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Synopsis

1 Background: Topological Entropy

A general reference for this section is the ICM article of Oguiso ([12]).
Let pX, dq be a compact metric space. Let f : X Ñ X be a continuous self map

of X. For n ě 1, let pXn, dnq be a the n-times self-product of X equipped with
the sup-metric induced by d. The continuous map Γfn´1 : X Ñ Xn given by x Ñ
px, fpxq, ¨ ¨ ¨ , fn´1pxqq, gives an embedding of X ãÑ Xn. Let dpf, nq be the metric
induced on X by restriction of dn under this embedding.

Intuitively, dpf, nqmeasures how fast two points which were close to begin with, spread
out or come closer as the case may be, under iteration by f . Let Npε, n, fq be the least
number of balls of radius ε with respect to dpf, nq, needed to cover X. Since X is com-
pact, this is a finite number, which is non-decreasing as εÑ 0` (for a fixed n).

Definition 0.0.1. With notations as above, the topological entropy of f denoted by
dtoppfq :“ limεÑ0` hpf, εq, where hpf, εq :“ lim supn

logNpε,n,fq
n

.

The limit above exists in r0,8s.
Following are the basic properties of topological entropy,

• dtoppfq depends only on the underlying topology of X and not on the metric.

• If f is a periodic map then its entropy is 0.

• If f is an isometry then its entropy is 0.

An interesting class of compact metric spaces are compact Kahler manifolds with a
choice of a Kahler metric.

Let M be a compact Kahler manifold and ω the associated p1, 1q form. Let f : M Ñ

M be a holomorphic, surjective self map of a compact Kahler manifold. Then, as above
to pM, fq we can associate dtoppfq P r0,8s, the topological entropy of f .

Let λpfq, λevenpfq, λppfq denote the spectral radius for the (linear) action of f˚ on
H˚pM,Qq, ‘iH2ipM,Qq and Hp,ppM,Cq. Then,
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Theorem 0.0.2 (Gromov-Yomdin). [1] [2]
With notations as above, dtoppfq “ log λpfq “ log λeven “ max0ďpďdimpXq log λp.

Remark 0.0.3. Infact the proof of Gromov-Yomdin implies that the spectral radius for
the action of f˚ on H˚pM,Qq is obtained on the smallest f˚-stable sub-algebra generated
by any Kahler class ω.

Corollary 0.0.4. The topological entropy of a surjective self map of a compact Kahler
manifold is finite.

Theorem 0.0.2 is computationally very useful and gives a ‘simple’ way to generate
examples with positive entropy. Further, it linearizes the problem of computing topo-
logical entropy by relating it to the spectrum of f˚ acting on cohomology. Hence, it is
natural to look for constraints on the spectrum of this operator coming from various
additional structures that can exist on cohomology.

2 Algebraic Entropy

The following proposition is a consequence of the existence of a polarized Hodge structure
on H˚pXpCq,Qq (with respect to any ample class rωs P H2pXpCq,Qqq.

Proposition 0.0.5. Let X{C be a smooth proper surface. Let f : X Ñ X be an auto-
morphism and rωs P H2pXpCq,Qq an ample class. Then,

1. the spectral radius for the action of f˚ on H˚pXpCq,Qq coincides with the spectral
radius for its action on the f˚-stable sub-algebra generated by rωs.

2. Moreover, f˚ acts by finite order on H2
trpXpCq,Qq, the orthogonal complement

(with respect to the cup-product pairing) of the image of Neron-Severi inside H2pXpCq,Qq.

The statement of the proposition above, makes sense over an arbitrary base field, with
the Betti cohomology replaced by `-adic cohomology. However, it is not suited for a
proof by specialisation. Esnault and Srinivas observed that a suitable generalisation of
Proposition 0.0.5 specialises well and proved the same by reduction to finite fields.

Theorem 0.0.6 (Esnault-Srinivas). [3]
Let f : X Ñ X be an automorphism of a smooth proper surface over an arbitrary

algebraically closed field k. Let ` be a prime invertible in k. Let rωs P H2pX,Q`q be an
ample class. Then for any embedding of Q` inside C,

1. the spectral radius for the action of f˚ on H˚pX,Q`q coincides with the spectral
radius for its action on the f˚-stable sub-algebra generated by rωs.
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2. Moreover, let V pf, rωsq be the largest f˚ stable sub-space of H2pX,Q`q in the or-
thogonal complement of rωs (with respect to the cup-product pairing). Then f˚ is
of finite order on V pf, rωsq.

However, unlike Proposition 0.0.5 the proof of Theorem 0.0.6 is quite delicate and uses
(among many other things) the explicit classification of smooth projective surfaces. In
particular, it relies on lifting of certain K3 surfaces to characteristic 0 based on [4] and
using Hodge theory to resolve this case.

Given the motivic nature of Theorem 0.0.6, it is natural to ask for analogues of
the Gromov-Yomdin theory in positive characteristic (see [3] Section 6.2). This is the
principal aim of this thesis.

Before we state the main results, we recall Varshavsky’s formalism of contracting
correspondences near sub-schemes (see [8]), a crucial ingredient for us.

3 Contracting correspondences near sub-schemes

Fix a base field k which is separably closed. Unless otherwise specified, all schemes are
assumed to be of finite type and separated over k. Further, all morphisms of schemes
are to be understood as over k.

Fix a prime ` invertible in k. Let Λ be a coefficient ring which is either finite and
annihilated by a power of ` or is a finite extension of Q` or is the ring of integers of such
an extension.

Let Db
ctf pX,Λq be the sub-triangulated category of the bounded derived category

of sheaves of Λ-modules on X consisting of complexes of finite tor-dimension with con-
structible cohomology (see [23], 1.1.2). For a closed sub-scheme Z of X, let IZ denote it’s
ideal sheaf. By Zred we mean the reduced closed sub-scheme underlying Z. By Zd, d ě 1
we mean the closed sub-scheme of X defined by the ideal sheaf IdZ . In particular Z1 “ Z
and Zr is a closed sub-scheme of Zs whenever r ď s.

Definition 0.0.7 (Correspondence). A correspondence from a scheme X1 to X2 is a
morphism of schemes c : C Ñ X1 ˆk X2. We will denote this by c “ pC, c1, c2q where
c1 :“ pr1 ˝ c and c2 :“ pr2 ˝ c with pri : X1 ˆk X2 Ñ Xi, i “ 1, 2 being the projections
onto Xi, i “ 1, 2.

Definition 0.0.8 (Cohomological correspondence). Given a correspondence c “ pC, c1, c2q

from X1 to X2 and objects Fi P Db
ctf pXi,Λq a cohomological correspondence (from F1

to F2) lifting c is a morphism u P HomDb
ctfpX2,Λqpc2!c

˚
1F1,F2q.

Definition 0.0.9. A closed sub-scheme Z is said to be stabilized by c if c´1
2 pZq is a

closed sub-scheme of c´1
1 pZq.

Definition 0.0.10. c is said to be contracting near a closed sub-scheme Z Ă X if c
stabilizes Z and c´1

2 pZn`1q is a closed sub-scheme of c´1
1 pZnq for some n ě 1.
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For a correspondence c, let Fixpcq be the fibered product C ˆXˆkX X where, X
is looked at as an X ˆk X-scheme via the diagonal embedding. Let c1 be the induced
morphism from Fixpcq Ñ X.

Definition 0.0.11. A closed sub-scheme Z Ă X is said to be contracting in a neigh-
bourhood of fixed points if there exists an open sub-scheme W of C containing Fixpcq
such that c|W -contracting is contracting near Z.

Associated to a self-correspondence c of X and a cohomological self-correspondence
u of F P Db

ctfpX,Λq lifting c and any β P π0pFixpcqq proper over k, one has a local term
LTβpuq P Λ (see [8] 1.2.2).

The following result in [8] about the behaviour of local terms along contracted sub-
schemes, is crucial for this work.

Theorem 0.0.12. ([8], Theorem 2.1.3)
Let c : C Ñ XˆkX be a correspondence contracting near a closed sub-scheme Z Ă X

in a neighbourhood of fixed points, and let β be an open connected sub-set of Fixpcq such
that c1pβq X Z ‰ H. Then

1. β is contained set-theoretically in c1´1pZq, Hence β is an open connected subset of
Fixpc|Zq.

2. Suppose β is proper over k. Then, for every cohomological self-correspondence u
of F P Db

ctfpX,Λq lifting c, one has LTβpuq “ LTβpu|Zq.

4 Main results

In this section unless otherwise mentioned, we work over F, an algebraic closure of a
finite field Fq. Let q “ pr, where p is the characteristic of the finite field. Unless otherwise
specified, all schemes are assumed to be separated and of finite type over F.

A scheme (or a morphism of schemes) is said to be defined over Fq if it obtained by
the base change to F of a scheme (or a morphism of schemes) over Fq.

For any scheme X0{Fq, let F : X0 Ñ X0 be the rth-iterate of the absolute Frobe-
nius. We continue to denote by F the associated endomorphism of X :“ X0 ˆFq F.

Given a self-correspondence c :“ pC, c1, c2q of a scheme X, both of which are defined
over Fq, denote by cpnq the self-correspondence cpnq :“ pC, c1 ˝ F

n, c2q of X.
Let X be a scheme defined over Fq. Let j : X ãÑ X be a compactification and

BX be the complement of X in X, with the reduced induced structure. Assume that
j (and hence BX) is defined over Fq. For a self-map f : X Ñ X, we denote by Γtf :“
pX, f, 1Xq the associated self-correspondence of X. For any proper self-map f : X Ñ

X, let Trpf˚, H˚
c pX,Q`qq :“

ř2dimpXq
i“0 p´1qiTrpf˚, H i

cpX,Q`qq P Q`.
To understand the action of a proper morphism on cohomology, it is necessary to be

able to calculate the global traces of all its iterates. The following proposition ensures
existence of good compactifications adapted to iteration,
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Proposition 0.0.13. Let f, g be two proper self maps of X defined over Fq. Let rf s
and rgs be compactifications of Γtf and Γtg. Suppose that BX is rf spnq and rgspmq contract-

ing. Then, there exists a self-correspondence rĆg ˝ f s :“ p rCg˝f ,rc1,g˝f ,rc2,g˝f q of X and a

morphism rrjg˝f s from Γtg˝f to rĆg ˝ f s such that,

1. rĆg ˝ f s is a self-correspondence of X, also defined over Fq.

2. rĆg ˝ f s is a compactification of Γtg˝f and rjg˝f,1 “ rjg˝f,2 “ j.

3. BX is rĆg ˝ f spm`nq-contracting.

Moreover, rĆg ˝ f s is independent of m or n.

Hence, we can deduce the following using Theorem 0.0.12.

Corollary 0.0.14. Let f : X Ñ X be a proper self map such that the pair pX, fq
is defined over Fq. There exists a Npfq ě 1 such that for all integers n ě Npfq and
k ě 1, Fixpfk ˝F nkq “ Trppfk ˝F nkq˚, H˚

c pX,Q`qq, where Fixpfk ˝F nkq is the number of
fixed points of fk ˝F nk acting on X. Moreover, when X is proper we can take Npfq “ 1.

Now we study the consequences of these results to algebraic dynamics.

Let k be either F or the field of complex numbers C. Fix an embedding
τ : Q` ãÑ C.

Suppose X is a proper scheme over k. Let H˚pXq be the `-adic cohomology of X
(when k “ F) with its increasing weight filtration or the singular cohomologyH˚pXpCq,Qq
(when k “ C) with its Mixed Hodge structure (see [5] section 2 and [25] Proposition
8.1.20). Let WkH

˚pXq be the associated weight filtration.

Let f : X Ñ X be a self-map of X.

Let λodd and λeven be the spectral radius (with respect to τ , if k “ F) for the action
of f˚ on the oddly and evenly graded cohomology respectively (`-adic or singular as the
case may be). Let kodd be maximal among integers with the property that, the spectral
radius for the action of f˚ on GrkoddW H ipXq is λodd, where i is an odd integer. Similarly
define keven.

Theorem 0.0.15. Using the above notations,

1. λeven ě λodd.

2. If equality holds in p1q, then keven ě kodd.

As a result,
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Corollary 0.0.16. Let f : X Ñ X be a self-map of a proper scheme over an arbitrary
field k. Let ` be a prime invertible in k and k an algebraic closure of k. Fix an embedding
τ : Q` ãÑ C. Then the spectral radius (with respect to τ) for the action of f˚

k
on the entire

`-adic cohomology H˚pXk,Q`q is equal to the spectral radius for its action on the evenly
graded cohomology.

