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A B S T R A C T

Randomized Neural Networks (RNNs) are a variety of neural networks in which the hidden-layer
parameters are fixed to randomly assigned values, and the output-layer parameters are obtained
by solving a linear system through least squares. This improves the efficiency without degrading
the accuracy of the neural network. In this paper, we combine the idea of the Local RNN (LRNN)
and the Discontinuous Galerkin (DG) approach for solving partial differential equations. RNNs
are used to approximate the solution on the subdomains, and the DG formulation is used to glue
them together. Taking the Poisson problem as a model, we propose three numerical schemes and
provide convergence analysis. Then we extend the ideas to time-dependent problems. Taking
the heat equation as a model, three space–time LRNN with DG formulations are proposed.
Finally, we present numerical tests to demonstrate the performance of the methods developed
herein. We evaluate the performance of the proposed methods by comparing them with the
finite element method and the conventional DG method. The LRNN-DG methods can achieve
higher accuracy with the same degrees of freedom, and can solve time-dependent problems
more precisely and efficiently. This indicates that this new approach has great potential for
solving partial differential equations.

1. Introduction

Artificial Neural Networks (ANNs) have been successfully applied to solve problems of segmentation, classification, pattern
recognition, automatic control, etc. In recent years, many research works based on neural networks have been proposed for
solving Partial Differential Equations (PDEs) due to the excellent approximation capability of Neural Networks (NNs). Some of
these contributions are based on the strong form of PDEs. Physical Informed Neural Networks (PINNs) [1] and the Deep Galerkin
Method [2] are two representative methods among them. Specifically, PINNs train the neural network by minimizing the mean
squared error loss consisting of information about the PDE, boundary conditions, and/or initial conditions on certain collocation
points. The loss function of the Deep Galerkin Method measures the residual of the PDE in the sense of the integral. Based on PINNs,
a number of new models [3–10] have been proposed aiming to improve the performance, and some other studies [11–15] focus on
the application of this technique for different kinds of problems.
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Some problems have solutions with low regularity, which cannot be described by PDEs. Therefore, some investigations on neural
etworks use loss functions constructed based on weak formulations, such as the Deep Ritz method [16], Deep Nitsche method [17],
eak Adversarial Networks [18], and other methods [19,20]. One issue with these neural network-based methods, whether in strong

r weak forms, is their limited accuracy and time-consuming nature. Although neural networks have a strong capability for function
pproximation, they are challenging to train to reach the global optimal state due to the lack of efficient optimization methods for
he training process. Additionally, the computational cost of network training is high, hindering practical applications. In terms of
ccuracy and efficiency, these neural network-based methods generally cannot compete with traditional methods such as the finite
lement method (FEM), finite difference method, and finite volume method.

Randomized neural networks (RNNs) have been proposed as an alternative approach to fully parameterized neural network
odels [21–24]. In RNNs, the parameters of the links between the hidden layers are randomly chosen and then fixed during training,
hile the parameters for the links between the last hidden layer and output layer are determined using a least-squares method. The
xtreme learning machine (ELM) [25] is an example of a randomized neural network that has been successfully applied to various
roblems [26–32], including the solution of differential equations [33–37]. The feasibility analysis of ELM was proved in [38],
hich demonstrates that the generalization capability of ELM is similar to that of fully parameterized neural networks when suitable
ctivation functions and initialization strategies are properly selected for the fixed parameters. To solve partial differential equations,
ong and Li proposed the local extreme learning machine and domain decomposition (locELM-DD) method in [39], which combines

he ideas of local ELM and domain decomposition to improve accuracy and efficiency. However, locELM-DD is based on the strong
orm of PDE problems and may not be suitable for problems that require a weak formulation. In [40], the deep Petrov–Galerkin
ethod is proposed based on ELM and the Petrov–Galerkin formulation for solving partial differential equations, and numerical

xamples show that this approach is accurate and efficient with respect to degrees of freedom (DoF).
In this work, we focus on the weak formulations of partial differential equations (PDEs) and their approximations by local neural

etworks. We combine local randomized neural networks with the discontinuous Galerkin (DG) approach and seek to exploit the
G framework to glue the local neural networks together. Specifically, we use the Poisson equation and the heat equation as model
roblems to develop three schemes and show how to implement them. The first scheme is the LRNN-DG (local randomized neural
etworks with discontinuous Galerkin) method, which uses the output fields of the last hidden layer as the local basis functions for
he DG formulation on each subdomain. It then solves the final system of linear equations using either a linear solver or a least-
quares method. The other two schemes are the LRNN-𝐶0DG (local randomized neural networks with 𝐶0 discontinuous Galerkin)

and LRNN-𝐶1DG (local randomized neural networks with 𝐶1 discontinuous Galerkin) methods. These methods enforce continuity
conditions for the function and its gradients across sub-domain boundaries. We provide a convergence analysis of these methods
under certain appropriate assumptions. For the time-dependent problem, we use the heat equation as a model and propose three
space–time LRNN-DG type formulations. The space–time approach is very natural for neural networks, and we do not need to
compute the numerical solution with time iteration. Finally, we present numerical examples to show that the proposed methods
are able to compete with traditional methods in some aspects. First, when the number of degrees of freedom is fixed and small,
the accuracies of the LRNN/DG type methods developed herein are better than the finite element method (FEM) and the usual DG
methods. Second, when the time–space approach is adopted, a notable advantage is that the error accumulation can be avoided,
and one can obtain the numerical solution at any time instant without interpolation.

The remainder of this paper is structured as follows. In Section 2, we introduce the concept of randomized neural networks
and propose three LRNN-DG formulations to solve the Poisson equation. In Section 3, we present a convergence analysis of the
methods by making certain assumptions. In Section 4, we provide three space–time LRNN-DG methods to solve the heat equation.
In Section 5, we present some numerical examples to demonstrate the performance of the proposed methods. Finally, we summarize
our findings in the last section.

2. Local randomized neural networks with DG methods

In this section, we first describe randomized neural networks, then we introduce the local randomized neural networks with
discontinuous Galerkin formulations for solving the Poisson equation.

2.1. Randomized neural networks

The general deep neural networks can be represented as compositions of many hidden layers and an output layer. A hidden layer
is defined as a composition of a linear transformation and an activation function:

𝑁(𝒙) = 𝜌(𝑾 𝒙 + 𝒃),

where 𝒙 ∈ 𝛺 ⊂ R𝑑 , 𝑁(𝒙) ∈ R𝑑 , 𝑾 ∈ R𝑑×𝑑 is the matrix of weights, 𝒃 ∈ R𝑑 is the bias, and 𝜌 is a nonlinear activation function. The
irst layer is usually called the input layer, and the number of layers is the depth of the neural network. The output layer is a linear
ransformation

𝑁𝑜(𝒙) = 𝑾 𝒙 + 𝒃,

here 𝒙 ∈ R𝑑 , 𝑁𝑜(𝒙) ∈ R𝑛𝑜 , 𝑾 ∈ R𝑛𝑜×𝑑 is the weight, and 𝒃 ∈ R𝑛𝑜 is the bias. Here, 𝑛𝑜 is the dimension of output data.
Then a fully connected neural network can be represented by

(𝐿+1) (𝐿) (2) (1) (𝐿+1)
2

 (𝒙) = 𝑾 (𝑁 ◦⋯𝑁 ◦𝑁 (𝒙)) + 𝒃 ,
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where L is the depth of the neural network, 𝑾 (𝑙) ∈ R𝑛𝑙×𝑛𝑙−1 and 𝒃 ∈ R𝑛𝑙 are the parameters, and 𝑛𝑙 is the width of the 𝑙th layer of
the neural network. Given the depth of the network and the width of each layer, we denote the set of NN functions by

(𝜃, 𝐿) = { (𝒙) = 𝑾 (𝐿+1)(𝑁 (𝐿)◦⋯◦𝑁 (1)(𝒙)) + 𝒃(𝐿+1) ∶ 𝑾 (𝑙) ∈ R𝑛𝑙×𝑛𝑙−1 , 𝒃(𝑙) ∈ R𝑛𝑙 , 𝑙 = 1,… , 𝐿 + 1},

where 𝜃 = {(𝑾 (𝑙), 𝒃(𝑙))}𝐿+1𝑙=1 .
Next, let us introduce randomized neural networks. While the structure of randomized neural networks is the same as that of fully

connected neural networks, there is a key difference. In fully connected neural networks, all parameters are trained. In randomized
neural networks, however, the output-layer parameters are adjustable while the hidden-layer parameters are randomly assigned and
fixed. We focus on single-hidden-layer neural networks with the dimension of the output layer being one, that is, 𝑾 (2) ∈ R1×𝑛1 , and
(2) is set to zero. In the context of randomized neural networks, we define the function space

𝑅𝑁𝑁 (𝐾) =

{

 (𝛼, 𝜃,𝒙) =
𝑀
∑

𝑗=1
𝛼𝐾𝑗 𝜙𝐾 (𝜃𝑗 ,𝒙) ∶ 𝒙 ∈ 𝐾

}

, (2.1)

here 𝐾 ⊂ 𝛺 is the domain, 𝑀 = 𝑛1 is the width of the last hidden layer, 𝜃 represents the parameters of the hidden layers, 𝛼 denotes
he parameters of the output layer, and 𝜙 represents the nonlinear function that produces the output of the last hidden layer. For
implicity, we will use 𝜙𝐾

𝑗 (𝒙) instead of 𝜙𝐾 (𝜃𝑗 ,𝒙) for the remainder of this paper.

.2. LRNN-DG method

In [39], the authors demonstrated the success of locELM, which combines the concepts of randomized neural networks and
omain decomposition, in solving partial differential equations. This method has proven to be competitive with traditional methods
ike FEM and has shown strong potential for solving PDEs numerically. However, locELM is based on the strong form of PDEs,
hich may not be suitable for problems that require weak formulations. The main contribution of this paper is to combine local

andomized neural networks with the DG methods to solve PDEs in weak form. In this approach, the output fields of the last hidden
ayers of the local neural networks are utilized to construct local basis functions for numerical solutions, which are then connected
sing DG formulation.

Let us introduce the local randomized neural networks with the discontinuous Galerkin formulation. Here, we take the Poisson
quation as a model problem,

−𝛥𝑢 = 𝑓 in 𝛺, (2.2a)

𝑢 = 𝑔 on 𝜕𝛺, (2.2b)

here 𝑓 is a given source term, 𝜕𝛺 is the boundary of 𝛺, and 𝑔 is a function defined on 𝜕𝛺. The weak formulation of the above
roblem is: Find 𝑢 ∈ 𝐻1

𝑔 (𝛺) such that

𝑎(𝑢, 𝑣) = ∫𝛺
𝑓 𝑣 d𝑥 ∀𝑣 ∈ 𝐻1

0 (𝛺). (2.3)

ere, 𝐻1
𝑔 (𝛺) = {𝑣 ∈ 𝐻1(𝛺) ∶ 𝑣 = 𝑔 on 𝜕𝛺} and

𝑎(𝑢, 𝑣) = ∫𝛺
∇𝑢 ⋅ ∇𝑣 d𝑥.

Like the setting in the DG method, we partition the domain into some subdomains, and approximate the solution on each
ubdomain by using a local neural network. First, we give some notation. Let {ℎ} be the decomposition of 𝛺̄, where ℎ =
ax𝐾∈ℎ{diam(𝐾)}. For each ℎ, 𝑁𝑒 denotes the number of elements in ℎ, that is, |ℎ| = 𝑁𝑒. Let ℎ be the union of the boundaries
f all the elements 𝐾 ∈ ℎ,  𝑖

ℎ is the set of all interior edges, and 𝜕
ℎ = ℎ∖ 𝑖

ℎ. Let 𝐾+ and 𝐾− be two neighboring elements sharing
common edge 𝑒. Denote by 𝒏± = 𝒏|𝜕𝐾± the unit outward normal vectors on 𝜕𝐾±. For a scalar function 𝑣 and a vector-valued

unction 𝒒, let 𝑣± = 𝑣|𝜕𝐾± and 𝒒± = 𝒒|𝜕𝐾± . We define the averages {⋅} and the jumps [[⋅]], [⋅] on 𝑒 ∈  𝑖
ℎ by

{𝑣} = 1
2
(𝑣+ + 𝑣−), [[𝑣]] = 𝑣+𝒏+ + 𝑣−𝒏−,

{𝒒} = 1
2
(𝒒+ + 𝒒−), [𝒒] = 𝒒+ ⋅ 𝒏+ + 𝒒− ⋅ 𝒏−.

If 𝑒 ∈ 𝜕
ℎ , we set

[[𝑣]] = 𝑣𝒏, {𝒒} = 𝒒,

where 𝒏 is the unit outward normal vector on 𝜕𝛺. In the analysis, we need the following identities:

∫𝐾
∇𝑣 ⋅ 𝒒 d𝑥 = −∫𝐾

𝑣 (∇ ⋅ 𝒒) d𝑥 + ∫𝜕𝐾
𝑣 𝒒 ⋅ 𝒏𝐾 d𝑠, (2.4)

∑

𝐾∈ℎ
∫𝜕𝐾

𝑣𝒒 ⋅ 𝒏𝐾 d𝑠 = ∫ℎ
[[𝑣]] ⋅ {𝒒} d𝑠 + ∫ 𝑖ℎ

{𝑣}[𝒒] d𝑠. (2.5)
3
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We introduce the following DG space based on local randomized neural networks associated with the partition ℎ:

𝑉ℎ = {𝑣ℎ ∈ 𝐿2(𝛺) ∶ 𝑣ℎ|𝐾 ∈ 𝑅𝑁𝑁 (𝐾) ∀𝐾 ∈ ℎ},

here 𝑅𝑁𝑁 (𝐾) denotes the function space of the randomized neural networks given in (2.1). So for each 𝑣ℎ ∈ 𝑉ℎ, 𝑣ℎ|𝐾 =
𝑀
𝑗=1 𝑣

𝐾
𝑗 𝜙

𝐾
𝑗 (𝒙).

We make the following assumption.

ssumption 2.1. For any 𝐾 ∈ ℎ, assume that the functions {𝜙𝐾
𝑗 (𝒙) ∶ 𝑗 = 1, 2,… ,𝑀} of last hidden layers in subdomain 𝐾 are

inearly independent.

