosc. Radiat. Transf. 270 (2021) 107705.

[36] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs, IMA 
J. Numer. Anal. 42 (2) (2022) 981–1022.

http://refhub.elsevier.com/S0021-9991(25)00189-5/bib2D89E76E02D8ED92575D6C1C75189757s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib2D89E76E02D8ED92575D6C1C75189757s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib4C964C4D4290DA8033D377BB1DDB8A98s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib4C964C4D4290DA8033D377BB1DDB8A98s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibD98D91CACD9DA3EFA0DF1E0F0619C91Cs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibD98D91CACD9DA3EFA0DF1E0F0619C91Cs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibC354FC723FFD008035FEA30B62ACAAEEs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibC354FC723FFD008035FEA30B62ACAAEEs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib974CC05FAE3C12311BEF3B9B45C75F13s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib974CC05FAE3C12311BEF3B9B45C75F13s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib68CAC9913E82B71213A1A7D12BA34A4Ds1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib60D679388F58522DBCB2A6E5806A9BDFs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib60D679388F58522DBCB2A6E5806A9BDFs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibC3D1DAD507FCA92D7AB23BD2288EFB9Cs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibC3D1DAD507FCA92D7AB23BD2288EFB9Cs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibAA753FCABBAC3943AFF44FEAB391F7B8s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibAA753FCABBAC3943AFF44FEAB391F7B8s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibEB3F7445777BB24220BEC3E58CF70176s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibEB3F7445777BB24220BEC3E58CF70176s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib3AEE17D39C6CBC32BE6D1D39EAF6E1F4s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib5B603AA64E9D784E5B197C5C3446FC40s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib5B603AA64E9D784E5B197C5C3446FC40s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibE7BCD4261731A57C47CD4CBF58CA85BEs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib21378FCE83628D8BEDB82ACB0ED1072As1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib21378FCE83628D8BEDB82ACB0ED1072As1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibE8E82CD422F4829349A44902D95CDB32s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibE8E82CD422F4829349A44902D95CDB32s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibEAB45161C115BDFF9BBBD6293B35F88As1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibEAB45161C115BDFF9BBBD6293B35F88As1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib0B0A3DB3726F1CD2B84C6D4CC5F7AC8Fs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib0B0A3DB3726F1CD2B84C6D4CC5F7AC8Fs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib99B1FF21133B44C51ED87AD742D9BC45s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib99B1FF21133B44C51ED87AD742D9BC45s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibB08018251A33786556BB878B03F637A4s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibB08018251A33786556BB878B03F637A4s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib6803099AB56151B697399F27AA7FA61Bs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibC9558B5A383D3974B49FDC83E83EF861s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib3F0D39EEAA76FD2046745CC7F3BB60C3s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib3F0D39EEAA76FD2046745CC7F3BB60C3s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib2A262F721EAF3CB1FD86490294AE15C5s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib2A262F721EAF3CB1FD86490294AE15C5s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib98B5C832E78FCAAD048B4037E3A445AEs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibD593559529AC27243F9554C5BEBA979Cs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibF8497014FAB81C65B1BED5EF40BFCB98s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibF8497014FAB81C65B1BED5EF40BFCB98s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib4563D12DEB5A014CCE62AB62A7410070s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib4563D12DEB5A014CCE62AB62A7410070s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib9F276507A86D6EE16791B0FFB69D3B46s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib98CA47B06F39C92FD5063F220F7EFE8Cs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib98CA47B06F39C92FD5063F220F7EFE8Cs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibE9D3D92A6F7813D4489CCC1B87834B6As1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibE9D3D92A6F7813D4489CCC1B87834B6As1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib6C27A6F2C0614A88F7367DEA28A915DBs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibED4955BBB228DF00982FC295E655E1C5s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibED4955BBB228DF00982FC295E655E1C5s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib108D6C3326830365CB03DF3B6713EC8Cs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib9E5ACF8CEAEFFDD1B13E0A96DC193302s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib7CD50FB3A3023FF88E3E03BCD13C3DAAs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib0502F0384B8AC442D2C53CB2FC140280s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib0502F0384B8AC442D2C53CB2FC140280s1


Journal of Computational Physics 530 (2025) 113906

45

Y. Qian, Y. Zhang and S. Dong 

[37] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating PDEs, IMA J. Numer. Anal. 43 (1) (2023) 
1–43.

[38] N. Ni, S. Dong, Numerical computation of partial differential equations by hidden-layer concatenated extreme learning machine, J. Sci. Comput. 95 (2) (2023) 
35.

[39] P. Pantidis, H. Eldababy, C.M. Tagle, M.E. Mobasher, Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN 
performance, Comput. Methods Appl. Mech. Eng. 414 (2023) 116160.

[40] M. Penwarden, A.D. Jagtap, S. Zhe, G.E. Karniadakis, R.M. Kirby, A unified scalable framework for causal sweeping strategies for physics-informed neural 
networks (PINNs) and their temporal decompositions, J. Comput. Phys. 493 (2023) 112464.

[41] Y. Qian, Y. Zhang, Y. Huang, S. Dong, Physics-informed neural networks for approximating dynamic (hyperbolic) PDEs of second order in time: error analysis 
and numerical algorithms, J. Comput. Phys. 495 (2023) 112527.

[42] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving 
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[43] Y. Shin, J. Darbon, G.E. Karniadakis, On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs, Commun. 
Comput. Phys. 28 (5) (2020) 2042–2074.