Moreover, we recover the following result of Fakhruddin [9] (see also [11]).

Theorem 0.0.17. Let X0 be a scheme over k “ Fq and f0 a proper, surjective self
morphism of X0. Then the set of periodic points of f0 are Zariski dense in X0.



Organization of the thesis

This thesis consists of four chapters; we give a brief outline of the contents here.

In Chapter 1 we discuss the set-up underlying the Lefschetz-Verdier trace formula.
In particular we define the local and global terms of the trace formula, and discuss some
examples of interest. We also recall a trace formula due to Fujiwara and discuss some
applications. Finally in Section 1.3 we define a zeta function associated to a self map
of a variety over a finite field. We also establish some simple analytic properties of this
zeta function.

Chapter 2 begins with a brief motivation for the problem considered in this thesis. In
Section 2.1 we introduce the notion of topological entropy and discuss some foundational
results by Gromov and Yomdin. In Section 2.2, as initiated by Esnault-Srinivas we at-
tempt to understand the results of Section 2.1 from a motivic point of view. In particular
we recall a result by Esnault-Srinivas on the structure of the linear map on the `-adic
cohomology, associated to an automorphism of a smooth proper surface. In Section 2.3
we establish some constraints on the eigenvalues for the action of a self-map of a proper
scheme on its `-adic cohomology. The crucial input here is Deligne’s theory of weights.

In the scenario when the base field is either an algebraic closure of a finite field or the
field of complex numbers, we put further restrictions on the action of such self maps on
the graded pieces of the weight filtration. These results seems to be previously unknown
even for smooth projective varieties over C.

Finally in Section 2.4 we discuss some examples to elucidate the results of the previous
section. The second example serves as a motivation for the question addressed in the
next chapter.

In Chapter 3 we recall the notion of a contracting correspondence as introduced by
Varshavsky and indicate some of its consequences. In particular we review an ‘effective’
trace formula for open correspondences obtained by Varshavsky. In Section 3.2 we con-
struct compactifications adapted to both iteration and contraction. In Section 3.3 we
use the compactifications constructed in the previous section to obtain a trace formula
adapted to iterations, which is of independent interest.

In Chapter 4 we work exclusively with smooth, projective varieties. In Section 4.1
we review the necessary results from intersection theory. Then we establish an uni-
form bound for the intersection of subvarieties of complimentary dimension in a smooth
projective variety. In the final section 4.2 we define the Gromov algebra associated to
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a self-map of a smooth projective variety and obtain a generalization of a result of
Esnault-Srinivas, using an idea of O’Sullivan as developed by Truong [30].



Chapter 1

Lefschetz-Verdier trace formula

In this chapter we recall the set-up underlying the Lefschetz-Verdier trace formula. We
essentially follow the treatment in [8]. We also recall a trace formula due to Fujiwara and
discuss some applications of the same. In the final section we introduce a zeta function
associated to a self map of a variety over a finite field.

In what follows we shall use basic properties of étale cohomology as developed in
[19], [15]. A general reference for the framework of Verdier duality in the étale context
is [13], Exposé XVIII. The passage to `-adic coefficients is carried out in [14] and is
summarized in [23], 1.1.

1.1 The set-up

Fix a base field k which is assumed to be separably closed. Unless otherwise specified, all
schemes are assumed to be of finite type and separated over k. Further all morphisms
of schemes are to be understood as over k. For any scheme X, 1X denotes the identity
morphism.

Fix a prime ` invertible in k. Let Λ be a coefficient ring which is either finite and
annihilated by a power of `, or is a finite extension of Q`, or is the ring of integers of
such an extension. For most of our purposes, it suffices to consider Λ “ Q`.

Let Db
ctf pX,Λq be the bounded derived category of sheaves of Λ-modules on X, con-

sisting of complexes of finite tor-dimension with constructible cohomology (see [15] Rap-
port 4.6, [23] 1.1.2-1.1.3). LetDb

ctf pΛq denote the triangulated sub-category of the derived
category of Λ-modules consisting of perfect complexes. For any scheme X, let ΛX be the
constant sheaf on X with coefficients in Λ.

For any scheme X, let πX : X Ñ Spec pkq denote the structural morphism. Let
KX :“ π!

XΛSpec pkq, be the dualizing complex of X, and denote by DX :“ RHomp , KXq

the Verdier duality functor. For an embedding f : Y ãÑ X and any F P Db
ctf pX,Λq

we write F |Y instead of f˚F . We identify Db
ctf pSpec pkq,Λq with Db

ctf pΛq such that the
functor πX! gets identified with RΓcpX, q.
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For schemes X1 and X2, let pr1 and pr2 denote the projection morphisms from
X1 ˆk X2 onto X1 and X2 respectively. Let Fi P Db

ctf pXi,Λq, i “ 1, 2 be two complexes

of sheaves. Denote by F1 b F2 the object pr˚1F1 b
L
Λ pr˚2F2 in Db

ctf pX1 ˆk X2,Λq.
For a closed sub-scheme Z of X let IZ denote it’s ideal sheaf. By Zred we mean the

reduced closed sub-scheme underlying Z. By Zd, d ě 1 we mean the closed sub-scheme
of X defined by the ideal sheaf IdZ . In particular Z1 “ Z and Zr is a closed sub-scheme
of Zs, whenever r ď s.

For a morphism of schemes f : X Ñ Y , pf˚, f˚q and pf!, f
!q are adjoint pairs. Further

when f is proper we have an adjoint triple pf˚, f˚, f
!q.

For any scheme X, π0pXq denotes the set of its connected components.

Definition 1.1.1 (Correspondence). A correspondence from a scheme X1 to X2 is a
morphism of schemes c : C Ñ X1 ˆk X2. We will denote this by rcs “ pC, c1, c2q where
c1 :“ pr1 ˝ c and c2 :“ pr2 ˝ c.

Example 1.1.2. The natural isomorphism ctr : Spec pkq Ñ Spec pkq ˆk Spec pkq is a
self-correspondence of Spec pkq, denoted by rctrs “ pSpec pkq, 1Spec pkq, 1Spec pkqq.

Example 1.1.3. Given a morphism of schemes f : X2 Ñ X1, we get a correspondence
rΓtf s :“ pX2, f, 1X2q from X1 to X2. We identify X2 with its image Γtf inside X1 ˆk X2

via the correspondence rΓtf s.

Definition 1.1.4 (Morphism of correspondences). Let rcs “ pC, c1, c2q be a correspon-
dence from X1 to X2 and let rbs “ pB, b1, b2q be a correspondence from Y1 to Y2. A
morphism of rcs to rbs consists of a triple of morphisms rf s :“ pf1, f

#, f2q which make
the following diagram commutative.

X1

f1
��

C
c1oo c2 //

f#

��

X2

f2
��

Y1 B
b1
oo

b2
// Y2

Example 1.1.5. Let c : C Ñ X1 ˆk X2 be a correspondence from X1 to X2. Then,
rπsc :“ pπX1 , πC , πX2q is a morphism from rcs to rctrs called the structural morphism of
rcs.

We say a morphism of correspondences rf s “ pf1, f
#, f2q is proper (resp. an open

immersion, resp. a closed immersion) if each of the f1, f# and f2 is proper (resp. an
open immersion, resp. a closed immersion).

We say a correspondence rcs is proper over k, if rπsc is proper.

Definition 1.1.6 (Compactification of correspondences). A compactification of a cor-
respondence c : C Ñ X1 ˆk X2, is an open immersion rjs “ pj1, j

#, j2q of rcs into a
correspondence c : C Ñ X1 ˆk X2, such that rcs is proper and j1, j

#, j2 are dominant.
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Lemma 1.1.7. Let rcs be a compactification of rcs as above. If c1 is proper, then the
natural map C Ñ C ˆX1

X1 is an isomorphism. Similarly, if c2 is proper, the natural

morphism C Ñ C ˆX2
X2 is an isomorphism.

Proof. Assume c1 is proper, then the dense open immersion C ãÑ C ˆX1
X1 is also

proper and hence, an isomorphism. A similar proof goes through when c2 is proper.

Definition 1.1.8 (Restriction of a correspondence to an open sub-scheme). Let rcs “
pC, c1, c2q be a correspondence from X to itself. Let U Ď X be an open sub-scheme. Then
the restriction of c to U is the correspondence,

rcs|U :“ pc´1
1 pUq X c

´1
2 pUq, c1|c´1

1 pUqXc´1
2 pUq, c2|c´1

1 pUqXc´1
2 pUqq

from U to itself. Let c|U denote the induced morphism from c´1
1 pUqX c

´1
2 pUq Ñ U ˆk U .

Similarly if W Ď C is an open sub-scheme of C, the restriction of C to W is the
correspondence rcs|W :“ pW, c1|W , c2|W q. As above c|W denotes the induced morphism
from W Ñ X ˆk X.

Definition 1.1.9 (Cohomological correspondence). Given a correspondence rcs “ pC, c1, c2q

from X1 to X2 and objects Fi P Db
ctf pXi,Λq a cohomological correspondence (from F1

to F2) lifting rcs is a morphism u P HomDb
ctf pX2,Λqpc2!c

˚
1F1,F2q.

Example 1.1.10. Let f : X2 Ñ X1 be a morphism. Then, the natural isomorphism
f˚ΛX1 Ñ ΛX2 is a cohomological correspondence lifting rΓtf s (see Example 1.1.3).

Eventually we will be interested in cohomological correspondences lifting non-proper
correspondences. To study these, it will be necessary to push-forward these cohomologi-
cal correspondences to the compactifications of these non-proper correspondences. Con-
versely we will also need to pull-back cohomological correspondences lifting proper cor-
respondences along an open sub-scheme (see Defintion 1.1.8).

1.1.1 Restriction of cohomological correspondence to an open
sub-scheme

Let c : C Ñ XˆkX be a self-correspondence of X. Let C0 Ď C and X0
i Ď X, i “ 1, 2 be

open sub-schemes such that, c induces a correspondence c0 : C0 Ñ X0
1 ˆkX

0
2 . Then, one

has the following commutative diagram,

C0 � � jC //

c02
��

C

c2

��
X0

2
� �

j
X0

2 // X2
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For any sheaf F in Db
ctf pC,Λq, there exists a natural adjunction morphism F Ñ

c!
2c2!F . Applying j!

C to the above morphism and using the adjunction between c0
2! and

c0!
2 , one gets a base change morphism BCpFq : c0

2!pF |C0q Ñ pc2!Fq|X0
2
.

Let u P HomDb
ctf pX2,Λqpc2!c

˚
1F1,F2q be a cohomological correspondence lifting rcs. Then

one can restrict u to give a cohomological correspondence from F1|X0
1

to F2|X0
2

lifting
rc0s as follows,

u0 : c0
2!c

0˚
1 pF1|X0

1
q » c0

2!pc
˚
1F1|C0q

BCpc˚1F1q // pc2!c
˚
1F1q|X0

2

u|
X0

2 // F2|X0
2

.

In particular, for any open sub-scheme U Ď X we have a cohomological correspon-
dence u|U lifting rcs|U (see Definition 1.1.8).

1.1.2 Action of a correspondence on cohomology

Now suppose, one has a correspondence c : C Ñ X1 ˆk X2 and a cohomological corre-
spondence u between F1 P D

b
ctf pX1,Λq and F2 P D

b
ctf pX2,Λq lifting rcs. Further assume

that there exists an open sub-scheme X0
1 Ď X1 such that F1 is supported on X0

1 and
c1|c´1

1 pX0
1 q

: C0 :“ c´1
1 pX

0
1 q Ñ X0

1 is proper. Then, as shown in Section 1.1.1, one gets a

correspondence rc0s :“ pC0, c1|C0 , c2|C0q between X0
1 and X2, and a cohomological cor-

respondence u0 between F1|X0
1

and F2 lifting rc0s. Let c0
1 and c0

2 be the induced morphism

from C0 to X0
1 and X2 respectively.

Note that we have obvious isomorphismsRΓcpX1,F1q » RΓcpX
0
1 ,F1|X0

1
q “ πX0

1 !pF1|X0q

and πC0!c
0!
2 pF2q » πX2!c

0
2!c

0!
2 pF2q. Since c0

1 is proper one also has πX0
1 !c

0
1˚c

0˚
1 pF1|X0q »

πC0!c
0˚
1 pF1|X0

1
q. Further there is a morphism induced by adjunction πX2!c

0
2!c

0!
2 pF2q Ñ

πX2!pF2q. Thus applying πC0! to u0 gives a morphismRΓcpuq : RΓcpX1,F1q Ñ RΓcpX2,F2q.
In particular if X1 “ X2 and F1 “ F2 then, one gets an endomorphism RΓcpuq of the
perfect complex RΓcpX,Fq.