For example, let 𝜙𝐾
𝑗 (𝒙) = sin(𝑾𝑗𝒙 + 𝒃𝑗 ), then {sin(𝑾𝑗𝒙 + 𝒃𝑗 ), 𝑗 = 1, 2,… ,𝑀} is a set of linearly independent functions if

proper values of weights 𝑾𝑗 and bias 𝒃𝑗 are chosen. Of course, this assumption can be satisfied for other activation functions,
ike 𝜙𝐾

𝑗 (𝒙) = tanh(𝑾𝑗𝒙 + 𝒃𝑗 ).
The local randomized neural networks with DG (LRNN-DG) method for solving the Poisson problem is: Find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎ℎ(𝑢ℎ, 𝑣ℎ) = 𝑙(𝑣ℎ) ∀ 𝑣ℎ ∈ 𝑉ℎ, (2.6)

where

𝑎ℎ(𝑢, 𝑣) =∫𝛺
∇ℎ𝑢 ⋅ ∇ℎ𝑣d𝑥 − ∫ℎ

{∇ℎ𝑢} ⋅ [[𝑣]]d𝑠 − ∫ℎ
[[𝑢]] ⋅ {∇ℎ𝑣}d𝑠 + ∫ℎ

𝜂[[𝑢]] ⋅ [[𝑣]]d𝑠, (2.7)

𝑙(𝑣ℎ) =∫𝛺
𝑓𝑣ℎd𝑥 − ∫𝜕ℎ

𝑔𝒏 ⋅ ∇ℎ𝑣ℎd𝑠 + ∫𝜕ℎ
𝜂𝑔𝑣ℎd𝑠. (2.8)

Here, ∇ℎ𝑣ℎ denotes the broken gradient of 𝑣ℎ with respect to the decomposition ℎ, i.e., ∇ℎ𝑣ℎ = ∇𝑣ℎ|𝐾 , and ∫ℎ 𝜂[[𝑢]] ⋅ [[𝑣]]d𝑠 is the
enalty term, where the function 𝜂 equals a constant 𝜂𝑒(ℎ𝑒)−1 on each 𝑒 ∈ ℎ, with 𝜂𝑒 being a positive number. In this paper, we
ocus on the interior penalty DG (IPDG) scheme, although other DG schemes studied in [41] can also be considered, provided that
he bilinear form (2.7) and the linear form (2.8) are modified accordingly.

The outputs of the last hidden layer, i.e., {𝜙𝐾
𝑗 (𝒙) ∶ 𝐾 ∈ ℎ, 𝑗 = 1, 2,… ,𝑀}, can be regarded as the local basis functions of the

LRNN-DG. We can obtain the global stiffness matrices A and the right-hand side 𝐿 using these local basis functions. It should be
noted that the penalty parameter in the IPDG scheme (2.6) needs to be chosen appropriately for the given problem. From (2.6), we
obtain the system of equations,

A𝑈 = 𝐿, (2.9)

here A is a 𝑁𝑒𝑀 ×𝑁𝑒𝑀 matrix, 𝐿 is a 𝑁𝑒𝑀 ×1 vector, and there are 𝑁𝑒𝑀 unknown variables 𝑈 = {𝑢𝐾𝑗 ∶ 𝐾 ∈ ℎ, 𝑗 = 1, 2,… ,𝑀}.

.3. Some properties of the LRNN-DG method

The following lemma shows the consistency of the DG scheme, a similar argument can be found in [41] and other references on
G methods. For completeness, we give brief proof as well.

emma 2.2 (Consistency). The LRNN-DG scheme is consistent, i.e., for the solution 𝑢 ∈ 𝐻2(𝛺) of problem (2.3), we have

𝑎ℎ(𝑢, 𝑣ℎ) = 𝑙(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ. (2.10)

roof. We know that 𝑢 ∈ 𝐻2(𝛺) implies [[𝑢]] = 0, [∇𝑢] = 0 on  𝑖
ℎ and 𝑢 = 𝑔 on 𝜕

ℎ . Then, by the identities (2.4), (2.2) and (2.5), we
ave

𝑎ℎ(𝑢, 𝑣ℎ) =∫𝛺
∇𝑢 ⋅ ∇ℎ𝑣ℎd𝑥 − ∫ℎ

{∇ℎ𝑢} ⋅ [[𝑣ℎ]]d𝑠 − ∫𝜕ℎ
𝑔𝒏 ⋅ ∇ℎ𝑣ℎd𝑠 + ∫𝜕ℎ

𝜂𝑔𝑣ℎd𝑠

= − ∫𝛺
𝛥𝑢𝑣ℎd𝑥 +

∑

𝐾∈ℎ
∫𝐾

∇𝑢 ⋅ 𝒏𝐾𝑣ℎd𝑠 − ∫ℎ
{∇ℎ𝑢} ⋅ [[𝑣ℎ]]d𝑠 − ∫𝜕ℎ

𝑔𝒏 ⋅ ∇ℎ𝑣ℎd𝑠 + ∫𝜕ℎ
𝜂𝑔𝑣ℎd𝑠

=𝑙(𝑣ℎ).

□

From the LRNN-DG scheme (2.6) and Lemma 2.2, we have

𝑎ℎ(𝑢 − 𝑢ℎ, 𝑣ℎ) = 0 ∀ 𝑣ℎ ∈ 𝑉ℎ. (2.11)

Next, let 𝑉 (ℎ) = 𝑉ℎ +𝐻2(𝛺), then we define some seminorms and norms by the following relations:

|𝑣|21,ℎ =
∑

𝐾∈ℎ

|𝑣|21,𝐾 , |𝑣|21,∗ =
∑

𝑒∈ℎ

ℎ−1𝑒 ‖[[𝑣]]‖20,𝑒,

‖𝑣‖2𝑤 = |𝑣|21,ℎ + |𝑣|21,∗, ‖𝑣‖2∗ = ‖𝑣‖2𝑤 +
∑

ℎ2𝐾 |𝑣|
2
2,𝐾 .

(2.12)
4

𝐾∈ℎ



Journal of Computational and Applied Mathematics 445 (2024) 115830J. Sun et al.

H

p

I
e
t

T

w

w

H
p

w

R
w

The norms ‖𝑣‖2𝑤 and ‖𝑣‖2∗ are well-defined because

‖𝑣‖0 ≤ 𝐶‖𝑣‖𝑤 ≤ 𝐶‖𝑣‖∗ ∀𝑣 ∈ 𝑉 (ℎ). (2.13)

ere, and in the rest of the paper, 𝐶 denotes a constant that is independent of ℎ and 𝑀 .
Then we have the boundedness and stability of the bilinear form 𝑎ℎ by standard argument (see [41] and the references therein).

Lemma 2.3 (Boundedness). 𝑎ℎ(𝑢, 𝑣) satisfies

𝑎ℎ(𝑢, 𝑣) ≤ 𝐶𝑏‖𝑢‖∗‖𝑣‖∗ ∀ 𝑣 ∈ 𝑉 (ℎ). (2.14)

Lemma 2.4 (Stability). Set 𝜂0 = inf𝑒 𝜂𝑒 > 0, if 𝜂0 is large enough, then 𝑎ℎ satisfies

𝑎ℎ(𝑣, 𝑣) ≥ 𝐶𝑠‖𝑣‖
2
∗ ∀ 𝑣 ∈ 𝑉ℎ. (2.15)

By Assumption 2.1, Lemmas 2.3 and 2.4, we know that problem (2.6) is well-posed and A is symmetric positive definite (SPD).
Therefore, many solvers for the SPD system can be used to solve (2.9). The randomized neural network has a certain possibility
that the functions {𝜙𝐾

𝑗 (𝒙) ∶ 𝑗 = 1, 2,… ,𝑀} are not linearly independent, which means that A is singular, and we need to solve the
linear system (2.9) by the least-squares approach. Then, the parameters 𝑈 in the neural networks’ output layers can be obtained by
a least-squares method.

2.4. LRNN-𝐶0DG method

The LRNN-DG method presented in the previous subsection is based on the IPDG scheme. It is known that the performance of
the IPDG method depends on the choice of the penalty parameter 𝜂. It can be cumbersome to determine an appropriate value for
the penalty parameter. Of course, we can use other DG formulations, such as local DG, to avoid the difficulty of choosing a proper
penalty parameter. However, by taking advantage of the least squares method, we can enforce the 𝐶0-continuous condition on each
𝑒 ∈  𝑖

ℎ and the Dirichlet boundary condition on 𝜕
ℎ to overcome this issue.

We add additional equations to enforce the solution to satisfy the boundary condition (2.2b), that is, we choose some collocation
oints on the boundary edge, 𝑃 𝑔

ℎ = {𝒙𝑒𝑗 ∈ 𝑒 ∶ 𝑒 ∈ 𝜕
ℎ , 𝑗 = 1, 2,… , 𝑁𝑔} and |𝑃 𝑔

ℎ | = 𝑁𝑔 , such that

𝑢ℎ(𝒙𝑒𝑗 ) = 𝑔(𝒙𝑒𝑗 ) ∀𝒙𝑒𝑗 ∈ 𝑃 𝑔
ℎ . (2.16)

n addition, we also need to make sure that the numerical solution 𝑢ℎ satisfies certain 𝐶0-continuity conditions across the interior
dges 𝑒 ∈  𝑖

ℎ. We choose some collocation points on the interior edges, 𝑃 𝑖
ℎ = {𝒙𝑒𝑗 ∈ 𝑒 ∶ 𝑒 ∈  𝑖

ℎ, 𝑗 = 1, 2,… , 𝑁𝑖𝑛} and |𝑃 𝑖
ℎ| = 𝑁𝑖𝑛, on

hese points, we set

[[𝑢ℎ(𝒙𝑒𝑗 )]] = 0 ∀𝒙𝑒𝑗 ∈ 𝑃 𝑖
ℎ. (2.17)

hen we obtain a system of equations with respect to (2.16) and (2.17),

A2𝑈 = 𝐿2, (2.18)

here A2 is a (𝑁𝑔 +𝑁𝑖𝑛) ×𝑁𝑒𝑀 matrix, 𝑈 is the 𝑁𝑒𝑀 × 1 unknown vector, and 𝐿2 is a (𝑁𝑔 +𝑁𝑖𝑛) × 1 vector.
Condition (2.17) makes [[𝑢ℎ]] ≈ 0, so the LRNN-𝐶0DG scheme is to find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎0ℎ(𝑢ℎ, 𝑣ℎ) = 𝑙0(𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ,

[[𝑢ℎ(𝒙𝑒𝑗 )]] = 0 ∀𝒙𝑒𝑗 ∈ 𝑃 𝑖
ℎ,

𝑢ℎ(𝒙𝑒𝑗 ) = 𝑔(𝒙𝑒𝑗 ) ∀𝒙𝑒𝑗 ∈ 𝑃 𝑔
ℎ ,

(2.19)

here

𝑎0ℎ(𝑢ℎ, 𝑣ℎ) = ∫𝛺
∇ℎ𝑢ℎ ⋅ ∇ℎ𝑣ℎd𝑥 − ∫ℎ

{∇ℎ𝑢ℎ} ⋅ [[𝑣ℎ]]d𝑠 − ∫ℎ
{∇ℎ𝑣ℎ} ⋅ [[𝑢ℎ]]d𝑠, (2.20)

𝑙0(𝑣ℎ) = ∫𝛺
𝑓𝑣ℎd𝑥 − ∫𝜕ℎ

𝑔𝒏 ⋅ ∇ℎ𝑣ℎd𝑠. (2.21)

ere, we keep the term ∫ℎ{∇ℎ𝑣ℎ} ⋅ [[𝑢ℎ]]d𝑠 for the symmetry of the bilinear form 𝑎0ℎ. Note that this scheme is free of penalty
arameters. Finally, from (2.19), we get a linear system,

[

A1
A2

]

𝑈 =
[

𝐿1
𝐿2

]

, (2.22)

here A1 is a 𝑁𝑒𝑀 ×𝑁𝑒𝑀 matrix, 𝐿1 is a 𝑁𝑒𝑀 × 1 vector. We look for the least-squares solution for this linear system.

emark 2.5. From numerical examples, we see that the scheme (2.19) has a good performance. But note that the following scheme
hich destroys the symmetry still works well.

𝑎0 (𝑢ℎ, 𝑣ℎ) = 𝑓𝑣ℎd𝑥 ∀ 𝑣ℎ ∈ 𝑉ℎ, (2.23)
5
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where

𝑎0ℎ(𝑢ℎ, 𝑣ℎ) = ∫𝛺
∇ℎ𝑢ℎ ⋅ ∇ℎ𝑣ℎd𝑥 − ∫ℎ

{∇ℎ𝑢ℎ} ⋅ [[𝑣ℎ]]d𝑠. (2.24)

.5. LRNN-𝐶1DG method

In the previous subsection, we simplified the DG scheme by enforcing the continuity of 𝑢ℎ on internal edges, i.e., by setting
[𝑢ℎ]] = 0 on 𝑒 ∈  𝑖

ℎ. Can we take this one step further? Let us introduce the LRNN-𝐶1DG method in this subsection.
In each subdomain 𝐾, −𝛥𝑢 = 𝑓 , so we have the FEM formulation:

∫𝐾
∇𝑢 ⋅ ∇𝑣d𝑥 − ∫𝜕𝐾

∇𝑢 ⋅ 𝒏𝐾𝑣d𝑠 = ∫𝐾
𝑓𝑣d𝑥 ∀𝐾 ∈ ℎ, (2.25)

here 𝒏𝐾 is the unit outer normal vector on 𝜕𝐾. However, (2.25) with Dirichlet boundary condition (2.2b) is not equivalent to the
oisson problem because the local problems lack connections with each other. From the domain decomposition method [42], we
now that we need the continuity of 𝑢 and flux, i.e., we require [[𝑢ℎ]] = 0 and [∇𝑢ℎ] = 0 on each 𝑒 ∈  𝑖

ℎ.
We need to ensure that local representations of the solution satisfy 𝐶1-continuity conditions across the subdomain boundaries

ue to consistency. We select some points on the internal edges 𝑃 𝑖
ℎ as described in Section 2.4. At these points, using the same set-up

s the LRNN-𝐶0DG method, we obtain the LRNN-𝐶1DG method: find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎𝐾ℎ (𝑢ℎ, 𝑣ℎ) = ∫𝐾
𝑓𝑣ℎd𝑥 ∀ 𝑣ℎ ∈ 𝑉ℎ ∀ 𝐾 ∈ ℎ,

[[𝑢ℎ(𝒙𝑒𝑗 )]] = 0 ∀𝒙𝑒𝑗 ∈ 𝑃 𝑖
ℎ,

[∇𝑢ℎ(𝒙𝑒𝑗 )] = 0 ∀ 𝒙𝑒𝑗 ∈ 𝑃 𝑖
ℎ,

𝑢ℎ(𝒙𝑒𝑗 ) = 𝑔(𝒙𝑒𝑗 ) ∀𝒙𝑒𝑗 ∈ 𝑃 𝑔
ℎ ,

(2.26)

here

𝑎𝐾ℎ (𝑢ℎ, 𝑣ℎ) = ∫𝐾
∇ℎ𝑢ℎ ⋅ ∇ℎ𝑣ℎd𝑥 − ∫𝜕𝐾

∇ℎ𝑢ℎ ⋅ 𝒏𝐾𝑣ℎd𝑠. (2.27)

Finally, we obtain the following linear system,
[

A1
A2

]

𝑈 =
[

𝐿1
𝐿2

]

,

here A1 is a 𝑁𝑒𝑀 ×𝑁𝑒𝑀 matrix, 𝐿1 is a 𝑁𝑒𝑀 × 1 vector. A2 is a (2𝑁𝑖𝑛 +𝑁𝑔) ×𝑁𝑒𝑀 matrix, U is a 𝑁𝑒𝑀 × 1 vector of unknown
ariables, 𝐿2 is a (2𝑁𝑖𝑛 +𝑁𝑔) × 1 vector. We look for the least-squares solution to this system. After the weights of the output layer
n each local neural network are obtained by the linear least-squares computation, we can get all the values of the problem (2.2)
n the domain 𝛺.