[44] Y. Shin, Z. Zhang, G.E. Karniadakis, Error estimates of residual minimization using neural networks for linear PDEs, J. Mech. Learn. Model. Comput. 4 (4) (2023) 
73–101.

[45] J.W. Siegel, Q. Hong, X. Jin, W. Hao, J. Xu, Greedy training algorithms for neural networks and applications to PDEs, J. Comput. Phys. 484 (112084) (2023) 27.

[46] J. Sirignano, K. Spoliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.

[47] A. Tartakovsky, C. Marrero, P. Perdikaris, G. Tartakovsky, D. Barajas-Solano, Physics-informed deep neural networks for learning parameters and constitutive 
relationships in subsurface flow problems, Water Resour. Res. 56 (2020) e2019WR026731.

[48] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, second edn., Springer-Verlag, New York, 1997.

[49] X. Wan, S. Wei, VAE-KRnet and its applications to variational Bayes, Commun. Comput. Phys. 31 (2022) 1049–1082.

[50] S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: a neural tangent kernel perspective, J. Comput. Phys. 449 (2022) 110768.

[51] Y. Wang, S. Dong, An extreme learning machine-based method for computational PDEs in higher dimensions, Comput. Methods Appl. Mech. Eng. 418 (2024) 
116578.

[52] Y. Wang, G. Lin, Efficient deep learning techniques for multiphase flow simulation in heterogeneous porous media, J. Comput. Phys. 401 (2020) 108968.

[53] U. Zerbinati, PINNs and GaLS: a priori error estimates for shallow physics informed neural networks applied to elliptic problems, IFAC-PapersOnLine 55 (20) 
(2022) 61–66.

http://refhub.elsevier.com/S0021-9991(25)00189-5/bib860117C2307A933811C1A5F01018FF3Bs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib860117C2307A933811C1A5F01018FF3Bs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib30D985389D3972761550F83C286E7FF9s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib30D985389D3972761550F83C286E7FF9s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibE96EBE1E2E5417B3411D8F57F5634FEEs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibE96EBE1E2E5417B3411D8F57F5634FEEs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib8D94F4C6034D46DDFC34925B78ECFE40s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib8D94F4C6034D46DDFC34925B78ECFE40s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib66E6B9634907D61D70C6416766C3ACC1s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib66E6B9634907D61D70C6416766C3ACC1s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib28484161E79E90E50C2E2426452BBC64s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib28484161E79E90E50C2E2426452BBC64s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib90B084DCA8F7E11E885C136D42E527B2s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib90B084DCA8F7E11E885C136D42E527B2s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibC8513FC4B2D6E0ED97158739C280E6FCs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibC8513FC4B2D6E0ED97158739C280E6FCs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibF894C4D9D5236E3A0DFD4FDF24D69F74s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib42B836C288A0B549BE6070E1B605BB69s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib531335B5A5EA685BDE007C9D871DC18Bs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib531335B5A5EA685BDE007C9D871DC18Bs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bibD13458766B3F3A38C42547B54E0F2BEEs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib496FC8CA675D115041CFFA76ED6BF6D8s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib45CDC1F6C853DF5A68F0D8530BF6F654s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib2679129432C0A71E937237FB73021CA5s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib2679129432C0A71E937237FB73021CA5s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib07511CF696DF1EB070CFFE1E244CA1BFs1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib38659DE4A274E39D49D75EA58D3512A2s1
http://refhub.elsevier.com/S0021-9991(25)00189-5/bib38659DE4A274E39D49D75EA58D3512A2s1

	Error analysis and numerical algorithm for PDE approximation with hidden-layer concatenated physics informed neural networks
	1 Introduction
	2 Hidden-layer concatenated physics informed neural networks and block time marching
	2.1 Generic PDE
	2.2 Physics informed neural networks
	2.3 Hidden-layer concatenated physics informed neural networks (HLConcPINNs)
	2.4 Block time marching (BTM)
	2.5 Residuals and training sets

	3 HLConcPINN for approximating the heat equation
	3.1 Heat equation
	3.2 Hidden-layer concatenated physics informed neural networks
	3.3 Error analysis

	4 HLConcPINN for approximating the Burgers’ equation
	4.1 Viscous Burgers’ equation
	4.2 Hidden-layer concatenated physics informed neural networks
	4.3 Error analysis

	5 HLConcPINN for approximating the wave equation
	5.1 Wave equation
	5.2 Hidden-layer concatenated physics informed neural networks
	5.3 Error analysis

	6 HLConcPINN for approximating the nonlinear Klein-Gordon equation
	6.1 Nonlinear Klein-Gordon equation
	6.2 Hidden-layer concatenated physics informed neural networks
	6.3 Error analysis

	7 Computational examples
	7.1 Heat equation
	7.2 Burgers’ equation
	7.3 Wave equation
	7.4 Nonlinear Klein-Gordon equation

	8 Concluding remarks
	9 Appendix: auxiliary results and proofs of main theorems
	9.1 Some auxiliary results
	9.2 Proof of main theorems from Section 3: heat equation
	9.3 HLConcPINN for approximating the nonlinear Helmholtz equation
	9.3.1 Nonlinear Helmholtz equation
	9.3.2 Hidden-layer concatenated physics informed neural networks
	9.3.3 Error analysis

	9.4 HLConcPINN for approximating the convection equation
	9.4.1 Convection equation
	9.4.2 Hidden-layer concatenated physics informed neural networks
	9.4.3 Error analysis
	9.4.4 Numerical examples


	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