1.2 The trace formula

In this section we describe a recipe to obtain the local and global terms of the Lefschetz-
Verdier trace formula. We continue using the notations and conventions of the previous
section.

1.2.1 Scheme of fixed points

Let c : C Ñ X ˆk X be a correspondence. The scheme of fixed points of rcs, is the
closed sub-scheme Fixpcq :“ C ˆXˆkX X of C, where X is looked at as a scheme over
X ˆkX via the diagonal embedding ∆. Let ∆1 denote the embedding of Fixpcq inside C
and let c1 be the restriction of c to Fixpcq. Note that c1 ˝ c

1 “ c2 ˝ c
1. Hence, we have a

commutative diagram,
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Fixpcq c1 //
� _

∆1

��

X� _

∆
��

C c // X ˆX

Example 1.2.1. Let c : C Ñ X ˆk X be a correspondence from X to itself. Let u be
a cohomological correspondence of F P Db

ctf pX,Λq to itself lifting rcs. Further assume
that c2 is quasi-finite. The proper base change theorem ([15] Chapitre 1, Théorème
4.5.4) implies that for any closed point x P X, the stalk at x of c2!c

˚
1F is isomorphic to

‘c2pyq“xFc1pyq. Hence ux induces a morphism ‘c2pyq“xFc1pyq Ñ Fx. In particular, for any
closed point y P Fixpcq, there exists an induced endomorphism uy of Fc1pyq.

Suppose now, rcs “ rΓtf s for a morphism f : X Ñ X. Then, the closed points
of Fixpcq are precisely the ‘fixed points’ of f , that is closed points y P X such that
fpyq “ y. Further if u is the cohomological correspondence of Example 1.1.10, the
induced endomorphism uy of Λ, for any fixed point y of f , is the identity map of Λ.

Definition 1.2.2 (Naive local trace). Using the assumptions and notations in Example
1.2.1, for any closed point y P Fixpcq, we define the naive local term at y to be the trace
of the endomorphism uy. We denote this by NLypuq P Λ.

As we shall see later, the Lefschetz-Verdier trace formula is a consequence of the
commutativity of certain trace maps with proper push-forward. Now we describe these
trace maps.

1.2.2 Trace maps

Let c : C Ñ X ˆk X be a correspondence from X to itself. Let F P Db
ctf pX,Λq. Let

∆ : X Ñ X ˆk X be the diagonal embedding.
One has the natural evaluation map DXF b F Ñ KX . Since pullback commutes

with (derived) tensor product, ∆˚pDXF b Fq » DXF b F , by adjunction one gets
a morphism DXF b F Ñ ∆˚KX . Further one has the base change isomorphism (of
functors) c!∆˚ » ∆1

˚c
1!. Thus, applying c! to the morphism DXF bF Ñ ∆˚KX one gets

a morphism φF : c!pDXF b Fq Ñ c!p∆˚KXq » ∆1
˚c
1!KX » ∆1

˚KFixpcq, where the last
isomorphism follows from the functoriality of the upper shriek functor.

In [17] (see (3.1.1) and (3.2.1) in loc. cit.), Illusie obtained a canonical isomorphism

RHompc˚1F , c!
2Fq » c!pDXF b Fq.

Precomposing the above isomorphism with φF , we get a morphism

T r : RHompc˚1F , c!
2Fq Ñ ∆1

˚KFixpcq.

Applying H0pC, q to the above morphism one obtains the Trace map
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T rc : Hompc2!c
˚
1F ,Fq Ñ H0pFixpcq, KFixpcqq.

For an open subset β of Fixpcq, let jβ denote the inclusion of β into Fixpcq. The
natural adjunction morphism KFixpcq Ñ jβ˚j

˚
βKFixpcq induces a morphism

Resβ : H0pFixpcq, KFixpcqq Ñ H0pβ,Kβq.

Denote by T rβ the composition Resβ ˝ T rc. If further β is proper over k, then the
adjunction πβ!π

!
βΛ Ñ Λ gives rise to a morphism Intβ : H0pβ,Kβq Ñ Λ. Thus we get a

morphism

LTβ :“ Intβ ˝ T rβ : Hompc2!c
˚
1F ,Fq Ñ Λ.

Definition 1.2.3 (Local term). For any proper connected component β of Fixpcq and
any cohomological correspondence u lifting rcs, the local term at β is defined to be
LTβpuq.

Remark 1.2.4. Our definition of a local term is the one in [8], 1.2. It is compatible
with the definition in [17], 4.2.5 (see [8], Appendix A).

Example 1.2.5. Let rcs “ rctrs as defined in Example 1.1.2. Recall that we have
identified Db

ctf pSpec pkq,Λq with the triangulated category of perfect complexes of Λ-
modules. Moreover Fixpctrq “ Spec pkq. Hence the trace map is a morphism from
HomDb

ctf pΛq
pF ,Fq Ñ Λ. The recipe above for the trace map implies that it coincides

with the usual trace map for endomorphisms of perfect complexes.

Now we define the push-forward of a cohomological correspondence, in various situ-
ations which appear in our context.

1.2.3 Push-forward of cohomological correspondence

Let rcs “ pC, c1, c2q be a correspondence from X1 to X2 and rbs :“ pB, b1, b2q a correspon-
dence from Y1 to Y2. Let rf s “ pf1, f

#, f2q be a morphism from rcs to rbs(see Definition
1.1.4). Let Fi P Db

ctf pXi,Λq, i “ 1, 2.

X1

f1
��

C
c1oo c2 //

f#

��

X2

f2
��

Y1 B
b1
oo

b2
// Y2

Suppose one of the following holds,

1. the left hand square is cartesian. Then there exists a base change isomorphism,BC :
b˚1f1! Ñ f#

! c
˚
1 .
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2. f1 and f# are proper. Since the left hand diagram is commutative, there exists a
natural transformation b˚1f1˚ Ñ f#

˚ c
˚
1 which by the properness assumption is the

same as a natural transformation, BC : b˚1f1! Ñ f#
! c

˚
1 .

3. b1 and c1 are proper. By adjunction there is a natural transformation f1! Ñ

f1!c1˚c
˚
1 » b1˚f

#
! c

˚
1 . Thus, in this case also, we get (by adjointness) a base change

morphism, BC : b˚1f1! Ñ f#
! c

˚
1 .

Suppose at least one of the conditions above holds true, and let u be a cohomological
correspondence between F1 and F2 lifting rcs. Then we can associate a cohomological
correspondence rf s!puq between f1!F1 and f2!F2 lifting rbs, as follows:

b2!b
˚
1pf1!F1q

BC //b2!f
#
! c

˚
1F1 » f2!c2!c

˚
1F1

f2!u //f2!F2 .

Example 1.2.6. Let rcs “ pC, c1, c2q be a proper correspondence between X1 and
X2. Then rπsc : rcs Ñ rctrs satisfies the condition p2q above and hence rπsc!puq makes
sense for any cohomological correspondence u lifting rcs. Then it is immediate from defi-
nition that the push-forward as defined above, coincides with the action on cohomology
defined earlier (see sub-section 1.1.2). Further, if X1 “ X2 “ X and u is a cohomo-
logical self-correspondence of F P Db

ctf pX,Λq, then rπsc!puq can be identified with the
endomorphism RΓcpuq of the perfect complex RΓcpX,Fq.

Example 1.2.7. Suppose f : X2 Ñ X1 is a proper morphism of schemes. Let Γtf
be the correspondence from X2 to X1 associated to f (see Example 1.1.3). Then, the
structural morphism rπsΓt

f
: rΓtf s Ñ rctrs satisfies the condition p3q above. Hence one can

push-forward the cohomological correspondence defined in Example 1.1.10. The recipe
above implies that the induced morphism on cohomology is the obvious pullback on
cohomology, f˚ : H˚

c pX1,Λq Ñ H˚
c pX2,Λq induced by f .

Example 1.2.8. Let rcs :“ pC, c1, c2q be a correspondence between X1 and X2 with
c1 proper. Let rcs :“ pC, c1, c2q be a compactification of rcs via rjs :“ pj1, j

#, j2q(see
Definition 1.1.6). Since c1 is proper, rjs satisfies the condition p1q above (see Lemma
1.1.7). Thus for any Fi P Db

ctf pXi,Λq, i “ 1, 2 and any cohomological correspondence u
between them lifting rcs, one gets a cohomological correspondence rjs!puq between j1!F1

and j2!F2.

Suppose further that X1 “ X2 “ X and u is a cohomological self-correspondence
of F P Db

ctf pX,Λq. Then rπsc : rcs Ñ rctrs satisfies condition p3q above and one gets an
endomorphism RΓcpuq of RΓcpX,Fq, by pushing forward u along the structural map
rπsc. It is immediate from the definition of rjs!puq that, this endomorphism is the same
as the endomorphism RΓcprjs!uq of RΓcpX, j!Fq » RΓcpX,Fq obtained by pushing
forward rjs!puq (as defined above) along the structural map rπsc (see Example 1.2.6).
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1.2.4 Lefschetz-Verdier Trace formula

One can recover the Lefschetz-Verdier trace formula (see [17] Corollary 4.7) as a special
case of commutativity of trace map with proper push-forward (see [17] Corollary 4.5, [8]
4.3.4).

Theorem 1.2.9. Let rcs “ pC, c1, c2q be a correspondence from X to itself and rbs “
pB, b1, b2q be a correspondence from Y to itself. Let rf s “ pf, f#, fq be a proper morphism
from rcs to rbs. Then the morphism f 1 : Fixpcq Ñ Fixpbq (see Definition 1.2.1) induced
by rf s is proper and for every cohomological correspondence u from F P Db

ctf pX,Λq to
itself, lifting rcs one has,

T rbprf s!puqq “ f 1! pT rcpuqq P H
0pFixpbq, KFixpbqq.

Here f
1

! : H0pFixpcq, KFixpcqq Ñ H0pFixpbq, KFixpbqq is the morphism induced by apply-
ing H0pFixpbq, q to the adjunction f 1!KFixpcq Ñ KFixpbq.

Remark 1.2.10. The theorem as stated is proved in [8], since we do not require c or b
to be proper, unlike in [17].

An immediate corollary is the Lefschetz-Verdier trace formula.

Corollary 1.2.11. Let c : C Ñ X ˆkX be a correspondence with C and X proper over
k. Then for every cohomological correspondence u from F P Db

ctf pX,Λq to itself lifting c
one has,

TrpRΓcpuqq “
ř

βPπ0pFixpcqq
LTβpuq.

Here TrpRΓcpuqq is the trace of the endomorphism RΓcpuq of the perfect complex of
Λ-modules RΓcpX,Fq, induced by u (see Example 1.2.6).

Proof. The result follows from Theorem 1.2.9 applied to rπsc : rcs Ñ rctrs. Exam-
ples 1.2.6 and 1.2.5 imply that the term on the left (of Theorem 1.2.9) evaluates to
TrpRΓcpuqq. That the term on the right is

ř

βPπ0pFixpcqq LTβpuq follows from the definition

of a local term (see Definition 1.2.3).

Given the Lefschetz-Verdier trace formula, the computation of global traces (for a
proper correspondence) is reduced to the problem of computing local terms on the scheme
of fixed points. Since the local terms are defined very non-explicitly, computing them
in general can be quite difficult. However when one is working over an algebraic closure
of a finite field, and under certain circumstances, these local terms can be computed
explicitly. In fact under these circumstances, these local terms happen to be equal to the
naive local terms (see Definition 1.2.2). Moreover the Lefschetz-Verdier trace formula
can be used to compute the global traces (whenever they are defined) of cohomological
correspondences lifting correspondences which are not necessarily proper. This was con-
jectured by Deligne and first proved (conditionally) by Pink ([7]) and unconditionally
by Fujiwara ([6]).
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1.3 Fujiwara’s trace formula and applications

Let k0 “ Fq be a finite field with q elements of characteristic p. Let k be an algebraic
closure of Fq. Let ` be a prime co-prime to p.

Finite type and separated schemes over Fq will be denoted by a sub-script o (for exam-
ple X0, Y0, etc.). Similarly morphisms of schemes over Fq will be denoted by f0, g0, etc.
. The corresponding object over k will be denoted without a sub-script, for example
X, f , etc. .