. Convergence of the LRNN with DG methods

.1. Convergence of the LRNN-DG method

We now turn to the error analysis of the LRNN-DG method. In [21], the authors prove that a randomized neural network with
ne hidden layer can approximate any continuous function on a compact domain, as long as the hidden layer size is large enough.
ccording to [38], if the exact solution is a smooth function, the generalization capability of neural networks is not degraded by
LM with proper activation functions and random initialization strategies. In addition, [43,44] have shown that neural networks
an approximate the solution well with appropriate depth and width. Based on these findings, we make the following assumption:
et 𝑢𝜎 ∈ 𝑉ℎ be a suitable approximation of the exact solution 𝑢.

ssumption 3.1. Given a decomposition ℎ with |ℎ| = 𝑁𝑒 and 𝑉ℎ is the associated DG space of LRNN. For any small positive
umber 𝜖, there exists a positive integer 𝑀𝜖 such that if 𝑀 > 𝑀𝜖 , we have a function 𝑢𝜎 ∈ 𝑉ℎ satisfying

‖𝑢 − 𝑢𝜎‖0,𝐾 ≤ 𝐶ℎ𝐾𝑁
−1∕2
𝑒 𝜖, |𝑢 − 𝑢𝜎 |1,𝐾 ≤ 𝐶𝑁−1∕2

𝑒 𝜖, |𝑢 − 𝑢𝜎 |2,𝐾 ≤ 𝐶ℎ−1𝐾 𝑁−1∕2
𝑒 𝜖.

ere, 𝑀 is the number of the basis of 𝑅𝑁𝑁 (𝐾), and 𝐶 denotes a constant number that is independent of ℎ and 𝑀 .

emark 3.2. For any function 𝑢 ∈ 𝐻𝑝+1(𝐾), we know that there exists a polynomial function 𝑢𝐼 ∈ 𝑃𝑝(𝐾) such that

‖𝑢 − 𝑢𝐼‖0,𝐾 ≤ 𝐶ℎ𝑝+1𝐾 |𝑢|𝑝+1,𝐾 , |𝑢 − 𝑢𝐼 |1,𝐾 ≤ 𝐶ℎ𝑝𝐾 |𝑢|𝑝+1,𝐾 ,

|𝑢 − 𝑢𝐼 |2,𝐾 ≤ 𝐶ℎ𝑝−1𝐾 |𝑢|𝑝+1,𝐾 .
6

imilarly, we make Assumption 3.1 in light of good approximation properties of neural networks.
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From the above assumption and the trace inequality, we have

‖𝑢 − 𝑢𝜎‖
2
∗ =

∑

𝐾∈ℎ

|𝑢 − 𝑢𝜎 |
2
1,𝐾 +

∑

𝐾∈ℎ

ℎ2𝐾 |𝑢 − 𝑢𝜎 |
2
2,𝐾 +

∑

𝑒∈ℎ

ℎ−1𝑒 ‖[[𝑢 − 𝑢𝜎 ]]‖20,𝑒

≤𝐶
⎛

⎜

⎜

⎝

∑

𝐾∈ℎ

|𝑢 − 𝑢𝜎 |
2
1,𝐾 +

∑

𝐾∈ℎ

ℎ2𝐾 |𝑢 − 𝑢𝜎 |
2
2,𝐾 +

∑

𝐾∈ℎ

ℎ−2𝐾 ‖𝑢 − 𝑢𝜎‖
2
0,𝐾

⎞

⎟

⎟

⎠

≤𝐶𝜖. (3.1)

For the LRNN-DG method, we have the following Ceá-type inequality.

Theorem 3.3. Let 𝑢 and 𝑢ℎ be solutions of the problem (2.3) and the LRNN-DG scheme (2.6), we obtain

‖𝑢 − 𝑢ℎ‖∗ ≤ (1 + 𝐶𝑏∕𝐶𝑠) inf
𝑣ℎ∈𝑉ℎ

‖𝑢 − 𝑣ℎ‖∗. (3.2)

Proof. For any 𝑣ℎ ∈ 𝑉ℎ, by the boundedness (2.14) and stability (2.15) of the bilinear form 𝑎ℎ, as well as (2.11), we have

𝐶𝑠‖𝑣ℎ − 𝑢ℎ‖
2
∗ ≤ 𝑎ℎ(𝑣ℎ − 𝑢ℎ, 𝑣ℎ − 𝑢ℎ)

= 𝑎ℎ(𝑣ℎ − 𝑢, 𝑣ℎ − 𝑢ℎ) + 𝑎ℎ(𝑢 − 𝑢ℎ, 𝑣ℎ − 𝑢ℎ)

≤ 𝐶𝑏‖𝑣ℎ − 𝑢‖∗‖𝑣ℎ − 𝑢ℎ‖∗,

then we get

‖𝑣ℎ − 𝑢ℎ‖∗ ≤ 𝐶𝑏∕𝐶𝑠‖𝑢 − 𝑣ℎ‖∗. (3.3)

Finally, by triangle inequality, we obtain

‖𝑢 − 𝑢ℎ‖∗ ≤ ‖𝑢 − 𝑣ℎ‖∗ + ‖𝑣ℎ − 𝑢ℎ‖∗ ≤ (1 + 𝐶𝑏∕𝐶𝑠)‖𝑢 − 𝑣ℎ‖∗, (3.4)

which completes the proof of the theorem. ■

From the Ceá-type inequality and (3.1), let 𝑣ℎ = 𝑢𝜌 in (3.2), we can obtain the convergence of the LRNN-DG scheme (2.6).

Corollary 3.4. Let 𝑢 and 𝑢ℎ be solutions of the problems (2.3) and (2.6), respectively. If Assumption 3.1 holds, then for any small positive
number 𝜖, there exists a positive integer 𝑀𝜖 such that if 𝑀 > 𝑀𝜖 , then

‖𝑢 − 𝑢ℎ‖∗ ≤ 𝐶𝜖. (3.5)

3.2. Convergence of the LRNN-𝐶0DG method

In this subsection, we denote the solution of the LRNN-𝐶0DG scheme (2.19) as 𝑢ℎ. By enforcing the conditions (2.16) and (2.17),
we can ensure that 𝑢ℎ − 𝑔 ≈ 0 on boundary edges and [[𝑢ℎ]] ≈ 0 on interior edges. In particular, increasing the number of points 𝒙𝑒𝑗
on each edge 𝑒 results in smaller values of 𝑢ℎ − 𝑔 and [[𝑢ℎ]]. Therefore, we make the following assumption.

Assumption 3.5. Given a decomposition ℎ with |ℎ| = 𝑁𝑒 and 𝑉ℎ is the associated DG space of LRNN. For any small positive
number 𝜖, on every edge 𝑒 ∈ ℎ, there exist 𝑁𝑒

𝜖 such that if 𝑁𝑒 > 𝑁𝑒
𝜖 , then

‖[[𝑢ℎ]]‖0,𝑒 ≤ 𝐶ℎ1∕2𝑒 𝜖 and ‖𝑢ℎ − 𝑔‖0,𝑒 ≤ 𝐶ℎ1∕2𝑒 𝜖.

Here, 𝑁𝑒 is the number of points 𝒙𝑒𝑗 on the edge 𝑒 and 𝐶 denotes a constant number that is independent of ℎ and 𝑀 .

Next, we prove the convergence of the LRNN-𝐶0DG scheme (2.19).

Theorem 3.6. Let 𝑢 and 𝑢ℎ be solutions of the problem (2.3) and the LRNN-𝐶0DG scheme (2.19), respectively. If Assumption 3.1 and
Assumption 3.5 hold, for any small positive number 𝜖, there exist positive integers 𝑀𝜖 , 𝑁𝑒

𝜖 such that if 𝑀 > 𝑀𝜖 , 𝑁𝑒 > 𝑁𝑒
𝜖 , then

‖𝑢 − 𝑢ℎ‖∗ ≤ 𝐶𝜖. (3.6)

Proof. From the LRNN-𝐶0DG scheme (2.19) and the LRNN-DG scheme (2.6), we know that

𝑎0ℎ(𝑢ℎ, 𝑣ℎ) = 𝑙0(𝑣ℎ) ∀ 𝑣ℎ ∈ 𝑉ℎ,

𝑎ℎ(𝑢ℎ, 𝑣ℎ) = 𝑙(𝑣ℎ) ∀ 𝑣ℎ ∈ 𝑉ℎ,
(3.7)

so

𝑎ℎ(𝑢ℎ, 𝑣ℎ) − ∫ 𝜂[[𝑢ℎ]] ⋅ [[𝑣ℎ]]d𝑠 = 𝑙(𝑣ℎ) − ∫ 𝜕
𝜂𝑔𝑣ℎd𝑠. (3.8)
7

ℎ ℎ



Journal of Computational and Applied Mathematics 445 (2024) 115830J. Sun et al.

T

n

A

P

w

And by the consistency (2.10), we have

𝑎ℎ(𝑢ℎ − 𝑢, 𝑣ℎ) = ∫ℎ
𝜂[[𝑢ℎ]] ⋅ [[𝑣ℎ]]d𝑠 − ∫𝜕ℎ

𝜂𝑔𝑣ℎd𝑠. (3.9)

From the stability and boundedness of 𝑎ℎ and (2.11), we get

𝐶𝑠‖𝑢ℎ − 𝑢ℎ‖
2
∗ ≤ 𝑎ℎ(𝑢ℎ − 𝑢ℎ, 𝑢ℎ − 𝑢ℎ)

= 𝑎ℎ(𝑢ℎ − 𝑢, 𝑢ℎ − 𝑢ℎ) + 𝑎ℎ(𝑢 − 𝑢ℎ, 𝑢ℎ − 𝑢ℎ)

= ∫ℎ
𝜂[[𝑢ℎ]] ⋅ [[𝑢ℎ − 𝑢ℎ]]d𝑠 − ∫𝜕ℎ

𝜂𝑔(𝑢ℎ − 𝑢ℎ)d𝑠

≤ 𝜂max

⎛

⎜

⎜

⎝

∑

𝑒∈ 𝑖ℎ

ℎ−1𝑒 ‖[[𝑢ℎ]]‖20,𝑒 +
∑

𝑒∈𝜕ℎ

ℎ−1𝑒 ‖𝑢ℎ − 𝑔‖20,𝑒
⎞

⎟

⎟

⎠

1
2

|𝑢ℎ − 𝑢ℎ|1,∗.

herefore, by Assumption 3.5, we have

‖𝑢ℎ − 𝑢ℎ‖∗ ≤
𝜂max
𝐶𝑠

⎛

⎜

⎜

⎝

∑

𝑒∈ 𝑖ℎ

ℎ−1𝑒 ‖[[𝑢ℎ]]‖20,𝑒 +
∑

𝑒∈𝜕ℎ

ℎ−1𝑒 ‖𝑢ℎ − 𝑔‖20,𝑒
⎞

⎟

⎟

⎠

1
2

≤ 𝐶𝜖.

Finally, by triangle inequality and Corollary 3.4, we obtain

‖𝑢 − 𝑢ℎ‖∗ ≤ ‖𝑢 − 𝑢ℎ‖∗ + ‖𝑢ℎ − 𝑢ℎ‖∗ ≤ 𝐶𝜖. □

3.3. Convergence of the LRNN-𝐶1DG method

In this subsection, we denote the solution of the LRNN-𝐶1DG scheme (2.26) by 𝑢ℎ. Similar to the LRNN-𝐶0DG method, by
enforcing the condition [∇𝑢ℎ(𝒙𝑒𝑗 )] = 0 for each point 𝒙𝑒𝑗 on 𝑒, we can ensure that [∇𝑢ℎ(𝒙𝑒𝑗 )] ≈ 0. Therefore, we make the following
assumption.

Assumption 3.7. Given a decomposition ℎ with |ℎ| = 𝑁𝑒 and 𝑉ℎ is the associated DG space of LRNN. For any small positive
umber 𝜖, on every edge 𝑒 ∈ ℎ, there exists 𝑁𝑒

𝜖 such that if 𝑁𝑒 > 𝑁𝑒
𝜖 , then

‖[[𝑢ℎ]]‖0,𝑒 ≤ 𝐶ℎ1∕2𝑒 𝜖, ‖𝑢ℎ − 𝑔‖0,𝑒 ≤ 𝐶ℎ1∕2𝑒 𝜖 and ‖[∇𝑢ℎ(𝒙𝑒𝑗 )]‖0,𝑒 ≤ 𝐶ℎ−1∕2𝑒 𝜖.

Here, 𝑁𝑒 is the number of the points 𝒙𝑒𝑗 on edge 𝑒 and 𝐶 denotes a constant number that is independent of ℎ and 𝑀 .

Remark 3.8. To demonstrate the validity of Assumption 3.5 and Assumption 3.7, in Section 5, we provide numerical evidence
which shows that the quantities ‖[[𝑢ℎ]]‖0,𝑒, ‖[∇𝑢ℎ]‖0,𝑒 on interior edges and ‖𝑢ℎ − 𝑔‖0,𝑒 on boundary edges decrease as the number
of collection points increases.

Finally, we show the convergence of the LRNN-𝐶1DG scheme.

Theorem 3.9. Let 𝑢 and 𝑢ℎ be solutions of the problem (2.3) and the LRNN-𝐶1DG scheme (2.26), respectively. If Assumption 3.1 and
ssumption 3.7 hold, for any small positive number 𝜖, there exist positive integers 𝑀𝜖 , 𝑁𝑒

𝜖 such that if 𝑀 > 𝑀𝜖 , 𝑁𝑒 > 𝑁𝑒
𝜖 , then

‖𝑢 − 𝑢ℎ‖∗ ≤ 𝐶𝜖. (3.10)

roof. We know that in each subdomain,

∫𝐾
∇ℎ𝑢ℎ ⋅ ∇ℎ𝑣ℎd𝑥 − ∫𝜕𝐾

∇ℎ𝑢ℎ ⋅ 𝒏𝐾𝑣ℎd𝑠 = ∫𝐾
𝑓𝑣ℎd𝑥 ∀𝐾 ∈ ℎ. (3.11)

Then we add all the elements to obtain

𝑎1ℎ(𝑢ℎ, 𝑣ℎ) = ∫𝛺
𝑓𝑣ℎd𝑥 ∀𝑣ℎ ∈ 𝑉ℎ, (3.12)

here

𝑎1ℎ(𝑢ℎ, 𝑣ℎ) = ∫𝛺
∇ℎ𝑢ℎ ⋅ ∇ℎ𝑣ℎd𝑥 −

∑

𝐾∈ℎ
∫𝜕𝐾

∇ℎ𝑢ℎ ⋅ 𝒏𝐾𝑣ℎd𝑠

= ∫ ∇ℎ𝑢ℎ ⋅ ∇ℎ𝑣ℎd𝑥 − ∫ {∇ℎ𝑢ℎ} ⋅ [[𝑣ℎ]]d𝑠 − ∫ 𝑖
{𝑣ℎ} ⋅ [∇ℎ𝑢ℎ]d𝑠.

(3.13)
8

𝛺 ℎ ℎ
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So

𝑎ℎ(𝑢ℎ, 𝑣ℎ) − ∫ 𝑖ℎ
{𝑣ℎ} ⋅ [∇ℎ𝑢ℎ]d𝑠 + ∫ℎ

[[𝑢ℎ]] ⋅ {∇ℎ𝑣ℎ}d𝑠 − ∫ℎ
𝜂[[𝑢ℎ]] ⋅ [[𝑣ℎ]]d𝑠

=𝑙(𝑣ℎ) + ∫𝜕ℎ
𝑔𝒏 ⋅ ∇ℎ𝑣ℎd𝑠 − ∫𝜕ℎ

𝜂𝑔𝑣ℎd𝑠.
(3.14)

nd we know 𝑎ℎ(𝑢, 𝑣ℎ) = 𝑙(𝑣ℎ), so we have

𝑎ℎ(𝑢ℎ − 𝑢, 𝑣ℎ) =∫ 𝑖ℎ
{𝑣ℎ} ⋅ [∇ℎ𝑢ℎ]d𝑠 − ∫ℎ

[[𝑢ℎ]] ⋅ {∇ℎ𝑣ℎ}d𝑠

+ ∫ℎ
𝜂[[𝑢ℎ]] ⋅ [[𝑣ℎ]]d𝑠 + ∫𝜕ℎ

𝑔𝒏 ⋅ ∇ℎ𝑣ℎd𝑠 − ∫𝜕ℎ
𝜂𝑔𝑣ℎd𝑠.

(3.15)

By the stability and boundedness of 𝑎ℎ and (2.11), we get

𝐶𝑠‖𝑢ℎ − 𝑢ℎ‖
2
∗ ≤ 𝑎ℎ(𝑢ℎ − 𝑢ℎ, 𝑢ℎ − 𝑢ℎ) = 𝑎ℎ(𝑢ℎ − 𝑢, 𝑢ℎ − 𝑢ℎ) + 𝑎ℎ(𝑢 − 𝑢ℎ, 𝑢ℎ − 𝑢ℎ)

=∫ 𝑖ℎ
{𝑢ℎ − 𝑢ℎ} ⋅ [∇ℎ𝑢ℎ]d𝑠 − ∫ℎ

[[𝑢ℎ]] ⋅ {∇ℎ(𝑢ℎ − 𝑢ℎ)}d𝑠 + ∫ℎ
𝜂[[𝑢ℎ]] ⋅ [[𝑢ℎ − 𝑢ℎ]]d𝑠

+ ∫𝜕ℎ
𝑔𝒏 ⋅ ∇ℎ(𝑢ℎ − 𝑢ℎ)d𝑠 − ∫𝜕ℎ

𝜂𝑔(𝑢ℎ − 𝑢ℎ)d𝑠

≤𝐶
⎛

⎜

⎜

⎝

∑

𝑒∈ 𝑖ℎ

ℎ−1𝑒 ‖[[𝑢ℎ]]‖20,𝑒 +
∑

𝑒∈ 𝑖ℎ

ℎ𝑒‖[∇ℎ𝑢ℎ]‖20,𝑒 +
∑

𝑒∈𝜕ℎ

ℎ−1𝑒 ‖𝑢ℎ − 𝑔‖20,𝑒
⎞

⎟

⎟

⎠

1
2

‖𝑢ℎ − 𝑢ℎ‖∗,

o

‖𝑢ℎ − 𝑢ℎ‖∗ ≤ 𝐶
𝐶𝑠

⎛

⎜

⎜

⎝

∑

𝑒∈ 𝑖ℎ

ℎ−1𝑒 ‖[[𝑢ℎ]]‖20,𝑒 +
∑

𝑒∈ 𝑖ℎ

ℎ𝑒‖[∇ℎ𝑢ℎ]‖20,𝑒 +
∑

𝑒∈𝜕ℎ

ℎ−1𝑒 ‖𝑢ℎ − 𝑔‖20,𝑒
⎞

⎟

⎟

⎠

1
2

≤ 𝐶𝜖.

(3.16)

Finally,

‖𝑢 − 𝑢ℎ‖∗ ≤ ‖𝑢 − 𝑢ℎ‖∗ + ‖𝑢ℎ − 𝑢ℎ‖∗ ≤ 𝐶𝜖. ■ (3.17)

. Space–time LRNN with DG methods for heat equation

In this section, we investigate the use of local randomized neural networks with DG methods for solving a typical time-dependent
DE, namely the heat equation. Unlike traditional methods that solve the problem by iterating over time steps, we adopt a space–
ime approach where temporal and spatial variables are treated equally and simultaneously. This approach allows us to avoid the
ccumulation of errors.

Consider

𝑢𝑡(𝑡,𝒙) − 𝜆𝛥𝑢(𝑡,𝒙) = 𝑓 (𝑡,𝒙) in 𝛴, (4.1a)

𝑢(0,𝒙) = 𝑢0(𝒙) in 𝛺, (4.1b)

𝑢(𝑡,𝒙) = 𝑔(𝑡,𝒙) on 𝐼 × 𝜕𝛺, (4.1c)

where 𝛺 ⊂ R𝑑 is a bounded space domain, 𝐼 = (0, 𝑇 ) is the time interval, 𝛴 = 𝐼 ×𝛺 is the space–time domain, 𝑢 is the unknown
solution to be solved, 𝑓 is the given source term, 𝑢0 is the initial condition and 𝑔 is a function defined on 𝐼 × 𝜕𝛺. For convenience,
we set the coefficient 𝜆 = 1.

Here we present the notation of the space–time approach. We partition the space–time domain 𝛴 into some subdomains and
approximate the solution on each subdomain by using a local neural network. First, we give the decomposition of the time interval
𝜏 = {𝐼𝑖 = (𝑡𝑖−1, 𝑡𝑖), 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁𝑡

= 𝑇 }, where 𝜏 = max𝐼𝑖∈𝜏
{length(𝐼𝑖)} and 𝑁𝑡 denotes the number of subintervals along

the temporal direction. Let 𝜏 = {𝑡𝑖, 𝑖 = 0,… , 𝑁𝑡} be the union of the boundary points of all the intervals 𝐼𝑖 = (𝑡𝑖−1, 𝑡𝑖) ∈ 𝜏 , and
 𝑖
𝜏 = 𝜏∖{𝑡0, 𝑡𝑁𝑡

} be the set of all interior points. Let {ℎ} be the decomposition of 𝛺̄, where ℎ = max𝐾∈ℎ{diam(𝐾)}. ℎ,  𝑖
ℎ and 𝜕

ℎ
have the same definitions stated in Section 2.2. Let {𝜏 × ℎ} denote the decomposition of the space–time domain 𝛴̄. For ℎ, 𝑁𝑠
denotes the number of elements in ℎ, that is, 𝑁𝑒 = |𝜏 × ℎ| = 𝑁𝑡𝑁𝑠. Let 𝜎+ℎ and 𝜎−ℎ be two neighboring elements sharing a common
spatial face 𝑓 . Denote by 𝒏± = 𝒏|𝜕𝐾± the unit outward normal vectors on 𝜕𝐾±. For a scalar-valued function 𝑣 and a vector-valued
unction 𝒒, let 𝑣± = 𝑣|𝜕𝜎± and 𝒒± = 𝒒|𝜕𝜎± . We define the averages {⋅} and the jumps [[⋅]], [⋅] on 𝑓 ∈ (𝜏 ×  𝑖

ℎ) by

{𝑣} = 1
2
(𝑣+ + 𝑣−), [[𝑣]] = 𝑣+𝒏+ + 𝑣−𝒏−,

{𝒒} = 1 (𝒒+ + 𝒒−), [𝒒] = 𝒒+ ⋅ 𝒏+ + 𝒒− ⋅ 𝒏−.
9

2



Journal of Computational and Applied Mathematics 445 (2024) 115830J. Sun et al.

s

I

W
𝑢
c

If 𝑓 ∈ (𝜏 × 𝜕
ℎ ), we set

[[𝑣]] = 𝑣𝒏, {𝒒} = 𝒒,

where 𝒏 is the unit outward normal vector on 𝜕𝛺.
Moreover, if 𝜎+𝜏 and 𝜎−𝜏 are two neighboring elements sharing a common temporal face 𝑓 , we have 𝑤(𝑡±𝑖 ,𝒙) = 𝑤(𝑡𝑖,𝒙)|𝜕𝜎±𝜏 for a

calar function 𝑤. The average {⋅} and the jump [⋅] on 𝑓𝜏 ∈ ( 𝑖
𝜏 × ℎ) are defined by

{𝑤(𝑡𝑖,𝒙)} = 1
2
(

𝑤(𝑡+𝑖 ,𝒙) +𝑤(𝑡−𝑖 ,𝒙)
)

, [𝑤(𝑡𝑖,𝒙)] = 𝑤(𝑡−𝑖 ,𝒙) −𝑤(𝑡+𝑖 ,𝒙).

If 𝑓𝜏 ∈ (𝜕
𝜏 × ℎ), we set

[𝑤(𝑡0,𝒙)] = −𝑤(𝑡0,𝒙), [𝑤(𝑡𝑁𝑡
,𝒙)] = 𝑤(𝑡𝑁𝑡

,𝒙), {𝑤(𝑡,𝒙)} = 𝑤(𝑡,𝒙).

4.1. Space–time LRNN-DG method

We introduce the following DG space based on the local randomized neural network associated with the partition 𝜏 × ℎ:

𝑉 𝜏
ℎ = {𝑣𝜏ℎ ∈ 𝐿2(𝛴) ∶ 𝑣𝜏ℎ|𝐼𝑖×𝐾 ∈ 𝑅𝑁𝑁 (𝐼𝑖 ×𝐾) ∀ 𝐼𝑖 ∈ 𝜏 ∀𝐾 ∈ ℎ},

𝑸𝜏
ℎ = {𝒒𝜏ℎ ∈ [𝐿2(𝛴)]𝑑 ∶ 𝒒𝜏ℎ|𝐼𝑖×𝐾 ∈ [𝑅𝑁𝑁 (𝐼𝑖 ×𝐾)]𝑑 ∀ 𝐼𝑖 ∈ 𝜏 ∀𝐾 ∈ ℎ}.

We rewrite the heat equation as the first-order system,

𝒑 = ∇𝑢 in 𝛴,
𝜕𝑢
𝜕𝑡

− ∇ ⋅ 𝒑 = 𝑓 in 𝛴.

n the above equations, multiply the test functions 𝒒 and 𝑣 respectively on subdomain 𝜎 = 𝐼𝑖 × 𝐾, then we get by integration by
parts,

∫𝜎
𝒑 ⋅ 𝒒d𝑥d𝑡 = −∫𝜎

𝑢∇ ⋅ 𝒒d𝑥d𝑡 + ∫𝐼𝑖×𝜕𝐾
𝑢𝒒 ⋅ 𝒏d𝑠d𝑡,

−∫𝜎
𝑢 𝜕𝑣
𝜕𝑡

d𝑥d𝑡 + ∫𝜎
𝒑 ⋅ ∇𝑣d𝑥d𝑡 + ∫𝐾

(𝑢𝑣)|𝑡𝑖𝑡𝑖−1d𝑥 = ∫𝜎
𝑓𝑣d𝑥d𝑡 + ∫𝐼𝑖×𝜕𝐾

𝒑 ⋅ 𝒏𝑣d𝑠d𝑡.

e append subscript ℎ on ∇, append subscript 𝜏 on 𝜕 and append subscript ℎ and 𝜏 on 𝑢, 𝑣, 𝒑 and 𝒒. Besides, we use numerical traces
𝜏̂
ℎ and 𝒑𝜏ℎ to approximate 𝑢 and 𝒑 in spatial cross-section 𝑓 ∈ 𝜏 × ℎ and use numerical traces 𝑢𝜏ℎ to approximate 𝑢 in temporal
ross-section 𝑓 ∈ 𝜏 × ℎ,

∫𝜎
𝒑𝜏ℎ ⋅ 𝒒

𝜏
ℎ𝑑𝑥𝑑𝑡 = −∫𝜎

𝑢𝜏ℎ∇ℎ ⋅ 𝒒𝜏ℎd𝑥d𝑡 + ∫𝐼𝑖×𝜕𝐾
𝑢𝜏ℎ𝒒

𝜏
ℎ ⋅ 𝒏d𝑠d𝑡,

−∫𝜎
𝑢𝜏ℎ

𝜕𝜏𝑣𝜏ℎ
𝜕𝜏 𝑡

d𝑥d𝑡 + ∫𝜎
𝒑𝜏ℎ ⋅ ∇ℎ𝑣

𝜏
ℎd𝑥d𝑡 + ∫𝐾

(𝑢𝜏ℎ𝑣
𝜏
ℎ)|

𝑡𝑖
𝑡𝑖−1

d𝑥 = ∫𝜎
𝑓𝑣𝜏ℎd𝑥d𝑡 + ∫𝐼𝑖×𝜕𝐾

𝒑𝜏ℎ ⋅ 𝒏𝑣
𝜏
ℎd𝑠d𝑡.