For any finite type and separated scheme X{k, let H ipX,Q`q and H i
cpX,Q`q respec-

tively denote the ith usual and compactly supported `-adic étale cohomology of X.
For any self map f : X Ñ X of a finite type and separated scheme X over k, we

define

Trpf˚, H˚pX,Q`qq :“
ř2dimpXq
i“0 p´1qiTrpf˚;H ipX,Q`qq P Q`.

Similarly when f is proper, we define

Trpf˚, H˚
c pX,Q`qq :“

ř2dimpXq
i“0 p´1qiTrpf˚;H i

cpX,Q`qq P Q`.

Definition 1.3.1 (Absolute Frobenius). For any scheme X0{Fq, the absolute Frobenius
(with respect to Fq) F a

X0,q
: X0 Ñ X0 is the morphism which is the identity on the

underlying topological space, and for any open affine sub-scheme U0 Ď X0, F a
X0,q
|U0

corresponds to the ring endomorphism of ΓpU0,OU0q given by αÑ αq, @α P ΓpU0,OU0q.

Remark 1.3.2. The absolute Frobenius is a Fq-linear morphism.

Lemma 1.3.3. Let X0{Fq be a finite type and separated scheme. Then X0{Fq is unram-
ified (and hence étale) iff F a

X0,q
is an unramified morphism.

Proof. The map induced on the differentials, d : F a˚
X0,q

Ω1
X0{Fq

Ñ Ω1
X0{Fq

is the zero

map. Hence X0{Fq is an unramified morphism iff Ω1
X0{Fq

is the zero sheaf iff X0{Fq
is unramified (see [19] Chapter 1, Proposition 3.5).

Definition 1.3.4 (Geometric Frobenius). For a scheme X0{Fq let X denote the base
change of X0 to k. The geometric Frobenius (with respect to Fq) is the morphism FX,q :
X Ñ X induced from F a

X0,q
: X0 Ñ X0 by base change.

Remark 1.3.5. The geometric Frobenius morphism is a k-linear morphism.

A scheme X{k is said to be defined over Fq, if there exists a scheme X0{Fq and
an isomorphism of k-schemes between X and X0 ˆFq k. Given any such scheme X{k
defined over Fq, the geometric Frobenius morphism FX0ˆFqk

induces an endomorphism
of X{k. We call this the geometric Frobenius (with respect to Fq) and denote it by FX,q.
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In a similar vein, a diagram of schemes over k is said to be defined over Fq if it is
obtained as a base change of a diagram over Fq.

Now suppose f0 : X0 Ñ X0 is a self-map of a finite type and separated scheme over
Fq. Let pX, fq be the corresponding pair over k, obtained by base change. Let Γtf0˝Fa

X0,q

be the transpose of the graph of f0 ˝ F
a
X0,q

and ∆X0 denote the diagonal embedding of
X0 in X0 ˆFq X0. Note that f0 and F a

X0,q
commute.

Lemma 1.3.6. With notations as above, the scheme Γtf0˝pFa
X0,q

qm
X∆X0 is étale over Fq

for all m ě 1.

Proof. If m is greater than 1, replacing f0 by f0˝pF
a
X0,q
qm´1 we reduce to the case m “ 1.

Let Z0 :“ Γf0˝Fa
X0,q

X∆X0 and g0 :“ f0 ˝ F
a
X0,q

. Consider the diagram,

Z0� _

i
��

� � i // X0� _

∆
��

X0
� �

Γt
g0//

g0
%%

X0 ˆFq X0
pr1 //

pr2
��

X0

X0

Here, the morphism Γtg0 is the transpose of the graph of g0 and pri, i “ 1, 2 are
the projections. The commutativity of the above diagram implies that, pf0 ˝ iq ˝ F

a
Z0,q

“

pf0 ˝ FX0,qq ˝ i is a closed immersion. Hence F a
Z0,q

is a closed immersion and thus an
unramified morphism. Lemma 1.3.3 now implies that Z0 is unramfied (and hence étale)
over Fq.

Let f : X Ñ X be a self-map of a finite type scheme over k.

Definition 1.3.7 (Fixed point). A closed point x P X is said to be a fixed point of f if
fpxq “ x.

Proposition 1.3.8. Let f0 : X0 Ñ X0 be a self morphism of a smooth, proper scheme
over Fq. Then, Trppfm ˝ F n

X,qq
˚, H˚pX,Q`qq is the number of fixed points of fm ˝ F n

X,q

acting on X.

Proof. This is an immediate consequence of Lemma 1.3.6 and the trace formula in
[15], Chapter 4, Corollaire 3.7.

The above proposition naturally leads to the following questions, for an arbitrary
X0, a proper f0 and integers m ě 1.
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Question 1.3.9. Is the `-adic number Tr
`

pf ˝ Fm
X,qq

˚, H˚
c pX,Q`q

˘

an integer? If yes, then
is it equal to the number of fixed points of f ˝ Fm

X,q acting on X?

A trace formula by Fujiwara sheds some light on these questions. We need one more
definition before we can state Fujiwara’s result.

Let C, X1 and X2 be finite type and separated schemes over k defined over Fq. Let
rcs :“ pC, c1, c2q be a correspondence (see Definition 1.1.1) from X1 to X2 also defined
over Fq.

Definition 1.3.10. For every n ě 1 let rcspnq :“ pC,F n
X1,q

˝ c1, c2q, a correspondence
from X1 to X2.

Remark 1.3.11. Note that rcspnq is also defined over Fq.

Suppose now that X1 “ X2 “ X and c1 is proper and c2 is quasi-finite.

Theorem 1.3.12. ([6], Corollary 5.4.5)
There exists an integer N0 depending only on the correspondence rcs such that for all

integers n ě N0,

1. Fixpcpnqq is finite (as a scheme over k).

2. Moreover for any sheaf F P Db
ctf pX,Λq and any cohomological self-correspondence

u lifting cpnq one has,

TrpRΓcpuqq “
ř

xPπ0pFixpcnqq
NLxpuq.

Here RΓcpuq is the endomorphism of RΓcpX,Fq as defined in Example 1.2.8 and
NLxpuq is the naive local term at x (see Definition 1.2.2).

When X is proper we can take N0 “ degpc2q :“ maxxPX

´

dimkH
0pc´1

2 pxq,Oc´1
2 pxqq

¯

.

Now we are in a position to answer the questions 1.3.9.

Corollary 1.3.13. Both the questions in 1.3.9 have a positive answer, if m is sufficiently
large. Moreover when X0 is proper any m ě 1 would do.

Proof. Let rcs “ rΓtf s. Then rcs is defined over Fq and for any n ě 1, the correspondence

rΓtf s
pnq “ rΓtf˝Fn

X,q
s. Let F “ Q` and let upnq be the cohomological self-correspondence

of Q` as in Example 1.1.10 lifting rΓtf˝Fn
X,q
s “ rcspnq. Then Fujiwara’s trace formula

(Theorem 1.3.12) implies that there exists an integer m such that, for all integers n ě m,

Tr ppf ˝ F nq˚, H˚
c pX,Q`qq “ TrpRΓcpu

pnqqq “
ř

xPFixpcpnqqNLxpu
pnqq.
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The first equality is a consequence of Example 1.2.7. That the right hand side com-
putes the number of fixed point of f ˝F n

X,q is a consequence of Lemma 1.3.6 and Example
1.2.1. Moreoever we can choose m “ 1 when X0 is proper.

Definition 1.3.14. Let n0pfq be the least integer m such that, both the questions in
1.3.9 have a positive answer.

Fujiwara’s trace formula implies that for a non-proper X0, questions 1.3.9 have a
positive answer for m sufficiently large. An ‘effective’ upper bound for n0pfq is an im-
mediate consequence of [8], Theorem 2.3.2 (see Corollary 3.1.14). However, there is no
obvious relationship between these upper bounds for n0pfq and n0pf

rq, r ą 1. For the
purpose of understanding the action of f˚ on cohomology, it is useful to understand
the growth of these upper bounds with respect to r. We shall address this question in
Chapter 3.

We end this section with an interesting application of Fujiwara’s trace formula (see
[16], 3.5 b)).

Proposition 1.3.15. Let f : X Ñ X be a proper self map of a finite type and separated
scheme over an arbitrary algebraically closed field k. Then for any prime ` invertible
in k the `-adic number

ř2dimpXq
i“0 p´1qiTr pf˚;H i

cpX,Q`qq is in fact a rational number
independent of `.

Proof. By a standard spreading out and specialisation argument, one is immediately
reduced to the case where k is an algebraic closure of a finite field Fq, and the pair
pX, fq is defined over Fq. Then Corollary 1.3.13 implies that there exists an integer
N such that, the traces Tr

`

f ˝ Fm
X,q, H

˚
c pX,Q`q

˘

are rational (in fact integral) for all
integers m ě N . The result is then an immediate consequence of Lemma 8.1 in [16] (see
Remark 8.2, loc. cit.).

Now we shall introduce a zeta function associated to a self map of a finite type and
separated scheme over Fq. The analytic properties of this zeta function will be central
to the results in Chapter 2.

1.4 A zeta function associated to a self map

We continue using the notations and conventions from the previous sections.
Let X0 be a finite type and separated scheme over Fq and f0 : X0 Ñ X0 a proper self

map (also defined over Fq). Let ` be a prime invertible in Fq.
For any field K, Krrtss and Kpptqq respectively be the ring of formal power series

and the field of formal Laurent series with coefficients in K.
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Definition 1.4.1. The zeta function ZpX0, f0, tq corresponding to pX0, f0q is defined to
be

ZpX0, f0, tq “ expp
ř

ně1

Trppf ˝ FX,qq
n˚, H˚

c pX,Q`qqt
n

n
q P Q`rrtss Ă Q`pptqq.

Remark 1.4.2. When f0 is the identity, one recovers the Hasse-Weil zeta function of
the scheme X0.

Lemma 1.4.3. ZpX0, f0, tq belongs to Qptq XQ`rrtss Ă Q`pptqq and is independent of `.

Proof. Proposition 1.3.15 implies that the above power series is actually in Qrrtss and
is independent of `. The trace-determinant relation ([22] 1.5.3) implies that ZpX0, f0, tq
is a rational function in Q`. Hence, ZpX0, f0, tq P Q`ptq XQrrtss Ă Q`rrtss Ă Q`pptqq.

For any field K, a formal power series
ř

ně0 ant
n P Krrtss is a rational function in t iff

there exists N and M sufficiently large such that, for all k ą N , the Hankel determinants
Hk :“ detpAkq vanish, where the matrix Ak is a pM ` 1q ˆ pM ` 1q matrix and its
pi, jqth-entry is ai`j`k, 0 ď i, j,ď M (see [18] Chapter 5, Section 5, Lemma 5, compare
[19] Chapter VI, Remark 12.5). Hence for any field L containing K, Lptq X Krrtss “
Kptq XKrrtss Ă Lpptqq since, the vanishing of Hankel determinants corresponding to a
formal power series can be checked after a field extension.

Thus ZpX0, f0, tq P Qptq and is independent of `.

Corollary 1.4.4. The formal power series ZpX0, f0, tq P Qrrtss Ă Crrtss has a non-
trivial radius of convergence about the origin in the complex plane and has a meromorphic
continuation onto the entire complex plane as a rational function.

Proof. It follows from Lemma 1.4.3 that, the formal power series ZpX0, f0, tq coincides
with the power series expansion (about the origin) of a rational function with coefficients
in Q, as elements of Qrrtss. Hence the result.

Example 1.4.5. Suppose X0 is geometrically connected and f0 : X0 Ñ X0 is a constant
map (necessarily mapping to a Fq-valued point). The associated zeta function ZpX0, f0, tq
is 1

1´t
P Qrrtss.





Chapter 2

Constraints on eigenvalues

In this chapter we establish some constraints on the eigenvalues for the linear action of
a self map of a proper variety on its `-adic cohomology. We begin with some motivation
coming from topological entropy and then give a short summary of some recent work
by Esnault-Srinivas ([3]). The results of this chapter partially answer a generalisation of
some questions posed by Esnault-Srinivas (see loc. cit. 6.3).