Then we add over all the elements, use integration by parts and (2.5)

∫𝛴
𝒑𝜏ℎ ⋅ 𝒒

𝜏
ℎ𝑑𝑥𝑑𝑡 = ∫𝛴

∇ℎ𝑢
𝜏
ℎ ⋅ 𝒒

𝜏
ℎd𝑥d𝑡 + ∫𝜏×ℎ

[[𝑢𝜏ℎ − 𝑢𝜏ℎ]] ⋅ {𝒒
𝜏
ℎ}d𝑠d𝑡 + ∫𝜏× 𝑖ℎ

[𝒒𝜏ℎ] ⋅ {𝑢
𝜏
ℎ − 𝑢𝜏ℎ}d𝑠d𝑡,

∫𝛴

𝜕𝜏𝑢𝜏ℎ
𝜕𝜏 𝑡

𝑣𝜏ℎd𝑥d𝑡 + ∫𝛴
𝒑𝜏ℎ ⋅ ∇ℎ𝑣

𝜏
ℎd𝑥d𝑡 +

𝑁𝑡
∑

𝑖=0
∫ℎ

[

𝑢𝜏ℎ(𝑡𝑖,𝒙) − 𝑢𝜏ℎ(𝑡𝑖,𝒙)
]

⋅ {𝑣𝜏ℎ(𝑡𝑖,𝒙)}d𝑥

− ∫𝛴
𝑓𝑣𝜏ℎd𝑥d𝑡 +

𝑁𝑡−1
∑

𝑖=1
∫ℎ

[

𝑣𝜏ℎ(𝑡𝑖,𝒙)
]

⋅ {𝑢𝜏ℎ(𝑡𝑖,𝒙) − 𝑢𝜏ℎ(𝑡𝑖,𝒙)}d𝑥

=∫𝜏×ℎ

[[𝑣𝜏ℎ]] ⋅ {𝒑
𝜏
ℎ}d𝑠d𝑡 + ∫𝜏× 𝑖ℎ

[𝒑𝜏ℎ] ⋅ {𝑣
𝜏
ℎ}d𝑠d𝑡.

Here, we take

𝑢𝜏ℎ = {𝑢𝜏ℎ} 𝑜𝑛 𝑓 ∈ 𝜏 ×  𝑖
ℎ,

𝑢𝜏ℎ = 𝑔 𝑜𝑛 𝑓 ∈ 𝜏 × 𝜕
ℎ ,

𝑢𝜏ℎ = {𝑢𝜏ℎ} − 𝜂
[

𝑢𝜏ℎ
]

𝑜𝑛 𝑓 ∈  𝑖
𝜏 × ℎ,

𝑢𝜏ℎ = 𝑢0 𝑜𝑛 𝑓 ∈ {𝑡0} × ℎ,

𝑢𝜏ℎ = 𝑢𝜏ℎ 𝑜𝑛 𝑓 ∈ {𝑡𝑁𝑡
} × ℎ,

𝜏̂ 𝜏 𝜏 𝑖
10

𝒑ℎ = {∇ℎ𝑢ℎ} − 𝜂[[𝑢ℎ]] 𝑜𝑛 𝑓 ∈ 𝜏 × ℎ,



Journal of Computational and Applied Mathematics 445 (2024) 115830J. Sun et al.

s

w

4

p

t
𝑓
S
a

t

𝒑𝜏ℎ = ∇ℎ𝑢
𝜏
ℎ − 𝜂(𝑢 − 𝑔)𝒏 𝑜𝑛 𝑓 ∈ 𝜏 × 𝜕

ℎ ,

where 𝜂 = 𝜂𝑓 (ℎ𝑓 )
−1, and 𝜂𝑓 can be different by the choice of the face 𝑓 . And we choose 𝒒𝜏ℎ = ∇ℎ𝑣𝜏ℎ, then the space–time LRNN-DG

cheme for solving the heat problem is: Find 𝑢𝜏ℎ ∈ 𝑉 𝜏
ℎ such that

𝐵ℎ𝜏 (𝑢𝜏ℎ, 𝑣
𝜏
ℎ) = 𝑙(𝑣𝜏ℎ) ∀𝑣𝜏ℎ ∈ 𝑉 𝜏

ℎ , (4.8)

here

𝐵ℎ𝜏 (𝑢𝜏ℎ, 𝑣
𝜏
ℎ) = ∫𝛴

𝜕𝜏𝑢𝜏ℎ
𝜕𝜏 𝑡

𝑣𝜏ℎd𝑥d𝑡 + ∫𝛴
∇ℎ𝑢

𝜏
ℎ ⋅ ∇ℎ𝑣

𝜏
ℎd𝑥d𝑡

−
𝑁𝑡−1
∑

𝑖=0
∫ℎ

[

𝑢𝜏ℎ(𝑡𝑖,𝒙)
]

⋅ {𝑣𝜏ℎ(𝑡𝑖,𝒙)}d𝑥 −
𝑁𝑡−1
∑

𝑖=1
∫ℎ

𝜂
[

𝑢𝜏ℎ(𝑡𝑖,𝒙)
]

⋅
[

𝑣𝜏ℎ(𝑡𝑖,𝒙)
]

d𝑥

− ∫𝜏×ℎ

(

[[𝑢𝜏ℎ]] ⋅ {∇ℎ𝑣
𝜏
ℎ} + [[𝑣𝜏ℎ]] ⋅ {∇ℎ𝑢

𝜏
ℎ} − 𝜂[[𝑢𝜏ℎ]] ⋅ [[𝑣

𝜏
ℎ]]
)

d𝑠d𝑡,

(4.9)

𝑙(𝑣𝜏ℎ) = ∫𝛴
𝑓𝑣𝜏ℎ𝑑𝑥𝑑𝑡 − ∫𝜏×𝜕ℎ

(𝑔𝒏 ⋅ ∇ℎ𝑣
𝜏
ℎ − 𝜂𝑔𝑣𝜏ℎ)d𝑡d𝑠 + ∫ℎ

𝑢0(𝒙)𝑣𝜏ℎ(𝑡0,𝒙)d𝑥. (4.10)

From the above scheme, we can get a linear system of equations

A𝑈 = 𝐿, (4.11)

where A is a 𝑁𝑒𝑀 ×𝑁𝑒𝑀 matrix, 𝐿 is a 𝑁𝑒𝑀 × 1 vector, and there are 𝑁𝑒𝑀 unknown variables 𝑈 = {𝑢𝐼𝑖×𝐾𝑗 ∶ 𝐼𝑖 ∈ 𝜏 , 𝐾 ∈ ℎ, 𝑗 =
1, 2,… ,𝑀}. Here, the width of the last hidden layer is 𝑀 . We look for the least-squares solution for this system. Therefore, the
parameters 𝑈 in the neural networks’ output layers are obtained by the linear least-squares computation.

Remark 4.1. Because the variables 𝑥 and 𝑡 are treated as inputs of the randomized neural networks, the LRNN-DG scheme
(4.8) is based on a space–time approach. Using this approach, we can solve this time-dependent problem in a single least-squares
computation, which is more efficient than traditional iterative approaches.

We give the following lemma to show the consistency of the space–time LRNN-DG method.

Lemma 4.2. The space–time LRNN-DG scheme is consistent, i.e., for the solution 𝑢 ∈ 𝐶0(𝐼 ;𝐻2(𝛺)) of the heat Eq. (4.1), we have

𝐵ℎ𝜏 (𝑢, 𝑣𝜏ℎ) = 𝑙(𝑣𝜏ℎ) ∀𝑣𝜏ℎ ∈ 𝑉 𝜏
ℎ . (4.12)

Proof. We know that 𝑢 ∈ 𝐶0(𝐼 ;𝐻2(𝛺)) implies [[𝑢]] = 0, [∇𝑢] = 0 on  𝑖
ℎ, 𝑢 = 𝑔 on 𝜕

ℎ ,
[

𝑢(𝑡𝑖,𝒙)
]

= 0 for 𝑖 = 1, 2,… , 𝑁𝑡 − 1 and
𝑢(𝑡0,𝒙) = 𝑢0(𝒙). Then, by the identities (2.4) and (2.5), we have

𝐵ℎ𝜏 (𝑢, 𝑣𝜏ℎ) =∫𝛴
𝜕𝑢
𝜕𝑡

𝑣𝜏ℎd𝑥d𝑡 + ∫𝛴
∇𝑢 ⋅ ∇ℎ𝑣

𝜏
ℎd𝑥d𝑡 − ∫𝜏×ℎ

[[𝑣𝜏ℎ]] ⋅ {∇𝑢}d𝑠d𝑡

− ∫𝜏×𝜕ℎ

𝑔𝒏 ⋅ ∇ℎ𝑣
𝜏
ℎd𝑡d𝑠 + ∫𝜏×𝜕ℎ

𝜂𝑔𝑣𝜏ℎd𝑡d𝑠 + ∫ℎ
𝑢0(𝒙)𝑣𝜏ℎ(𝑡0,𝒙)d𝑥

=∫𝛴
( 𝜕𝑢
𝜕𝑡

− 𝛥𝑢)𝑣𝜏ℎd𝑥d𝑡 + ∫𝜏×ℎ
∇𝑢 ⋅ 𝒏𝐾𝑣𝜏ℎd𝑡d𝑠 − ∫𝜏×ℎ

[[𝑣𝜏ℎ]] ⋅ {∇𝑢}d𝑠d𝑡

− ∫𝜏×𝜕ℎ

𝑔𝒏 ⋅ ∇ℎ𝑣
𝜏
ℎd𝑡d𝑠 + ∫𝜏×𝜕ℎ

𝜂𝑔𝑣𝜏ℎd𝑡d𝑠 + ∫ℎ
𝑢0(𝒙)𝑣𝜏ℎ(𝑡0,𝒙)d𝑥

=𝑙(𝑣ℎ).

□

.2. Space–time LRNN-𝐶0DG method

In this subsection, we introduce the space–time LRNN-𝐶0DG method to address the difficulty of choosing a proper value of the
enalty parameter in the space–time LRNN-DG.

The setting of local randomized neural networks and the partition is the same as described above. In this approach, we enforce
he 𝐶0-continuous condition on 𝑓 ∈

(

𝜏 ×  𝑖
ℎ
)

∪
(

 𝑖
𝜏 × ℎ

)

, the initial condition on 𝑓 ∈ {𝑡0}×ℎ and Dirichlet boundary condition on
∈ 𝜏 ×𝜕

ℎ to solve this problem. We add the additional equations to enforce the solution to satisfy the boundary condition (4.1c).
pecifically, we choose some points on boundary faces, denoted by 𝑃 𝑔

ℎ = {(𝑡𝑓𝑗 ,𝒙
𝑓
𝑗 ) ∈ 𝑓 ∶ 𝑓 ∈ 𝜏 ×𝜕

ℎ , 𝑗 = 1, 2,… , 𝑁𝑔
ℎ} and |𝑃 𝑔

ℎ | = 𝑁𝑔
ℎ ,

nd require that

𝑢𝜏ℎ(𝑡
𝑓
𝑗 ,𝒙

𝑓
𝑗 ) = 𝑔(𝑡𝑓𝑗 ,𝒙

𝑓
𝑗 ) ∀(𝑡𝑓𝑗 ,𝒙

𝑓
𝑗 ) ∈ 𝑃 𝑔

ℎ . (4.13)

We add additional equations to ensure that the solution satisfies the initial condition (4.1b). In particular, we choose points at
he initial time 𝑡0, denoted by 𝑃 𝑡0

𝜏 = {(𝑡0,𝒙
𝑓
𝑗 ) ∈ 𝑓 ∶ 𝑓 ∈ {𝑡0} × ℎ, 𝑗 = 1, 2,… , 𝑁 𝑡0

𝜏 } with |𝑃 𝑡0
𝜏 | = 𝑁 𝑡0

𝜏 , and enforce that

𝜏 𝑓 𝑓 𝑓 𝑡0
11

𝑢ℎ(𝑡0,𝒙𝑗 ) = 𝑢0(𝒙𝑗 ) ∀(𝑡0,𝒙𝑗 ) ∈ 𝑃𝜏 . (4.14)
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We also ensure that the numerical solution 𝑢ℎ satisfies certain 𝐶0-continuity conditions along the spatial and temporal directions
cross the interior faces 𝑓 ∈

(

𝜏 ×  𝑖
ℎ
)

∪
(

 𝑖
𝜏 × ℎ

)

. To achieve this, we pick points on the boundary faces denoted by 𝑃 𝑆𝑖
ℎ = {(𝑡𝑓𝑗 ,𝒙

𝑓
𝑗 ) ∈

∶ 𝑓 ∈
(

𝜏 ×  𝑖
ℎ
)

, 𝑗 = 1, 2,… , 𝑁 𝑖
ℎ} with |𝑃 𝑆𝑖

ℎ | = 𝑁 𝑖
ℎ and 𝑃 𝑇 𝑖

𝜏 = {(𝑡𝑓𝑗 ,𝒙
𝑓
𝑗 ) ∈ 𝑓 ∶ 𝑓 ∈

(

 𝑖
𝜏 × ℎ

)