2.1 Background: Topological entropy

A general reference for this section is the ICM article of Oguiso ([12]).
Let pX, dq be a compact metric space. Let f : X Ñ X be a continuous self map of

X. For n ě 1, let pXn, dnq be a the n-fold self-product of X equipped with the sup-metric
induced by d. The continuous map Γfn´1 : X Ñ Xn given by xÑ px, fpxq, ¨ ¨ ¨ , fn´1pxqq,
gives an embedding of X ãÑ Xn. Let dpf, nq be the metric induced on X by restriction
of dn under this embedding.

Intuitively dpf, nqmeasures how fast two points which were close to begin with, spread
out or come closer as the case may be, under iteration by f . Let Npε, n, fq be the least
number of balls of radius ε with respect to dpf, nq, needed to cover X. Since X is com-
pact, this is a finite number, which is non-decreasing as εÑ 0` (for a fixed n).

Definition 2.1.1. With notations as above, the topological entropy of f denoted by
dtoppfq :“ lim

εÑ0`
hpf, εq, where hpf, εq :“ lim sup

n

logNpε,n,fq
n

.

The limit above exists in r0,8s.
Following are the basic properties of topological entropy,

• dtoppfq depends only on the underlying topology of X and not on the metric.

• If f is a periodic map then its entropy is 0.

• If f is an isometry then its entropy is 0.
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An interesting class of compact metric spaces are compact Kahler manifolds with a
choice of a Kahler metric.

Let M be a compact Kahler manifold and ω the associated p1, 1q form. Let f : M Ñ

M be a holomorphic, surjective self map of a compact Kahler manifold. Then as above
to pM, fq we can associate dtoppfq P r0,8s, the topological entropy of f .

Let λpfq, λevenpfq, λppfq denote the spectral radius for the (linear) action of f˚ on
H˚pM,Qq, ‘iH2ipM,Qq and Hp,ppM,Cq. Then one has the following result obtained by
combining results of Gromov [1] and Yomdin [2],

Theorem 2.1.2. Let f : M Ñ M be a holomorphic and surjective self map of a com-
pact Kahler manifold M . With notations as above, dtoppfq “ log λpfq “ log λeven “
max0ďpďdimpXq log λp.

Remark 2.1.3. In fact the proofs of Gromov and Yomdin imply that the spectral radius
for the action of f˚ on H˚pM,Qq is obtained on the smallest f˚-stable sub-algebra
generated by any Kahler class ω.

Corollary 2.1.4. The topological entropy of a surjective self map of a compact Kahler
manifold is finite.

Theorem 2.1.2 is computationally very useful and gives a ‘simple’ way to generate
examples with positive entropy. Further it linearizes the problem of computing topo-
logical entropy by relating it to the spectrum of f˚ acting on cohomology. Hence it is
natural to look for constraints on the spectrum of this operator, coming from the various
additional structures that can exist on cohomology.

2.2 Algebraic entropy

The following proposition is a consequence of the existence of a polarized Hodge struc-
ture on H˚pXpCq,Qq (with respect to any ample class rωs P H2pXpCq,Qqq (see [3]
Proposition 5.1).

Proposition 2.2.1. Let X{C be a smooth proper surface. Let f : X Ñ X be an auto-
morphism and rωs P H2pXpCq,Qq an ample class. Then we have the following.

(1) The spectral radius for the action of f˚ on H˚pXpCq,Qq coincides with the spectral
radius for its action on the f˚-stable sub-algebra generated by rωs.

(2) Moreover f˚ acts by finite order on H2
trpXpCq,Qq, the orthogonal complement (with

respect to the cup-product pairing) of the image of Neron-Severi inside H2pXpCq,Qq.

Here p1q can also be obtained as a consequence of the results of Gromov and Yomdin
(see Remark 2.1.3).
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The statement of the proposition above, makes sense over an arbitrary base field, with
the Betti cohomology replaced by `-adic cohomology. However it is not suited for a
proof by specialisation. Esnault and Srinivas observed that a suitable generalisation of
Proposition 2.2.1 specialises well, and proved the same by reducing to the case of a finite
field (see [3]).

Theorem 2.2.2 (Esnault-Srinivas). Let f : X Ñ X be an automorphism of a smooth
proper surface over an arbitrary algebraically closed field k. Let ` be a prime invertible
in k. Let rωs P H2pX,Q`q be an ample class. Then for any embedding τ of Q` inside C,

(1) the spectral radius for the action of f˚ (with respect to τ) on H˚pX,Q`q coincides
with the spectral radius for its action on the f˚-stable sub-algebra generated by rωs.

(2) Moreover, let V pf, rωsq be the largest f˚ stable sub-space of H2pX,Q`q in the or-
thogonal complement of rωs (with respect to the cup-product pairing). Then f˚ is
of finite order on V pf, rωsq.

Remark 2.2.3. The assumption, with respect to τ is superfluous, thanks to the result
of Katz-Messing ( [26] Theorem 2, (2)).

However, unlike Proposition 2.2.1 the proof of Theorem 2.2.2 is quite delicate and uses
(among many other things) the explicit classification of smooth projective surfaces. In
particular, it relies on lifting of certain K3 surfaces to characteristic 0, based on [4], and
using Hodge theory to resolve this case.

2.3 Some new constraints on the eigenvalues

We use the notations and conventions of Section 1.3.

Lemma 2.3.1. Let Gptq P tQrrtss be a formal power series with non-negative coeffi-
cients and with no constant term. Then the formal power series exppGptqq P Qrrtss and
Gptq have the same radius of convergence about the origin in the complex plane. In
particular, in the disc of its convergence, the formal power series exppGptqq, considered
as a holomorphic function, coincides with the exponential (in the analytic sense) of a
holomorphic function.

Proof. Suppose Gptq converges in a disc of positive radius around the origin. Then it
exists as a holomorphic function on the disc. Hence F ptq :“ exppGptqq is a holomorphic
function on this disc (here exp is the analytic exponential map).

Note that the power series expansion of the holomorphic function F ptq about the ori-
gin (considered as an element of Qrrtss) coincides with the formal power series exppGptqq.
Hence the formal power series exppGptqq converges on the (open) disc of convergence of
Gptq.
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Hence the radius of convergence of the formal power series exppGptqq is at least as
large as that of the formal power series Gptq, subject to the latter having a non-trivial
radius of convergence.

To complete the proof, it suffices to show that the radius of convergence of the formal
power series exppGptqq is bounded above by the radius of convergence of Gptq.

Using the standard expression for the radius of convergence of a formal power series
(see [20] 10.5, (2)), it suffices to show that dn

dtn
pexppGptqqq|t“0 ě Gpnqp0q where Gpnqptq is

the nth formal derivative of Gptq. We shall show by induction on n that,

dn

dtn
pexppGptqq “ P pGp1qptq, Gp2qptq, ¨ ¨ ¨ , Gpnqptqq exppGptqq in Qrrtss,

where P px1, x2, ¨ ¨ ¨ , xnq is a polynomial with positive integral coefficients and is of the

form P px1, x2, ¨ ¨ ¨ , xnq “ xn ` rP px1, x2, ¨ ¨ ¨ , xn´1q for some polynomial rP in one less
variable.

For n “ 1 the statement is obviously true. Assume now that the statement is true
with n “ k, the chain rule of differentiation then implies the statement for n “ k` 1. In
particular, one observes that

dn

dtn
pexppGptqqq|t“0 “ Gpnqp0q ` rP pGp1qp0q, Gp2qp0q, ¨ ¨ ¨ , Gpn´1qp0qq.

The non-negativity of the coefficients of Gptq implies the non-negativity of Gpnqp0q

for each n ě 1. Since the coefficients of the polynomial rP are positive we are done.

Let Q` be an algebraic closure of Q` and let Q be the algebraic closure of Q Ă Q`

inside Q`. An element in Q` is said to be an algebraic number, if it belongs to Q.
The following proposition on existence of functorial weight filtrations is standard. We

prove it here due to lack of an appropriate reference.

Proposition 2.3.2. Let X0 be a finite type and separated scheme over a finite field
Fq. For any integer i P r0, 2dimpXqs, there exists an unique increasing (finite) weight
filtration WkH

i
cpX,Q`q, k ě 0 such that,

(1) (Functoriality) the weight filtration is functorial for proper morphisms of finite type
and separated schemes over Fq. That is, for any proper morphism f0 : X0 Ñ Y0 of
finite type and separated schemes over Fq, the induced morphism f˚ : H i

cpY,Q`q Ñ

H i
cpX,Q`q respects the weight filtration. In particular there is an induced action of

F ˚X,q on GrkWH
i
cpX,Q`q.

(2) (Purity) For any integer i P r0, 2dimpXqs and all integers k ě 0, the non-zero
GrkWH

ipX,Q`q are pure of weight k. That is, for any integer i P r0, 2dimpXqs and
all integers k, the eigenvalues (in Q`) of F ˚X,q acting on GrkWH

i
cpX,Q`q (assumed to

be non-zero) are algebraic numbers, all of whose complex conjugates have absolute

value q
k
2 .
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(3) (Strictness) For any proper morphism f0 : X0 Ñ Y0 of finite type and separated
schemes over Fq, the induced morphism f˚ : H i

cpY,Q`q Ñ H i
cpX,Q`q is strict (in

the sense of [24] 1.1.5) for the weight filtration.

Proof. Let A be the abelian category of Q`rts-modules. For any finite type and separated
scheme X0{Fq, H i

cpX,Q`q can be considered as a Q`rts-module with t acting on H i
cpX,Q`q

as F ˚X,q.
Let CFq be the category whose objects are finite type and separated schemes over

Fq and morphisms being proper morphisms of schemes over Fq. Then for any i, X0 ÞÑ

H i
cpX,Q`q is a (contravariant) functor from CFq to A.

Théorème 1 (3.3.1) in [23] implies that the eigenvalues (in Q`) of F ˚X,q acting on
H i
cpX,Q`q are algebraic numbers of weight less than or equal to i (in the sense of [23]

Définition 1.2.1). In particular all the roots (in Q`) of an irreducible factor of the minimal
polynomial of F ˚X,q (acting on H i

cpX,Q`q ) are algebraic numbers. Moreover GalpQ`{Q`q

acts transitively on the set of these roots and hence all of them have the same weight.
For any X0 and any integer i, the Q`rts-module H i

cpX,Q`q is canonically a direct
sum of Q`rts-sub-modules of H i

cpX,Q`q, such that each sub-module is supported only
on an (ideal defined by) irreducible factor of the minimal polynomial of F ˚X,q acting
on H i

cpX,Q`q. Thus each of these sub-modules is pure of a fixed weight. Now define
WkH

i
cpX,Q`q to be the direct sum of those sub-modules whose weights are less than or

equal to k. Hence purity of GrkWH
i
cpX,Q`q is obvious from construction.

Functoriality and uniqueness are an immediate consequence of that fact that, there
are no non-zero morphisms between Q`rts modules with disjoint supports. Strictness is
also obvious from the construction of the filtration (from an underlying direct sum).

Remark 2.3.3. Alternatively H i
cpX,Q`q “

pH ipRπX!Q`,Xq, where pH i is the ith per-
verse cohomology on DbpSpec pkq,Q`q for the middle perversity (see [28] 2.2.18). Thus
H i
cpX,Q`q is a mixed perverse sheaf on Spec pkq and consequently has a functorial weight

filtration (see [28] Théorème 5.3.5).

Remark 2.3.4. Suppose X is a finite type and separated scheme over k (an algebraic
closure of a finite field). Then after choosing a model for X over a finite sub-field of
k and using Proposition 2.3.2, one can associate a weight filtration on H i

cpX,Q`q. Fur-
ther, uniqueness and functoriality (in Proposition 2.3.2) imply that, this filtration is
independent of the chosen model and is functorial for proper self-maps of X{k.

Let k be either the algebraic closure of a finite field or the field of complex numbers
C. Fix a prime ` invertible in k (if charpkq ą 0), and an embedding

τ : Q` ãÑ C. (2.3.1)

Suppose X is a proper scheme over k. Let H˚pXq be the `-adic cohomology of X
(when charpkq ą 0) with its increasing weight filtration (Proposition 2.3.2, Remark 2.3.4)
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or the singular cohomology H˚pXpCq,Qq (when k “ C), with its Mixed Hodge structure
([25] Proposition 8.1.20). Let WkH

˚pXq be the associated weight filtration.
Let f : X Ñ X be a self map of X.
Let λodd (resp. λeven) be the spectral radius (with respect to τ if charpkq ą 0) for

the action of f˚ on ‘iě0H
2i`1pXq (resp. ‘iě0H

2ipXq). Let kodd be maximal among
integer k with the property that the spectral radius for the action of f˚ on GrkWH

ipXq
is λodd, where i is an odd integer. Similarly define keven.

Theorem 2.3.5. Using the above notations, we have that

(1) λeven ě λodd.

(2) If equality holds in p1q, then keven ě kodd.

Proof. Suppose k “ C, then choose a model pX,Fq of pX, fq over a finitely generated
domain R over Z such that the structure morphism π : XÑ Spec pRq is proper and flat
(see [21] Ch. IV Théorème 8.10.5). If necessary shrink Spec pRq to keep ` invertible. Then
the higher direct images Riπ˚Q` are constructible sheaves on Spec pRq (see [15] Théorème
4.6.2) . Thus shrinking Spec pRq if necessary, we can assume that Riπ˚Q` is a local system
for 0 ď i ď 2 dimpXq.

The morphism F˚pQ`q Ñ Q` induces an endomorphism Φi of the local system
Riπ˚Q`, 0 ď i ď 2 dimpXq, which by functoriality of the proper base change morphism
for π, induces f˚ : H ipX,Q`q Ñ H ipX,Q`q on the geometric generic fibre base changed
to k. Since Spec pRq has been chosen so that Riπ˚Q` is a local system, the specialization
map between the stalk of this local system at an algebraic geometric point over a closed
point (in the sense of [15] Chapitre 1, 2.3.1) and the geometric generic point (with re-
spect to the geometric point Spec pkq Ñ Spec pRq), is an isomorphism. Moreover this
isomorphism is equivariant for the induced endomorphisms Φi, and respects the weight
filtration (see [28] 6.2.2). Thus we are reduced to the case when k is an algebraic closure
of a finite field.

Suppose λodd ą λeven. We shall obtain a contradiction.
Note that for any positive integer r, the spectral radius (with respect to τ) of f r˚

acting on the odd and even degree cohomology are λrodd and λreven respectively. There
exists an iterate of f which maps a connected component of X into itself. Hence, f˚

acting on H0pX,Q`q has at least one eigenvalue of modulus 1 (with respect to any
τ). Thus, λodd ą λeven ě 1.

Choose a model pX0, f0q for the pair pX, fq over a finite field Fq, whose algebraic
closure is F. Since λodd ą λeven, there exists an integer r ąą 0 such that,

λrevenq
dimpXq

ă λrodd. (2.3.2)

We fix one such r. Consider the zeta function (see Definition 1.4.1) of the pair
pX0, f

r
0 q. It follows from Corollary 1.4.4 that this zeta function is defined as a holo-

morphic function in a non-trivial neighbourhood of the origin, and has a meromorphic
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continuation onto the entire complex plane as a rational function. Suppose that Rptq
Qptq

is

the meromorphic continuation, where Rptq and Qptq are co-prime rational polynomials
in t. Moreover using the trace-determinant relation (see [22] 1.5.3), one has

ZpX0, f
r
0 , tq “

2dimpXq
ź

i“0

Piptq
p´1qi`1

in Q`rrtss Ă Crrtsspvia τq (2.3.3)

where Piptq “ det
`

1´ t pFX,q ˝ f
rq
˚ , H i pX,Q`q

˘

, 0 ď i ď 2 dimpXq.

Moreover, one also has

ZpX0, f
r
0 , tq “

Rptq

Qptq
in Qrrtss. (2.3.4)

Hence (2.3.3) and (2.3.4) imply that the complex roots of Rptq and Qptq are a subset
of the inverse eigenvalues of pFX,q ˝ f

rq˚ acting on the odd and even degree cohomol-
ogy, respectively. In particular, they are non-zero. Also, note that f˚ and F ˚X,q commute
and hence can be simultaneously brought to a Jordan canonical form. Hence any eigen-
value of F ˚X,q ˝f

r˚ acting on any H ipX,Q`q is a product of an eigenvalue of F ˚X,q and one
of f r˚ acting on the same H ipX,Q`q.

Let α be any complex zero of
ś

0ďiďdimpXq P2iptq P Crts (via τ in (2.3.1)). Since the

ith compactly supported `-adic cohomology is of weight less than or equal to i ([23]
Théorème 1 (3.3.1)), one has,

1

|α|
ď λrevenq

dimpXq
ă λrodd. (2.3.5)

In particular, Qptq has no roots on the closed disc of radius 1
λrodd

.

Since λrodd is the spectral radius (with respect to τ) for f r˚ acting on the oddly graded
cohomology, there exists an odd index 2i`1 and a complex root β of P2i`1ptq such that,

|β| “
1

λroddq
mpβq

ď
1

λrodd

, (2.3.6)

where 2mpβq is a non-negative integer (corresponding to the weight of the Frobenius).
In particular, β is not a root of

ś

0ďiďdimpXq P2iptq P Crts. Hence β is a root of Rptq. Thus

Rptq has a root in the closed disc of radius 1
λrodd

, while Qptq has no roots on this closed

disc.

The equality between the Zeta function ZpX0, f
r
0 , tq and the rational function Rptq

Qptq
is

in the ring Qrrtss. Since the power series corresponding to Rptq
Qptq

is convergent in an open

disc not containing any of the zeroes of Qptq, the radius of convergence of ZpX0, f
r
0 , tq P

Qrrtss Ă Crrtss is strictly larger than 1
λrodd

.
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It follows from Corollary 1.3.13 that the zeta function ZpX0, f
k
0 , tq is of the form

exppGptqq, where Gptq P tQrrtss has non-negative coefficients. Thus Lemma 2.3.1 implies

that the rational function Rptq
Qptq

coincides with the exponential of a holomorphic function

in the disc of convergence of the zeta function ZpX0, f
r
0 , tq and in particular, in an open

neighbourhood of the closed disc of radius 1
λrodd

. Hence Rptq cannot have a zero in this

open neighbourhood. However (2.3.6) implies that that Rpβq “ 0, |β| ď 1
λrodd

. This is a

contradiction.
Hence λeven ě λodd.
Now suppose λeven “ λodd, but keven ă kodd. As before we shall obtain a contradiction.
Let µi be the spectral radius (with respect to τ in (2.3.1)) for the action of f˚ on

H2ipX,Q`q for each 0 ď i ď dimpXq. Then there exists an integer r ąą 0 such that, for
any integer i P r0, dimpXqs with µi ‰ λeven, we have

µri q
dimpXq

ă λreven ď λrevenq
keven

2 ă λroddq
kodd

2 . (2.3.7)

We fix one such r. As before Lemma 1.4.3 and Corollary 1.4.4 imply that the zeta
function ZpX0, f

r
0 , tq has a non-trivial radius of convergence about the origin and has

a meromorphic continuation of the form Rptq{Qptq onto the entire complex plane, with
Rptq and Qptq being co-prime rational polynomials. Also the zeroes of Rptq and Qptq, are
a subset of the inverse eigenvalues of pFX,q ˝ f

rq˚ acting on the odd and even degree
cohomology respectively.

Since the ith compactly supported `-adic cohomology is of weight less than or equal
to i ([23] Théorème 1 (3.3.1)), the weight filtration on H ipX,Q`q (Proposition 2.3.2)
satisfies WkH

ipX,Q`q “ H ipX,Q`q for k ě i.
Let

Pi,kptq :“ detp1´ tpFX,q ˝ f
rq˚,GrkWH

ipX,Q`qq, 0 ď k ď i, 0 ď i ď 2 dimpXq.

As before,

Piptq :“ detp1´ tpFX,q ˝ f
rq˚, H ipX,Q`qq, 0 ď i ď 2 dimpXq.

Since the weight filtration is respected by the action of F ˚X,q ˝ f
r˚ (Proposition

2.3.2), one has an equality,

śdimpXq
i“0

ś2i
k“0 P2i,kptq “

ś

0ďiďdimpXq P2iptq P Crts (via τ in (2.3.1)).

Let α be any complex zero of
ś

0ďiďdimpXq P2iptq P Crts. Then α is a zero of P2i,kptq

for some integer i P r0, dimpXqs and 0 ď k ď 2i. If µi ‰ λeven, then (2.3.7) implies,

1

|α|
ď µri q

k
2 ď µri q

dimpXq
ă λroddq

kodd
2 . (2.3.8)

On the other hand the definition of keven implies that, if µi “ λeven, then k ď
keven. Thus (2.3.7) implies that
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1

|α|
ď λrevenq

k
2 ď λrevenq

keven
2 ă λroddq

kodd
2 . (2.3.9)

Thus in any case 1
|α|
ă λroddq

kodd
2 for any complex root α of

ś

0ďiďdimpXq P2iptq. In

particular, the same holds true for any complex root of Qptq.
Moreover from the definition of kodd it follows that, there exist an odd index 2i ` 1

and a complex root β of P2i`1,koddptq such that, 1
|β|
“ λroddq

kodd
2 . Hence, β is not a root

of
ś

0ďiďdimpXq P2iptq and thus is necessarily a root of Rptq. Thus Rptq has a root on the

closed disc of radius 1

λroddq
kodd

2

, while Qptq has no roots on this closed disc. Arguing as

before, we arrive at a contradiction. Hence kodd ď keven.

Corollary 2.3.6. Let f : X Ñ X be a self-map of a proper scheme over an arbitrary
field k. Let ` be a prime invertible in k and k an algebraic closure of k. Fix an embedding
τ : Q` ãÑ C. Then, the spectral radius (with respect to τ) for the action of f˚

k
on the

entire `-adic cohomology H˚pXk,Q`q is equal to the spectral radius for its action on
‘iě0H

2ipXk,Q`q.

2.4 Two examples

The following simple example shows that the inequality p1q in Theorem 2.3.5 need not
be strict.

Example 2.4.1. Let k “ C and X “ E ˆE ˆ P1 where E is any elliptic curve over C.
Let f be the automorphism of X given by fpx, y, zq “ p2x` 3y, x` 2y, zq. We have

f “ g ˆ 1P1 , where g : E Ñ E is the automorphism px, yq ÞÑ p2x ` 3y, x ` 2yq. Let
λeven, λodd, keven, kodd be as defined in the previous section for the action of f˚ on
H˚pXpCq,Qq.

We have an injective ring homomorphism,

EndpE ˆ Eq » Mat2ˆ2pEndpEqq ãÑ End pH1pEpCq ˆ EpCq,Zqq ,

induced by functoriality of singular homology (see [27], Chapter IV). Hence the minimal
polynomial for the linear action induced by g on H1pEpCq ˆ EpCq,Qq is t2 ´ 4t` 1. In
particular the eigenvalues of g˚ on H1pEpCqˆEpCq,Qq are λ1 :“ 2`

?
3, λ2 :“ 2´

?
3 “

1
λ1

with some multiplicities. By functoriality of the universal coefficient isomorphism, the

eigenvalues of g˚ on H1pEpCq ˆEpCq,Qq are also λ1 and λ2 with the same multiplicity.
The cohomology ring H˚pEpCq ˆ EpCq,Qq is isomorphic (as graded rings) to the

exterior algebra on the Q-vector space H1pEpCqˆEpCq,Qq. Further this isomorphism is
equivariant for the action of g˚ and since, g˚ acts as identity on H4pEpCqˆEpCq,Qq, the
mutiplicities of λ1 and λ2 on H1pEpCq ˆ EpCq,Qq should be precisely 2 each.
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Since H1pEpCq ˆ EpCq,Qq is a 4-dimensional vector space over Q, the eigenvalues
of g˚ on H2pEpCq ˆ EpCq,Qq » Λ2H1pEpCq ˆ EpCq,Qq are λ2

1, λ
2
2, λ1λ2 “ 1 with

multiplicities 1, 1 and 4 respectively. On the other hand, as representations of the cyclic
group xgk˚, k P Zy, H3pEpCqˆEpCq,Qq is dual to H1pEpCqˆEpCq,Qq. Thus it follows
from the Kunneth formula that λeven “ λodd “ λ2

1, while keven “ 4 and kodd “ 3.

The following example shows that Theorem 2.3.5 is false without the properness
hypothesis, even for smooth varieties.