, 𝑗 = 1, 2,… , 𝑁 𝑖
𝜏} with |𝑃 𝑇 𝑖

𝜏 | = 𝑁 𝑖
𝜏 , and

nforce that:

[[𝑢𝜏ℎ(𝑡
𝑓
𝑗 ,𝒙

𝑓
𝑗 )]] = 0 ∀(𝑡𝑓𝑗 ,𝒙

𝑓
𝑗 ) ∈ 𝑃 𝑆𝑖

ℎ . (4.15)

[

𝑢𝜏ℎ(𝑡
𝑓
𝑗 ,𝒙

𝑓
𝑗 )
]

= 0 ∀(𝑡𝑓𝑗 ,𝒙
𝑓
𝑗 ) ∈ 𝑃 𝑇 𝑖

𝜏 . (4.16)

he system of equations with respect to (4.13)–(4.16) confirms the boundary conditions, initial conditions and continuity conditions
f interior edges, so we have

A2𝑈 = 𝐿2,

here A2 is a (𝑁𝑔
ℎ +𝑁 𝑡0

𝜏 +𝑁 𝑖
ℎ +𝑁 𝑖

𝜏 ) ×𝑁𝑒𝑀 matrix, 𝑈 is a 𝑁𝑒𝑀 × 1 unknown vector, 𝐿2 is a (𝑁𝑔
ℎ +𝑁 𝑡0

𝜏 +𝑁 𝑖
ℎ +𝑁 𝑖

𝜏 ) × 1 vector. This
ystem of equations reduces the jump of the solution to nearly zero, so the LRNN-𝐶0DG scheme aims to find 𝑢𝜏ℎ ∈ 𝑉 𝜏

ℎ such that

𝐵0
ℎ𝜏 (𝑢

𝜏
ℎ, 𝑣

𝜏
ℎ) = 𝑙0(𝑣𝜏ℎ) ∀ 𝑣𝜏ℎ ∈ 𝑉 𝜏

ℎ ,

[[𝑢𝜏ℎ(𝑡
𝑓
𝑗 ,𝒙

𝑓
𝑗 )]] = 0 ∀(𝑡𝑓𝑗 ,𝒙

𝑓
𝑗 ) ∈ 𝑃 𝑆𝑖

ℎ ,
[

𝑢𝜏ℎ(𝑡
𝑓
𝑗 ,𝒙

𝑓
𝑗 )
]

= 0 ∀(𝑡𝑓𝑗 ,𝒙
𝑓
𝑗 ) ∈ 𝑃 𝑇 𝑖

𝜏 ,

𝑢𝜏ℎ(𝑡
𝑓
𝑗 ,𝒙

𝑓
𝑗 ) = 𝑔(𝑡𝑓𝑗 ,𝒙

𝑓
𝑗 ) ∀(𝑡𝑓𝑗 ,𝒙

𝑓
𝑗 ) ∈ 𝑃 𝑔

ℎ ,

𝑢𝜏ℎ(𝑡0,𝒙
𝑓
𝑗 ) = 𝑢0(𝒙

𝑓
𝑗 ) ∀(𝑡0,𝒙

𝑓
𝑗 ) ∈ 𝑃 𝑡0

𝜏 ,

(4.17)

here

𝐵0
ℎ𝜏 (𝑢

𝜏
ℎ, 𝑣

𝜏
ℎ) =∫𝛴

𝜕𝜏𝑢𝜏ℎ
𝜕𝜏 𝑡

𝑣𝜏ℎd𝑥d𝑡 + ∫𝛴
∇ℎ𝑢

𝜏
ℎ ⋅ ∇ℎ𝑣

𝜏
ℎd𝑥d𝑡

− ∫𝜏×ℎ
([[𝑢𝜏ℎ]] ⋅ {∇ℎ𝑣

𝜏
ℎ} + [[𝑣𝜏ℎ]] ⋅ {∇ℎ𝑢

𝜏
ℎ})d𝑠d𝑡, (4.18)

𝑙0(𝑣𝜏ℎ) =∫𝛴
𝑓𝑣𝜏ℎ𝑑𝑥𝑑𝑡 − ∫𝜏×𝜕ℎ

𝑔𝒏 ⋅ ∇ℎ𝑣
𝜏
ℎd𝑡d𝑠.

Then we can get global stiffness matrix A1 and the right-hand side 𝐿1 of (4.8), where A1 is a 𝑁𝑒𝑀×𝑁𝑒𝑀 matrix, 𝐿1 is a 𝑁𝑒𝑀×1
vector. Combine A1, A2, 𝐿1 and 𝐿2, we get a linear system

[

A1
A2

]

𝑈 =
[

𝐿1
𝐿2

]

. (4.19)

We seek the least-squares solution to this system, and once we have obtained the weights of the output layer in each local neural
network via linear least-squares computation, we can obtain all the values of the problem (4.1) in the domain 𝛴. Notably, this
scheme does not rely on the penalty parameter.

Remark 4.3. Based on numerical experiments, we observe that the scheme (4.17) performs well. Surprisingly, even when we
remove the term − ∫𝜏×ℎ[[𝑢

𝜏
ℎ]] ⋅ {∇ℎ𝑣𝜏ℎ}d𝑠d𝑡 in (4.18), the modified scheme still yields good numerical results:

𝐵0
ℎ𝜏 (𝑢

𝜏
ℎ, 𝑣

𝜏
ℎ) = ∫𝛴

𝑓𝑣𝜏ℎd𝑥d𝑠 ∀ 𝑣𝜏ℎ ∈ 𝑉 𝜏
ℎ , (4.20)

where

𝐵0
ℎ𝜏 (𝑢

𝜏
ℎ, 𝑣

𝜏
ℎ) = ∫𝛴

𝜕𝜏𝑢𝜏ℎ
𝜕𝜏 𝑡

𝑣𝜏ℎd𝑥d𝑡 + ∫𝛴
∇ℎ𝑢

𝜏
ℎ ⋅ ∇ℎ𝑣

𝜏
ℎd𝑥d𝑡 − ∫𝜏×ℎ

[[𝑣𝜏ℎ]] ⋅ {∇ℎ𝑢
𝜏
ℎ}d𝑠d𝑡. (4.21)

4.3. Space–time LRNN-𝐶1DG method

We briefly outline the space–time LRNN-𝐶1DG method for solving the heat equation, building upon the ideas presented in
Section 2.5.

We introduce a system of equations to enforce that the solution 𝑢𝜏ℎ satisfies the boundary condition, the initial condition, and
𝐶0-continuity conditions along both spatial and temporal directions, similar to (4.13)–(4.16). Additionally, we require that the
numerical solution 𝑢𝜏ℎ satisfies 𝐶1-continuity conditions across the interior faces 𝑓 ∈ (𝜏 ×  𝑖

ℎ) along the spatial direction:

[∇ℎ𝑢
𝜏
ℎ(𝒙

𝑓
𝑗 )] = 0 ∀𝒙𝑓𝑗 ∈ 𝑃 𝑆𝑖

ℎ . (4.22)

So we have the new problem that finding 𝑢ℎ ∈ 𝑉 𝜏
ℎ such that

𝐵𝜎 (𝑢𝜏 , 𝑣𝜏 ) = 𝑓𝑣𝜏 d𝑡d𝑥 ∀ 𝜎 =
(

𝐼𝑖 ×𝐾
)

∈
(

𝜏 × ℎ
)

, (4.23)
12

ℎ𝜏 ℎ ℎ ∫𝜎 ℎ
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Table 1
Errors of the LRNN-DG method for 1-d Helmholtz equation in Example 5.1.

ℎ 2−4 2−5 2−6

DoF𝐾
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

20 4.14E−03 2.80E+00 1.17E−04 1.95E−01 1.06E−05 2.53E−02
40 3.46E−05 7.20E−02 2.19E−06 5.44E−03 3.65E−08 1.76E−04
80 1.70E−06 3.00E−03 4.03E−09 1.60E−05 3.32E−10 2.54E−06
160 2.46E−07 3.86E−04 6.12E−10 2.49E−06 1.72E−10 1.31E−06
320 5.23E−08 1.03E−04 2.74E−10 1.11E−06 9.70E−11 8.26E−07
640 1.02E−08 2.56E−05 2.49E−10 7.97E−07 9.62E−11 6.85E−07

where

𝐵𝜎
ℎ𝜏 (𝑢

𝜏
ℎ, 𝑣

𝜏
ℎ) = −∫𝜎

𝑢𝜏ℎ
𝜕𝑣𝜏ℎ
𝜕𝑡

d𝑡d𝑥 + ∫𝐾
𝑢𝜏ℎ𝑣

𝜏
ℎ|

𝑡𝑖
𝑡𝑖−1

d𝑥 + ∫𝜎
∇𝑢𝜏ℎ ⋅ ∇𝑣

𝜏
ℎd𝑡d𝑥 − ∫𝐼𝑖×𝜕𝐾

∇𝑢𝜏ℎ ⋅ 𝒏𝑣
𝜏
ℎd𝑠d𝑡. (4.24)

hen we can get the global stiffness matrix A1 and the right-hand side 𝐿1, where A1 is a 𝑁𝑒𝑀 × 𝑁𝑒𝑀 matrix, 𝐿1 is a 𝑁𝑒𝑀 × 1
ector, such that A1𝑈 = 𝐿1.

Let 𝑢𝜏ℎ satisfy the conditions (4.13)–(4.16), 𝐶1-continuity condition (4.22). Then we can obtain a system of equations

A2𝑈 = 𝐿2, (4.25)

here A2 is a (𝑁𝑔
ℎ +𝑁 𝑡0

𝜏 +2𝑁 𝑖
ℎ +𝑁 𝑖

𝜏 ) ×𝑁𝑒𝑀 matrix, 𝑈 is a 𝑁𝑒𝑀 ×1 matrix of unknown variables, 𝐿2 is a (𝑁𝑔
ℎ +𝑁 𝑡0

𝜏 +2𝑁 𝑖
ℎ +𝑁 𝑖

𝜏 ) × 1
ector. Combine A1, A2, 𝐿1 and 𝐿2, we obtain

[

A1
A2

]

𝑈 =
[

𝐿1
𝐿2

]

. (4.26)

We look for the least-squares solution to this system. After the weights of the output layer in each local neural network are
btained by the linear least-squares computation, we can get all the values of the problem (4.1) in the domain 𝛴.

emark 4.4. We have presented a space–time formulation for solving the heat equation based on LRNN-DG in the above.
onvergence analysis of this method for dynamic problems, however, remains elusive at this point. The main difficulty lies in
roving the stability of the space–time formulation. This outstanding problem requires further research and will be addressed in a
uture publication.

. Numerical examples

In this section, we present several test problems to demonstrate the performance of the methods developed herein.
For implementing the neural network, we use the PyTorch library in Python, as stated in Section 2.1. Each local neural network,

or each sub-domain, consists of a single hidden layer with pre-assigned and fixed parameters that are uniform random values
enerated from [−𝑤0, 𝑤0], where 𝑤0 is a constant. Note that 𝑤0 affects the shape of the basis functions, so it has an influence
n the accuracy of the proposed methods, see more discussion in [45]. The overall neural network is composed of all the local
eural networks, which are coupled with one another through the DG formulation or the 𝐶0∕𝐶1 conditions. The integrals in the
eak formulations are computed using Gaussian quadrature, and we employ different numbers of quadrature points for integrals in
ifferent examples. For the following experiments, we use the Tanh function as the activation function. Other activation functions
ay be suitable for different problems. For solving the linear system of equations about the output-layer coefficients, we use the

inear least-squares routine from LAPACK, available through wrapper functions in the scipy package in Python. The DoF𝐾 or DoF𝜎
n all tables below denote the degrees of freedom on each subdomain, and the DoF in the figures refers to the total degrees of
reedom.

xample 5.1 (One-Dimensional Helmholtz Equation). The first test problem is a one-dimensional Helmholtz equation on the domain
= [0, 1],

−𝑢𝑥𝑥 + 𝜆𝑢 = 𝑓 (𝑥),

𝑢(0) = 𝑔1(𝑥),

𝑢(1) = 𝑔2(𝑥),

here the 𝜆 = 10 and 𝑓 (𝑥) is a prescribed source term, 𝑔1(𝑥) and 𝑔2(𝑥) are boundary conditions, with the manufactured exact solution

𝑢(𝑥) = 1
2
(

𝑥2 + 1
)

ecos
(

81 𝑥3+8𝜋−24
)

.

We partition the interval 𝛺 into non-overlapping uniform subintervals of size ℎ and choose the source term 𝑓 such that the
solution satisfies the boundary value problem given above. The numerical errors in the 𝐿2 norm and the 𝐻1 seminorm for different
umbers of degrees of freedom are shown in Table 1, Table 2, and Table 3.
13
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Table 2
Errors of the LRNN-𝐶0DG method for 1-d Helmholtz equation in Example 5.1.

ℎ 2−4 2−5 2−6

DoF𝐾
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

20 1.14E−02 5.82E+00 3.45E−04 4.02E−01 2.88E−05 8.18E−02
40 9.24E−05 1.34E−01 2.07E−06 6.11E−03 6.64E−07 2.98E−03
80 1.40E−06 2.46E−03 4.12E−09 1.30E−05 5.19E−10 4.90E−06
160 7.41E−08 1.10E−04 3.79E−10 1.62E−06 1.24E−10 1.04E−06
320 1.48E−08 1.91E−05 1.32E−10 8.29E−07 5.47E−11 6.32E−07
640 3.56E−09 1.15E−05 1.33E−10 9.66E−07 5.11E−11 6.74E−07

Table 3
Errors of the LRNN-𝐶1DG method for 1-d Helmholtz equation in Example 5.1.

ℎ 2−4 2−5 2−6

DoF𝐾
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

20 3.10E−03 2.19E+00 9.46E−05 1.40E−01 8.86E−05 2.68E−01
40 1.02E−04 1.19E−01 8.89E−06 1.35E−02 7.07E−08 2.95E−04
80 1.13E−06 1.17E−03 2.22E−09 8.07E−06 1.14E−09 8.31E−06
160 1.14E−07 1.48E−04 4.35E−10 1.21E−06 8.81E−11 6.80E−07
320 5.79E−09 6.76E−06 1.56E−10 6.74E−07 5.87E−11 4.62E−07
640 2.87E−09 9.48E−06 8.06E−11 5.42E−07 4.11E−11 4.96E−07

Fig. 1. Solution and error obtained from LRNN-DG methods in Example 5.1 with ℎ = 2−5 and DoF𝐾 = 160.

Table 1 presents the LRNN-DG errors in terms of the number of degrees of freedom per subinterval (DoF𝐾 ) and the subinterval
ize ℎ. In these tests, we set the penalty parameter 𝜂 to 4, the parameter 𝑤0 of the uniform distribution to 5.0, and use 70 quadrature
oints in each subinterval. It can be observed that for a fixed ℎ, the errors initially decrease rapidly as the degrees of freedom per
ubinterval increase, and then the reduction slows down. For a fixed DoF𝐾 , there is a general decrease in errors as ℎ decreases. To
urther illustrate the performance of our methods, we show the real solution, numerical solution, and error in Fig. 1 for a mesh size
= 2−5 and DoF𝐾 = 160. It can be seen that the LRNN-DG method can approximate the real solution well, whether the frequency

s high or low.
Table 2 shows the corresponding errors of LRNN-𝐶0DG in terms of the number of degrees of freedom per interval and the size of

he element, while Table 3 displays the errors of LRNN-𝐶1DG in terms of DoF𝐾 and ℎ. For LRNN-𝐶0DG, the parameter 𝑤0 is set to
and the number of quadrature points is 70. For LRNN-𝐶1DG, the parameter 𝑤0 is set to 5.7 and the number of quadrature points

s 70. The trends of errors with respect to the size ℎ and the DoF𝐾 are similar to those observed for LRNN-DG.
Fig. 2 compares the errors of the three methods for different sizes ℎ and different norms. Generally, we can observe that the

erformance of the three methods is similar, with LRNN-𝐶1DG performing better than LRNN-𝐶0DG and LRNN-𝐶0DG performing
etter than LRNN-DG. However, it is important to note that the last two methods involve more equations due to continuity
estrictions on edges, so it is not surprising that they have better performance.

Additionally, in Example 5.1, we investigate the performance of the LRNN-DG method with reduced DoF𝐾 as the mesh size
14

decreases. Table 4 presents the errors obtained with fewer local basis functions and smaller grid sizes. In this test, we set
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Fig. 2. Comparison of the errors obtained by the three methods in Example 5.1.

Table 4
Errors of the LRNN-DG method for smaller mesh size ℎ in Example 5.1.

DoF𝐾 10 20

ℎ
Norm

𝐿2 𝐻1 𝐿2 𝐻1

2−3 3.09E+01 3.10E+02 3.09E+01 3.07E+02
2−4 3.14E−01 4.12E+01 3.04E−01 3.55E+01
2−5 1.43E−02 9.63E+00 8.53E−03 5.93E+00
2−6 5.77E−04 7.49E−01 7.84E−04 9.38E−01
2−7 3.32E−06 8.43E−03 1.96E−06 5.13E−03
2−8 6.11E−08 2.68E−04 1.32E−08 6.72E−05
2−9 1.20E−08 9.99E−05 2.08E−09 2.16E−05

𝜂 = 1, 𝑤0 = 0.4, and use 14 quadrature points in each dimension. Table 4 demonstrates that the LRNN-DG method can accurately
approximate the solution even with relatively few basis functions, as long as the mesh size is small enough.

Example 5.2 (Two-Dimensional Poisson Equation). Consider the Poisson Eq. (2.2) on 𝛺 = [0, 1]2 and the exact solution 𝑢 =
𝑒𝑥+𝑦 sin(3𝜋𝑥 + 0.5𝜋) cos(𝜋𝑦 + 0.2𝜋).

In this example, we partition the domain 𝛺 into non-overlapping uniform square elements with edge length ℎ. The number of
quadrature points used in each direction is 14. The numerical errors in the 𝐿2 norm and the 𝐻1 seminorm for different DoF𝐾 and
ℎ are shown in Table 5, Table 6, and Table 7.

Table 5 presents the errors of LRNN-DG in terms of degrees of freedom on each element and the size of the element. In this set
of tests, the weight/bias coefficients in the hidden layer of each local network are initialized with uniform random values generated
in the range [−1.2, 1.2], and the penalty parameter is set to 𝜂𝑒 = 1. The 𝐿2 norm and 𝐻1 seminorm errors initially decrease rapidly

ith increasing DoF𝐾 and then more slowly for fixed ℎ. We also observe that reducing the size ℎ leads to a decrease in errors for a
ixed DoF𝐾 .

Tables 6 and 7 show the errors of LRNN-𝐶0DG and LRNN-𝐶1DG, respectively, in terms of the number of degrees of freedom on
15

ach element and the size of the element. In Table 6, the parameter 𝑤0 is set to 1.2, and the number of collocation points is 14.
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Table 5
Errors of the LRNN-DG method for 2-d Poisson equation in Example 5.2.

ℎ 2−1 2−2 2−3

DoF𝐾
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

10 3.40E+00 3.95E+01 3.04E+00 7.42E+01 7.64E−01 3.17E+01
20 3.62E−01 6.82E+00 1.26E+00 4.99E+01 5.70E−02 4.91E+00
40 1.49E−02 5.46E−01 2.04E−03 1.43E−01 1.47E−03 2.18E−01
80 1.13E−04 6.31E−03 1.39E−05 1.53E−03 2.64E−06 6.01E−04
160 3.07E−06 2.19E−04 1.63E−07 2.31E−05 3.11E−08 8.92E−06
320 6.60E−07 6.08E−05 2.16E−07 3.51E−05 2.94E−08 1.13E−05

Table 6
Errors of the LRNN-𝐶0DG method for 2-d Poisson equation in Example 5.2.

ℎ 2−1 2−2 2−3

DoF𝐾
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

10 9.62E−01 1.27E+01 2.81E−01 6.88E+00 3.29E−01 5.13E+00
20 1.46E−01 2.55E+00 3.03E−02 1.35E+00 8.57E−03 7.13E−01
40 1.40E−02 3.97E−01 2.24E−03 1.43E−01 4.57E−04 5.89E−02
80 3.39E−04 1.53E−02 1.55E−05 1.54E−03 4.64E−06 9.39E−04
160 1.00E−06 6.90E−05 4.21E−08 5.80E−06 1.23E−08 3.16E−06
320 4.11E−07 2.80E−05 1.24E−07 2.08E−05 1.98E−08 7.20E−06

Table 7
Errors of the LRNN-𝐶1DG method for 2-d Poisson equation in Example 5.2.

ℎ 2−1 2−2 2−3

DoF𝐾
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

10 1.31E+00 1.33E+01 1.04E+00 8.92E+00 8.96E−01 8.59E+00
20 2.80E−01 2.97E+00 4.42E−02 1.15E+00 1.97E−02 8.08E−01
40 2.28E−02 4.99E−01 1.86E−03 8.19E−02 5.24E−04 4.45E−02
80 2.45E−04 5.60E−03 1.05E−05 7.59E−04 2.99E−06 4.26E−04
160 1.03E−06 4.46E−05 7.57E−08 4.72E−06 7.91E−09 1.46E−06
320 3.07E−07 1.09E−05 1.78E−08 1.66E−06 7.96E−09 9.62E−07

Table 8
Condition number of stiffness matrices computed by LRNN-DG in
Example 5.2.

DoF𝐾
ℎ 2−1 2−2 2−3

5 5.57E+02 7.81E+04 2.65E+05
10 1.12E+04 2.77E+06 4.97E+06
20 8.72E+06 6.60E+08 5.95E+08
40 2.36E+10 2.13E+12 2.56E+12
80 1.01E+16 3.17E+16 1.46E+17
160 8.47E+16 3.97E+17 2.04E+18
320 2.13E+17 1.11E+18 3.41E+18

Table 9
Norm of [[𝑢ℎ]], [∇𝑢ℎ], and 𝑢ℎ − 𝑔 computed by LRNN-𝐶1DG in Example 5.2.
𝑁𝑒 Vertical Edge Horizontal edge

‖[[𝑢ℎ]]‖0,𝑒 ‖[∇𝑢ℎ]‖0,𝑒 ‖𝑢ℎ − 𝑔‖0,𝑒 ‖[[𝑢ℎ]]‖0,𝑒 ‖[∇𝑢ℎ]‖0,𝑒 ‖𝑢ℎ − 𝑔‖0,𝑒
5 2.46E−05 3.77E−04 4.24E−06 6.01E−05 3.87E−04 1.87E−05
10 1.91E−08 1.68E−06 5.14E−09 3.23E−08 1.27E−06 7.67E−09
20 1.07E−11 1.24E−10 5.43E−11 6.80E−11 4.12E−10 1.46E−10
40 2.08E−12 5.32E−12 5.66E−12 1.08E−12 1.48E−11 4.72E−12
80 2.57E−12 3.29E−12 5.90E−12 1.67E−12 1.51E−12 6.40E−13

In Table 7, the parameter 𝑤0 is set to 1.0, and the number of collocation points is 14. The trends observed for LRNN-𝐶0DG and
LRNN-𝐶1DG are similar to those of the LRNN-DG method.

Fig. 3 compares the errors of the three methods for different sizes ℎ and different norms. Overall, the performance of the three
schemes is similar, with LRNN-𝐶1DG outperforming LRNN-𝐶0DG and LRNN-𝐶0DG outperforming LRNN-DG.
16
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Fig. 3. Errors obtained from three different methods in Example 5.2.

We also compare the proposed methods with the finite element method and the discontinuous Galerkin method programmed
ith FEniCS [46] for this problem. Fig. 4 compares the performance of the proposed LRNN-𝐶1DG and LRNN-DG methods with the
EM and DG methods using piecewise 𝑃𝑘 polynomial functions. The results show that the proposed methods achieve significantly
maller errors than the traditional methods with the same degrees of freedom. However, as the number of basis functions increases,
he errors of the LRNN methods tend to stagnate. This could be attributed to the fact that the basis functions {𝜙𝐾

𝑗 (𝒙) ∶ 𝑗 = 1, 2,… ,𝑀}
ay become linearly dependent as 𝑀 increases, resulting in a rank deficient linear system. To further support this observation, we
rovide Table 8 which shows the condition number of the global stiffness matrices of the LRNN-DG method in Example 5.2 with
ifferent numbers of basis functions and mesh sizes. As shown in the table, the condition number increases with the increase of DoF𝐾
nd the decrease of ℎ. As shown in Table 4 of Example 5.1, one way to reduce errors is to increase the number of subdomains,
.e., use elements with a smaller size ℎ. Another approach is to design better neural networks that can provide improved basis
unctions. This is an aspect we will further explore in future work.

Fig. 5 illustrates the distribution of point-wise absolute errors computed using the three methods with an element size of ℎ = 2−2
nd Dof𝐾 = 320. It can be observed that the absolute error of LRNN-DG is larger but smoother, while the absolute error of
RNN-𝐶0DG and LRNN-𝐶1DG is smaller but with a larger variation.

Table 9 provides numerical evidence to support the reasonableness of Assumption 3.5 and Assumption 3.7. We perform a test to
xamine how the jump of the numerical solution 𝑢ℎ and its gradient ∇𝑢ℎ vary as the number of collocation points increases using the
RNN-𝐶1DG method. We consider a vertical interior edge and a horizontal interior edge and compute the 𝐿2(𝑒)-norm of [[𝑢ℎ]] and
∇𝑢ℎ] on these edges. We also consider a vertical boundary edge and a horizontal boundary edge and compute the 𝐿2(𝑒)-norm of 𝑢ℎ−𝑔
n these boundary edges. In these tests, Dof𝐾 = 320, and the size of element is ℎ = 2−2. Table 9 lists these errors corresponding to a
et of collocation points. We observe that ‖[[𝑢ℎ]]‖0,𝑒, ‖[∇𝑢ℎ]‖0,𝑒 and ‖𝑢ℎ − 𝑔‖0,𝑒 decrease rapidly with increasing number of collection
oints 𝑁𝑒, reaching a level close to machine zero as 𝑁𝑒 becomes large.

xample 5.3 (2-D Poisson Equation with Corner Singularities). In this experiment, we use the LRNN-DG methods to solve the Poisson
roblem (2.2) with a non-smooth solution around a reentrant corner, which has been considered recently in [47]. The problem is
efined on the L-shaped domain 𝛺 = 𝑂𝐴𝐵𝐶𝐷𝐸𝑂, as shown in Fig. 6. The exact solution is given by 𝑢(𝑥, 𝑦) = 𝑟

2
3 𝑘 sin( 23𝑘𝜃), where

(𝑟, 𝜃) denotes the polar coordinates, and 𝑘 ≥ 1 is a prescribed integer. We employ a source term 𝑓 = 0 and set the boundary condition
according to the exact solution.
17
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Fig. 4. Errors obtained by FEM, DG and LRNN with DG methods in Example 5.2.

Table 10
Errors of the LRNN-DG method for 2-d Poisson equation with the non-smooth solution in Example 5.3.

𝑘 1 3 5

ℎ,DoF𝐾
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

1, 160 3.14E−04 3.25E−02 1.86E−07 6.51E−06 1.32E−06 4.89E−05
1/2, 160 1.00E−04 2.08E−02 4.78E−08 3.44E−06 1.50E−07 1.10E−05
1/4, 160 3.21E−05 1.30E−02 1.93E−08 2.88E−06 3.89E−08 5.84E−06
1/4, 40 4.65E−04 3.45E−02 3.22E−02 2.63E+00 4.00E−03 3.26E−01
1/4, 80 8.20E−05 1.72E−02 1.29E−06 1.52E−04 2.08E−06 2.48E−04
1/4, 160 3.21E−05 1.30E−02 1.93E−08 2.88E−06 3.89E−08 5.84E−06
1/4, 320 3.55E−05 1.14E−02 1.28E−08 2.03E−06 2.38E−08 3.83E−06

The exact solution is smooth in 𝛺 only when 𝑘 is a multiple of 3. Otherwise, the ⌈

2
3𝑘⌉- th derivative of the solution is singular at

the reentrant corner and the solution is non-smooth. Moreover, the solution becomes smoother as the integer 𝑘 increases. We apply
the LRNN-DG method and LRNN-𝐶1DG method to solve this problem with 𝑘 = 1, 3, 5. We divide the square domains 𝐷𝐸𝑂𝐺, 𝐺𝑂𝐹𝐶
and 𝑂𝐴𝐵𝐹 into smaller square subdomains {𝐾} uniformly, and ℎ is the size of each subdomain. Then we show the performances of
the LRNN-DG method and LRNN-𝐶1DG method with different degrees of freedom and sizes of subdomains in Table 10 and Table 11
espectively. For the LRNN-DG method, we choose 𝑤0 = 2.2, 𝜂 = 130∕ℎ when 𝑘 = 1, 𝑤0 = 1.4, 𝜂 = 5∕ℎ when 𝑘 = 3 and 𝑤0 = 1.4,
= 10∕ℎ when 𝑘 = 5. For the LRNN-𝐶1DG method, the number of the collocation points on each edge is 11, we choose 𝑤0 = 1.1
hen 𝑘 = 1, 𝑤0 = 0.6 when 𝑘 = 3 and 𝑤0 = 0.9, when 𝑘 = 5.