Example 2.4.2. Let T {k be a rank 2 torus (split over Fq) and f : T Ñ T any group
automorphism of T . Then, kerpf ˝ F n

T,q ´ 1T q is a finite étale group scheme. Since it
is a sub-group scheme of a torus, its order (or rank) is co-prime to p. For any integer
n P N, let Fixpf ˝ F n

T,qq be the number of fixed points of f ˝ F n
T,q acting on T . Then

Fixpf ˝ F n
T,qq “ |Pf pq

nq|

where Pf ptq :“ detp1 ´ tMf ;X
˚pT qq, and Mf is the linear map on the co-character

lattice X˚pT q, induced by f .
The only non-trivial compactly supported `-adic cohomology groups of T areH2

c pT,Q`q »

Q`, H
3
c pT,Q`q » Q`p´1q‘2 and H4

c pT,Q`q » Q`p´2q. Thus for all integers n ě 1,

Trppf ˝ F n
T,qq

˚, H˚
c pT,Q`qq “ q2n ´ Trpf˚, H3

c pT,Q`qqq
n ` Trpf˚, H2

c pT,Q`qq.

It follows from Corollary 1.3.13 that for n large enough,

Trppf ˝ F n
T,qq

˚, H˚
c pT,Q`qq “ Fixpf ˝ F n

T,qq “ Pf pq
nq “ q2n ´ TrpMf qq

n ` detpMf q.

Thus

Trppf ˝ F n
T,qq

˚, H˚
c pT,Q`qq “ Pf pq

nq

for all integers n ě 1.
Let f be chosen such that |TrpMf q| ą 2 and detpMf q “ 1. Note that the eigenvalues

of f˚ acting on the compactly supported `-adic cohomology are algebraic integers inde-
pendent of `. Since Trppf˝F n

T,qq
˚, H˚

c pT,Q`qq “ Pf pq
nq, it follows that, for any embedding

τ : Q` ãÑ C,

(1) f˚ acting on H3
c pT,Q`q has at least one eigenvalue of modulus greater than 1.

(2) f˚ acts as identity on H2
c pT,Q`q and H4

c pT,Q`q.

Hence λodd ą λeven.

A careful look at the proof of Theorem 2.3.5 shows that the failure of Theorem 2.3.5
without the properness hypothesis (as in Example 2.4.2), can be attributed to n0pf

kq

(see Definition 1.3.14) being strictly greater than 1. This motivates us to consider the
growth of an upper bound for n0pf

kq with respect to k for non-proper varieties. This
will be a topic of interest in the next chapter.



Chapter 3

Growth of an upper bound for
n0pf

kq with respect to k

In this section, we study the growth of an upper bound for n0pf
kq (see Definition 1.3.14)

with respect to k. A crucial input for us is Varshavsky’s notion of a ‘contracting’ corre-
spondence (see [8] 2.1). We recall the necessary notations and definitions from [8].

We continue using the notations and conventions from previous sections.

3.1 Varshavsky’s trace formula

We work over a separably closed base field k. All schemes are assumed to be separated
and finite type over k.

Let c : X Ñ Y be a morphism of schemes.

Definition 3.1.1 (Ramification along a closed sub-scheme). For a reduced closed sub-
scheme Z Ă Y its ramification along c is the smallest n P N such that c´1pZq Ď
pc´1pZqredqn. We denote this by RampZ, cq.

Definition 3.1.2 (Ramification degree of a morphism). If c above is quasi-finite, then
rampcq is defined as the maximum of rampy, cq, as y varies over all the closed points of
Y . We denote this by rampcq.

Remark 3.1.3. Note that our notation for ramification along a closed subscheme differs
from the one in [8] to avoid any possibility of a confusion with the notation for the
ramification degree of a morphism.

Now let c : C Ñ X ˆk X be a self-correspondence of X.

Definition 3.1.4 (Invariant closed subset). A closed subset Z Ď X is said to be c-
invariant if c1pc

´1
2 pZqq is set theoretically contained in Z.
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Definition 3.1.5 (Locally invariant closed sub-set). A closed subset Z Ď X is said to
be locally c-invariant if for each x P Z there exists an open neighbourhood U of x in X
such that, Z X U is rcs|U -invariant (see Definition 1.1.8) .

Example 3.1.6. If c2 is quasi-finite then any closed point of X is locally c-invariant
(see [8] Example 1.5.2).

Remark 3.1.7. Suppose rcs is a correspondence, locally invariant along a closed subset
Z. Let u be a cohomological correspondence from F P Db

ctf pX,Λq to itself lifting rcs (Def-
inition 1.1.9). Then we can define a self-correspondence rcs|Z of Z and a cohomological
self-correspondence u|Z of F |Z lifting rcs|Z as in [8], 1.5.6.

Definition 3.1.8. A closed subscheme Z is said to be stabilized by c if c´1
2 pZq is a closed

subscheme of c´1
1 pZq.

Recall that for a closed subscheme Z of X, Zk is the closed subscheme of X defined
by the ideal IkZ .

Definition 3.1.9. c is said to be contracting near a closed subscheme Z Ď X if c
stabilizes Z and c´1

2 pZn`1q is a closed subscheme of c´1
1 pZnq for some n ě 1.

Definition 3.1.10. A closed subscheme Z Ď X is said to be contracting in a neighbour-
hood of fixed points if there exists an open subscheme W of C containing Fixpcq such
that rcs|W is contracting near Z (see Definition 1.1.8).

Unless otherwise stated, henceforth in this section, we work over k, an algebraic
closure of a finite field Fq.

We record the following obvious lemma.

Lemma 3.1.11. Let rcs :“ pC, c1, c2q be a self correspondence of X defined over Fq. Let
rcs :“ pC, c1, c2q be a proper self correspondence of X also defined over Fq. Suppose there
exists an open immersion rjs “ pj1, j

#, j2q : rcs Ñ rcs defined over Fq. Then, for all n ě
1, rjs :“ pj#, j1, j2q : rcspnq Ñ rcspnq (see Definition 1.3.10) is an open immersion, which
is a compactification, if rjs : rcs Ñ rcs is a compactification.

An important result in [8] is the following trace formula.

Theorem 3.1.12. ([8], Theorem 2.3.2)
Let c : C Ñ X ˆk X be a correspondence defined over Fq.

(1) Suppose c2 is quasi-finite. Then for any n P N with qn ą rampc2q, the scheme
Fixpcpnqq is zero-dimensional.

(2) Let U Ď X be an open subscheme also defined over Fq such that c1|c´1
1 pUq is

proper, c2|c´1
2 pUq is quasi-finite, and the closed subset XzU is locally c-invariant.

Then there exists a positive integer d ě rampc2|c´1
2 pUqq with the following prop-

erty: for every F P Db
ctf pX,Λq with F |XzU “ 0 and every n P N with qn ą d, and

for any cohomological self-correspondence u of F lifting rcspnq, one has
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TrpRΓcpuqq “
ř

yPFixpcpnqqXc´1
2 pUq Trpuyq.

Here uy is the induced endomorphism on Fy (see Example 1.2.1).

(3) In the notation of p2 q as above, assume that X and C are proper over k. Then

d “: maxtrampc2|c´1
2 pUqq, rampc2, XzUqu

satisfies the conclusion of p2 q.

Remark 3.1.13. When U “ X the conclusion of assertion p2q above is the same as
that of Fujiwara ([6] Corollary 5.4.5).

3.1.1 A compactification of the transpose of a graph

Let X be a finite type and separated scheme over k and f : X Ñ X a proper mor-
phism. Assume that the pair pX, fq is defined over Fq. Let rΓtf s be the associated self

correspondence of X as in Example 1.1.3. Let j : X ãÑ X be an arbitrary compactifica-
tion of X (assumed to be defined over Fq). Let BX :“ XzX, with the reduced induced
structure.

Let Γtf be the Zariski closure of Γtf inside X ˆk X. Let c1,f and c2,f be the map

induced from Γtf to X, by the first and second projection respectively. Let jf : X ãÑ Γtf
be the open immersion. Let c1,f and c2,f be the restrictions of c1,f and c2,f respectively

to X (via jf ). Let BΓ
t

f be the complement of X inside Γ
t

f with the reduced induced

structure. For i “ 1, 2 let Bci,f be the restriction of ci,f to BΓ
t

f . Then rf s :“ pΓ
t

f , c1,f , c2,f q

(a self correspondence of X) is a compactification of rΓtf s via rjf s :“ pj, jf , jq.

Since f is proper and rf s :“ pΓtf , c1,f , c2,f q is a compactification of rΓtf s, Lemma 1.1.7

implies that BX is rf s-invariant. Hence we have a commutative diagram,

X �
� j // X BX? _

ioo

X �
� jf //

c1,f“f

OO

c2,f“1X

��

Γ
t

f

c1,f

OO

c2,f
��

BΓ
t

f
? _

ifoo

Bc1,f

OO

Bc2,f
��

X �
� j // X BX? _

ioo

Corollary 3.1.14. For all n ą logqpRampBX, c2,f qq, one has

Fixpf ˝ F n
X,qq “ Trppf ˝ F n

X,qq
˚, H˚

c pX,Q`qq.
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Here Fixpf ˝ F n
X,qq is the number of fixed points of f ˝ F n

X,q(see Lemma 1.3.6).

Proof. For any n ą logqpRampBX, c2,f qq let u
pnq
0 be the cohomological self correspon-

dence of Q` lifting rΓtFn
X,q˝f

s as in Example 1.1.10. It follows from Lemma 3.1.11 that

rf spnq is a compactification of rΓtFn
X,q˝f

s. Let upnq be the cohomological self correspon-

dence of j!Q` obtained as in Example 1.2.8 lifting rf spnq. Example 1.2.8 implies that the

endomorphisms RΓcpu
pnqq and RΓcpu

pnq
0 q of RΓcpX,Q`q are identical. The result then

follows by applying part p3q of Theorem 3.1.12 to upnq (see Example 1.2.1).

Corollary 3.1.14 implies that n0pfq ď RampBX, c2,f q (see Definition 1.3.14). The
procedure above gives an ‘effective’ upper bound for n0pfq in terms of the geometry
of the chosen compactification of X. However there is no obvious relationship between
these bounds for n0pfq and n0pf

rq, r ą 1.
Given the Lefschetz-Verdier trace formula, one obtains a trace formula as in Var-

shavsky [8], using additivity of trace maps (see [8] Section 5) and making the corre-
spondence contract along the boundary. The contraction along the boundary ensures
that the contribution to the local terms of the trace formula coming from the boundary
is trivial. The condition p3q in Theorem 3.1.12 ensures contraction along the boundary
after twisting the correspondence with a high enough iterate of the Frobenius. The key
step is the following theorem.

Theorem 3.1.15. ([8], Theorem 2.1.3)
Let c : C Ñ XˆkX be a correspondence contracting near a closed subscheme Z Ď X

in a neighbourhood of fixed points, and let β be an open connected subset of Fixpcq such
that c1pβq X Z ‰ H (see 1.2.1). Then

(1) β is contained set-theoretically in c1´1pZq, hence β is an open connected subset of
Fixpc|Zq (see Remark 3.1.7).

(2) For every cohomological correspondence u from F to itself lifting c, one has T rβpuq “
T rβpu|Zq. In particular, if β is proper over k, then LTβpuq “ LTβpu|Zq (see Remark
3.1.7).

Remark 3.1.16. The theorem above holds true over arbitrary separably closed fields
and c need not be proper.

The following corollary can be read off from the proof of Theorem 3.1.12 in [8].

Corollary 3.1.17. Let c : C Ñ X ˆk X be a self-correspondence of a scheme X. Let
U Ď X be an open subscheme and F P Db

ctf pX,Λq be supported on U . Suppose also that c
is contracting near the closed subscheme Z, where Zred “ XzU . Let u be a cohomological
self-correspondence of F lifting rcs. Then
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ř

βPπ0pFixpcqq
LTβpuq “

ř

βPpπ0pFixpc|U qqq
LTβpu|Uq

Remark 3.1.18. That the right hand side makes sense is a part of the corollary (see
Chapter 1, Section 1.1.1 for the definition of u|U).

Proof. Consider the following diagram of schemes (see 1.2.1),

Fixpcq c1 //

∆1

��

X

∆
��

C
c // X ˆX

If a connected component β of Fixpcq is such that c1pβqXZ “ H then, c1pβq “ c2pβq is
disjoint from Z. Hence, one has the inclusion β Ă c´1

1 pUqXc
´1
2 pUq. Thus β is a connected

component of Fixpc|Uq. On the other hand if c1pβqXZ ‰ H, Theorem 3.1.15 implies that
LTβpuq “ LTβpu|Zq. Since F restricted to Z is trivial and u|Z is a cohomological self-
correspondence of F |Z (see Remark 3.1.7), one necessarily has LTβpuq “ 0 if c1pβqXZ ‰
H.