From Tables 10 and 11, we observe that with both methods the accuracy improves with more degrees of freedom in each
ubdomain and smaller subdomains, for both smooth and non-smooth solutions. The LRNN-DG method, which is based on a weak
ormulation, has a better performance for non-smooth solutions than the LRNN-𝐶1DG method. However, for the smooth solution,
he result is opposite. One possible reason is that the penalty parameter of the LRNN-DG method increases the condition number
f the stiffness matrix. We also compare our results with those in [47]. The LRNN-DG method and LRNN-𝐶1DG method achieve
18

maller errors for non-smooth solutions, but for smooth solutions, the methods in [47] perform better.
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Fig. 5. Absolute errors computed by three methods in Example 5.2.

Fig. 6. The L-shaped domain 𝛺 = 𝑂𝐴𝐵𝐶𝐷𝐸𝑂 with an reentrant corner at 𝑂.
19
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Table 11
Errors of the LRNN-𝐶1DG method for 2-d Poisson equation with the non-smooth solution in Example 5.3.

𝑘 1 3 5

ℎ,DoF𝐾
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

1, 160 5.10E−03 1.53E−01 1.10E−08 2.43E−07 3.91E−06 1.12E−04
1/2, 160 1.92E−03 7.36E−02 4.56E−09 1.88E−07 1.14E−07 5.38E−06
1/4, 160 1.03E−03 4.61E−02 1.57E−09 1.25E−07 1.09E−08 8.10E−07
1/4, 40 4.05E−03 1.83E−01 2.52E−05 9.82E−04 1.69E−04 7.10E−03
1/4, 80 2.62E−03 9.87E−02 1.23E−08 8.47E−07 4.60E−07 3.32E−05
1/4, 160 1.03E−03 4.61E−02 1.57E−09 1.25E−07 1.09E−08 8.10E−07
1/4, 320 1.39E−03 4.29E−02 1.27E−09 1.12E−07 7.44E−09 4.71E−07

Table 12
Errors of the space–time LRNN-DG method when 𝑡 = 1 in Example 5.4.

𝜏, ℎ 2−1 2−2 2−3

DoF𝜎
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

5 3.89E−01 5.56E+00 6.83E−01 8.51E+00 7.73E+00 1.95E+02
10 1.11E−01 1.84E+00 1.45E−01 4.14E+00 2.39E−01 9.07E+00
20 2.51E−01 9.07E+00 6.69E−02 4.24E+00 1.57E−02 1.38E+00
40 1.56E−03 9.17E−02 4.00E−04 4.27E−02 3.11E−04 6.21E−02
80 1.47E−05 1.17E−03 2.24E−06 3.88E−04 1.08E−06 3.68E−04
160 3.56E−06 3.17E−04 6.86E−07 1.30E−04 1.88E−07 7.71E−05
320 1.92E−06 1.92E−04 4.23E−07 6.51E−05 1.48E−07 5.81E−05

Table 13
Errors of the space–time LRNN-𝐶0DG method when 𝑡 = 1 in Example 5.4.

𝜏, ℎ 2−1 2−2 2−3

DoF𝜎
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

5 1.76E+00 6.88E+00 1.80E+00 5.07E+00 2.41E+00 1.65E+01
10 9.84E−02 1.31E+00 1.82E−01 2.06E+00 2.66E−01 1.02E+01
20 1.37E−02 2.27E−01 4.63E−03 4.18E−01 1.36E−02 1.31E+00
40 7.27E−04 2.05E−02 4.11E−04 3.40E−02 1.09E−04 2.05E−02
80 4.60E−06 2.08E−04 5.02E−07 7.10E−05 1.24E−07 3.01E−05
160 4.33E−07 5.72E−05 1.21E−07 2.13E−05 4.29E−08 1.09E−05
320 4.05E−07 2.14E−05 8.26E−08 1.26E−05 1.68E−07 2.30E−05

Table 14
Errors of the space–time LRNN-𝐶1DG method when 𝑡 = 1 in Example 5.4.

𝜏, ℎ 2−1 2−2 2−3

DoF𝜎
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

5 3.24E+00 1.82E+01 1.53E+00 7.10E+00 3.15E+00 7.55E+00
10 1.05E−01 1.12E+00 9.06E−01 7.35E+00 3.05E+00 1.65E+01
20 7.57E−02 1.48E+00 3.78E−02 9.87E−01 6.21E−02 2.79E+00
40 2.61E−03 6.34E−02 9.61E−04 4.74E−02 1.37E−03 1.32E−01
80 2.89E−05 1.33E−03 5.43E−06 4.47E−04 6.13E−06 9.69E−04
160 2.25E−07 2.53E−05 2.09E−07 5.50E−05 8.10E−08 1.90E−05
320 1.65E−07 1.13E−05 1.44E−07 1.06E−05 9.31E−08 3.31E−05

Furthermore, we show distributions of the exact solution, numerical solution, and absolute errors of the LRNN-DG method for
= 1, 3, 5 in Fig. 7. The size of the subdomain is ℎ = 1∕2, the degrees of freedom in each subdomain is DoF𝐾 = 160, and other

arameters are the same as above.

xample 5.4 (1-D Heat Equation). Consider the heat Eq. (4.1) with 𝛺 = [0, 1], 𝐼 = [0, 1], and the constant 𝜆 = 0.001. We employ
he manufactured exact solution

𝑢 = −𝑒cos(𝜋𝑥+3𝜋)+𝑡
2
.

Let us consider the space–time LRNN with DG methods for solving the heat equation. Tables 12, 13, and 14 show the numerical
rrors measured in the 𝐿2 norm and the 𝐻1 seminorm at 𝑡 = 1 for different numbers of degrees of freedom. The domain 𝐼 × 𝛺 is

partitioned into non-overlapping subdomains 𝜎 = 𝐼𝑖 ×𝐾, where 𝐼𝑖 is a time interval, 𝐾 is a space interval, and both have the same
size ℎ. In these methods, 14 quadrature points are used in each direction.
20
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Fig. 7. The exact solution (a, d, g), the numerical solution (b, e, h) of the LRNN-DG method and the point-wise absolute error of the LRNN-DG method (c, f,
i) to the Poisson equation. a–c: 𝑘 = 1 (non-smooth), d–f: 𝑘 = 3 (smooth) and g–i: 𝑘 = 5 (non-smooth) in Example 5.3.

Table 12 presents the 𝐿2 and 𝐻1 errors of the space–time LRNN-DG method at 𝑡 = 1, in terms of the number of degrees of freedom
per element and the element size. For these tests, we have set the penalty parameter 𝜂𝑒 = 4, and the weight/bias coefficients in the
hidden layer of each local network are initialized as uniform random values within the range [−0.9, 0.9].

Table 13 reports the errors of the space–time LRNN-𝐶0DG method at 𝑡 = 1. In this case, we use 12 collection points on each
edge, and the parameter 𝑤0 is set to 1.

Table 14 presents the errors of the space–time LRNN-𝐶1DG method at 𝑡 = 1. We use 14 collection points on each edge and choose
the parameter 𝑤0 to be 1.2.

For comparison, we also solved this problem using 𝑃2 finite element for spatial discretization and the backward Euler scheme
for time stepping. The numerical errors for 𝑡 = 1 are presented in Table 15, where ℎ denotes the mesh size and 𝛥𝑡 denotes the time
21
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Fig. 8. Absolute errors computed by proposed methods and FEM in Example 5.4.

Table 15
Errors of the 𝑃2 FEM with back Euler when 𝑡 = 1 in Example 5.4.

Norm
ℎ2, 𝛥𝑡 2−5, 2−10 2−6, 2−12 2−7, 2−14 2−8, 2−16 2−9, 2−18

𝐿2 3.82E−03 9.56E−04 2.39E−04 5.97E−05 1.49E−05
𝐻1 3.84E−02 9.65E−03 2.41E−03 6.04E−04 1.51E−04

tep. By comparing the results in this table with those of our proposed methods, we observe that the space–time LRNN-DG methods
an achieve more accurate numerical solutions.

Fig. 8 shows the distribution of point-wise absolute errors in the spatial–temporal domain obtained using the proposed methods
nd the traditional FEM programmed with FEniCS. In the space–time LRNN with DG methods, the size of each element is ℎ = 2−2

nd the number of degrees of freedom in each element is DoF𝜎 = 320. In the 𝑃2 FEM with the backward Euler scheme, the size
f the mesh is ℎ2 = 2−9 and the size of the time step is 𝛥𝑡 = 2−18. We can see that the absolute error of the LRNN-DG method is
arger but smoother, while the absolute error of the LRNN-𝐶0DG and LRNN-𝐶1DG methods are smaller but have stronger variations.
ue to time marching, error accumulation over time is evident in the result of FEM, whereas there is little or essentially no error
ccumulation for the proposed space–time LRNN with DG methods.

xample 5.5 (2-D Heat Equation). We consider a two-dimensional heat Eq. (4.1) with spatial domain 𝛺 = [0, 1]×[0, 1] and temporal
nterval 𝐼 = (0, 5). The exact solution for this test is given by

𝑢 = 𝑒−0.2𝑡 sin(2𝜋𝑥) sin(2𝜋𝑦).
22
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Fig. 9. Distributions of the pointwise absolute error at 𝑡 = 5 and the computation time obtained by the LRNN-DG method and the traditional DG method in
Example 5.5.

Table 16 presents the 𝐿2 and 𝐻1 errors of the space–time LRNN-DG method at 𝑡 = 5, in terms of the number of degrees of freedom
in each element and the element size. In this numerical experiment, we set the penalty parameter 𝜂𝑒 = 3, the parameter 𝑤0 = 0.49,
and the number of quadrature points is 9 for each direction. The space–time LRNN-DG method has very good performance in this
example as well. Note that the space–time LRNN-𝐶0DG and LRNN-𝐶1DG schemes exhibit similar performance to the LRNN-DG
method, and so their results are not included here.

Fig. 9 compares the point-wise absolute errors at 𝑡 = 5 and the total computation time obtained by the space–time LRNN-DG
method and the traditional DG method (together with the Crank–Nicolson scheme). In the DG method, we use the IPDG scheme with
𝑃2 elements applied on uniform triangular meshes with a mesh size ℎ3, and the Crank–Nicolson scheme is employed with a time step
𝛥𝑡. The DG implementation is based on the FEniCS library (version 2019.1.0), and the current LRNN-DG method is implemented
based on PyTorch 1.12.1. To collect the computation time, all these programs for Example 5.5 have been run on the same CPU.
Comparing Figs. 9(a) with 9(b) and 9(c) with 9(d), we observe that LRNN-DG achieves a better accuracy with less computation time.
Note that the FEniCS library implements a number of techniques to boost performance and is highly optimized for its (traditional)
DG implementation. In contrast, the LRNN-DG is based on our current implementation, which lacks those optimizations in FEniCS
(and is available to the traditional DG). But still, the current method shows a very competitive performance.
23
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Table 16
Errors of the space–time LRNN-DG method when 𝑡 = 5 in Example 5.5.

𝜏, ℎ 5 × 2−1, 2−1 5 × 3−1, 3−1 5 × 4−1, 4−1

DoF𝜎
Norm

𝐿2 𝐻1 𝐿2 𝐻1 𝐿2 𝐻1

20 2.60E−01 3.37E+00 3.96E−01 9.21E+00 2.41E−01 6.70E+00
40 1.16E−01 2.51E+00 3.12E−01 1.01E+01 1.16E−01 4.80E+00
80 2.98E−01 9.36E+00 1.11E−02 5.31E−01 2.04E−03 1.25E−01
160 6.22E−04 2.91E−02 7.34E−05 4.83E−03 1.91E−05 1.69E−03
320 6.42E−05 3.59E−03 3.93E−06 3.24E−04 1.39E−06 1.44E−04
640 1.48E−05 8.61E−04 1.66E−06 1.43E−04 6.07E−07 7.07E−05

6. Summary

The local randomized neural networks with discontinuous Galerkin formulations offer a new approach to solving partial
ifferential equations. By decomposing the domain, we use LRNNs to approximate the solution on each subdomain and apply
he IPDG scheme to couple these LRNNs together. The weights of output layers are obtained by the least-squares method. With
ppropriate assumptions, we prove the convergence of these methods. Additionally, we propose space–time LRNN-DG methods
o solve the heat equation, which offer several advantages: (i) achieving better accuracy than FEM or the usual DG method with
ewer degrees of freedom; (ii) LRNN-𝐶0DG and LRNN-𝐶1DG methods are penalty parameter-free compared to DG methods; (iii) the
pace–time LRNN-DG methods can solve time-dependent problems more precisely and efficiently.

We are confident that the proposed methods have significant potential for solving partial differential equations. However, there
re still several aspects of these methods that require further investigation. In this paper, we have only considered linear partial
ifferential equations. An immediate question is the following. Can one extend the methods and the analysis to nonlinear partial
ifferential equations? This problem is non-trivial and currently under investigation, and it will be addressed in a future publication.
ur numerical examples suggest that the errors of these methods plateau when the number of degrees of freedom reaches a
ertain threshold. Is it possible to design other neural networks (e.g., deep neural networks) to avoid this issue? Can we leverage
arallel processing to improve their efficiency? How can we incorporate mesh adaptation to enhance their performance for complex
roblems? Additionally, deriving error estimates for the proposed methods is another crucial area for future work.
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