Moreover p1q of Theorem 3.1.15 implies that if β P π0pFixpc|Uqq is such that β Ă
β1 P π0pFixpcqq then, c1pβ1q X Z “ H. Hence β “ β1. Thus the connected components
of Fixpc|Uq are precisely the connected components of Fixpcq whose image under c1 does
not intersect Z. In particular these connected components are proper over k. Hence the
right hand side makes sense. Since the local term at a connected component β Ď Fixpcq
depends only on an open neighbourhood of β, the result follows.

3.2 Compactifications adapted to iteration and con-

traction

Let X be a finite type and separated scheme over a field k, an algebraic closure of a
finite field Fq. Let X be a compactification of X. Let j : X ãÑ X be the open dense
inclusion. Let BX be the complement of X in X, with the reduced induced structure. Let
i : BX ãÑ X be the closed immersion. Assume that X, X and j are defined over Fq.

Let f and g be two proper self maps ofX both defined over Fq. Let rf s “ pCf , c1,f , c2,f q

and rgs :“ pCg, c1,g, c2,gq be self-correspondences of X compactifying rΓtf s and rΓtgs re-

spectively, and also defined over Fq. Let jf : X ãÑ Cf and jg : X ãÑ Cg be the open
dense inclusions. Also let BCf be the complement of X in Cf with the reduced induced
structure. Similarly define BCg. Let if : BCf ãÑ Cf be the closed immersion and sim-
ilarly one also has ig. Let c1,f and c2,f be the restrictions of c1,f and c2,f respectively
to Γtf “ X ãÑ Cf . Similarly define c1,g and c2,g. Let Bci,f , i “ 1, 2 be the restriction of

ci,f , i “ 1, 2 to BCf . Similarly define Bci,g, i “ 1, 2.
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Since f and g are proper, Lemma 1.1.7 implies that the dense open immersions
X ãÑ c´1

1,f pXq and X ãÑ c´1
1,gpXq are isomorphisms. Thus BCf Ď c´1

i,f pBXq, i “ 1, 2 and

BCg Ď c´1
i,g pBXq, i “ 1, 2. Moreover, the supports of BCf and c´1

i,f pBXq, i “ 1, 2 are equal
and a similar result is true for g.

Hence as before one has the following commutative diagram,

X �
� j // X BX? _ioo

X �
� jf //

c1,f“f

OO

c2,f“1X

��

Cf

c1,f

OO

c2,f
��

BCf
? _

ifoo

Bc1,f

OO

Bc2,f
��

X �
� j // X BX? _

ioo

.

There exists a similar diagram for g too.

Proposition 3.2.1. Let rf s and rgs be compactifications of rΓtf s and rΓtgs as above. Sup-

pose that BX is rf spnq and rgspmq contracting (see Definition 3.1.9). Then, there exists a

self-correspondence rĆg ˝ f s of X and a morphism rrjg˝f s :“ prjg˝f,1,rj
#
g˝f ,

rjg˝f,2q from rΓtg˝f s

to rĆg ˝ f s such that,

1. rĆg ˝ f s is a self-correspondence of X, also defined over Fq.

2. rĆg ˝ f s is a compactification of Γtg˝f (via rrjg˝f s) and rjg˝f,1 “ rjg˝f,2 “ j.

3. BX is rĆg ˝ f spm`nq-contracting.

Proof. Consider the following diagram,

X_�

jg
��

g // X_�

j
��

Cf ˆX Cg

c
1

1,f //

c
1

2,g
��

Cg

c2,g
��

c1,g // X

X �
� jf //

c2,f“1X

��

Cf

c1,f //

c2,f
��

X

X �
� j // X

(3.2.1)

Each square in the above diagram is cartesian.
Here c

1

1,f and c
1

2,g arise from base change of c1,f and c2,g respectively. Let rĆg ˝ f s :“

pCf ˆX Cg, c1,g ˝ c
1

1,f , c2,f ˝ c
1

2,gq.
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Note that the composite morphism c1,f ˝ jf factors via j : X ãÑ X and hence, the
base change of jf : X ãÑ Cf by c

1

2,g, is at once isomorphic to X under the projection

map and also an dense open immersion inside Cf ˆX Cg.

Hence there exists a dense open immersion rj#
g˝f from X to Cf ˆX Cg such that

rrjg˝f s :“ pj,rj#
g˝f , jq from Γtg˝f to rĆg ˝ f s is a compactification. Further it is clear that

rĆg ˝ f s is also defined over Fq.
Let BpΓ

t

f ˆX Γ
t

gq be the complement in Γ
t

f ˆX Γ
t

g of X with the reduced induced
structure.

Since, BX is rf spnq and rgspmq contracting, it is in particular stabilized by rf sn and
rgsm. Thus, there exist inclusions of closed subschemes

c´1
2,f pBXq Ď

´

F n
X,q
˝ c1,f

¯´1
`

BX
˘

(3.2.2)

and

c´1
2,gpBXq Ď

´

Fm
X,q
˝ c1,g

¯´1
`

BX
˘

. (3.2.3)

Hence (3.2.2) implies that

pc2,f ˝ c
1

2,gq
´1
pBXq Ď c

1´1
2,g

ˆ

´

F n
X,q
˝ c1,f

¯´1
`

BX
˘

˙

. (3.2.4)

Since c2,g ˝ c
1

1,f “ c1,f ˝ c
1
2,g (see Diagram 3.2.1) , one has

c
1´1
2,g

ˆ

´

F n
X,q
˝ c1,f

¯´1
`

BX
˘

˙

“ c
1´1
1,f

ˆ

´

F n
X,q
˝ c2,g

¯´1
`

BX
˘

˙

. (3.2.5)

Moreover, since F n
X,q
˝ c2,g “ c2,g ˝ F

n
Cg ,q

, (3.2.3) implies that

c
1´1
1,f

ˆ

´

F n
X,q
˝ c2,g

¯´1
`

BX
˘

˙

Ď c
1´1
1,f

ˆ

´

Fm`n
X,q

˝ c1,g

¯´1
`

BX
˘

˙

. (3.2.6)

Combining (3.2.4), (3.2.5) and (3.2.6) one gets,

`

c2,f ˝ c
1

2,g

˘´1 `
BX

˘

Ď

´

Fm`n
X,q

˝
`

c1,g ˝ c
1

1,f

˘

¯´1
`

BX
˘

.

Thus, BX is stabilized by rĆg ˝ f spm`nq.
Moreover by the contracting properties of rf spnq and rgspmq, there exist d, e P N and

inclusions of closed subschemes,

c´1
2,f

´

`

BX
˘

d`1

¯

Ď

´

F n
X,q
˝ c1,f

¯´1
``

BX
˘

d

˘

(3.2.7)

and
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c´1
2,g

´

`

BX
˘

e`1

¯

Ď

´

Fm
X,q
˝ c1,g

¯´1
``

BX
˘

e

˘

. (3.2.8)

Hence (3.2.7) implies that

´

c2,f ˝ c
1

2,g

¯´1 ´
`

BX
˘

de`d`e`1

¯

Ď c
1´1
2,g

ˆ

´

F n
X,q
˝ c1,f

¯´1 ´
`

BX
˘

dpe`1q

¯

˙

. (3.2.9)

Since c2,g ˝ c
1

1,f “ c1,f ˝ c
1
2,g (see Diagram 3.2.1), one has

c
1´1
2,g

ˆ

´

F n
X,q
˝ c1,f

¯´1 ´
`

BX
˘

dpe`1q

¯

˙

“ c
1´1
1,f

ˆ

´

F n
X,q
˝ c2,g

¯´1 ´
`

BX
˘

dpe`1q

¯

˙

. (3.2.10)

Moreover, since F n
X,q
˝ c2,g “ c2,g ˝ F

n
Cg ,q

, (3.2.8) implies that

c
1´1
1,f

ˆ

´

F n
X,q
˝ c2,g

¯´1 ´
`

BX
˘

dpe`1q

¯

˙

Ď c
1´1
1,f

ˆ

´

Fm`n
X,q

˝ c1,g

¯´1
``

BX
˘

de

˘

˙

. (3.2.11)

Thus, combining (3.2.9), (3.2.10) and (3.2.11) one has,

`

c2,f ˝ c
1

2,g

˘´1
´

`

BX
˘

de`d`e`1

¯

Ď

´

Fm`n
X,q

˝
`

c1,g ˝ c
1

1,f

˘

¯´1
`

BX
˘

de
.

Since

`

c2,f ˝ c
1

2,g

˘´1
´

`

BX
˘

de`1

¯

Ď
`

c2,f ˝ c
1

2,g

˘´1
´

`

BX
˘

de`d`e`1

¯

,

we conclude that BX is rĆg ˝ f spm`nq-contracting.

Remark 3.2.2. Suppose rf s and rgs above, are the compactifications of rΓtf s and rΓtgs

as obtained in 3.1.1. Let Ćg ˝ f denote the morphism induced from Γ
t

f ˆX Γ
t

g to X ˆk X

by rĆg ˝ f s. Denote by Γ
t

g˝f , the Zariski closure of Γtg˝f inside X ˆk X. Let jg˝f denote

the inclusion of X inside Γ
t

g˝f . Then one has a commutative diagram,

X �
�

rj#g˝f //� _

jg˝f
��

Γ
t

f ˆX Γ
t

g

Ąg˝f
��

Γ
t

g˝f
� � // X ˆk X
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Clearly Γ
t

g˝f Ă
Ćg ˝ fpΓ

t

fˆXΓ
t

gq. If Γ
t

g˝f is properly contained in Ćg ˝ fpΓ
t

fˆXΓ
t

gq, choose

a point x P pΓ
t

g˝f q
cXĆg ˝ fpΓ

t

f ˆX Γ
t

gq. In particular x R X and hence x is in the image of

an element x1 P BpΓ
t

f ˆX Γ
t

gq. Hence p Čg ˝ fq´1ppΓ
t

g˝f q
c XĆg ˝ fpΓ

t

f ˆX Γ
t

gqq is a non-empty

open set containing x1 and hence intersects X ãÑ Γ
t

f ˆX Γ
t

g non trivially, a contradiction.

Hence there is a proper birational morphism from Γ
t

f ˆX Γ
t

g to Γ
t

g˝f , the more ‘obvi-
ous’ choice for a compactification of Γtg˝f . However this morphism being in the ‘wrong’

direction does not help in proving that rg ˝ f s has the right contraction properties.

Remark 3.2.3. Note that by construction rĆg ˝ f s is independent of m or n. Hence, if
BX is contracted by rf spn

1q and rgspm
1q for some m1, n1 P N, then it is contracted by

rĆg ˝ f spm
1`n1q.

Remark 3.2.4. As pointed out by the referee, an argument along the lines of the proof
of Proposition 3.2.1 shows that rĆg ˝ f spm`nq is contracting along BX even when BX is
only stabilized by rgspmq.

3.3 A trace formula

Recall that X was a finite type and separated scheme over k, defined over a finite field
Fq, and f : X Ñ X was a proper self map, also defined over Fq.

Theorem 3.3.1. There exists an integer Npfq ě 1 such that for all integers n ě Npfq
and k ě 1,

Fixpfk ˝ F nk
X,qq “ Trppfk ˝ F nk

X,qq
˚, H˚

c pX,Q`qq, (3.3.1)

where Fixpfk ˝F nk
X,qq is the number of fixed points of fk ˝F nk

X,q acting on X. Moreover
when X is proper we can take Npfq “ 1.

Proof. When X is proper the claim follows from Corollary 1.3.13. Hence we can assume
that X is not proper.

Let rf s be the compactification of Γtf as defined in 3.1.1. As observed in 3.1.1, the

closed sub-schemes c´1
1,f pBXq and c´1

2,f pBXq have the same support. Hence

c´1
2,f pBXq Ď

`

c´1
2,f

`

BX
˘˘

red,r
“
`

c´1
1,f

`

BX
˘˘

red,r
Ď c´1

1,f

``

BX
˘

r

˘

,

where r “ RampBX, c2,f q (see Definition 3.1.1).
In particular, since BX is also defined over Fq,

c´1
2,f

`

BX
˘

Ď c´1
1,f

``

BX
˘

r

˘

Ď

´

F n
X,q
˝ c1,f

¯´1
`

BX
˘
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for all n ě logqprq.
Let Npfq be the smallest integer greater than logqprq. Then there exists d P N such

that 1` 1{d ă qNpfq{r. For such a choice of d and all n ě Npfq,

c´1
2,f

´

`

BX
˘

d`1

¯

Ď c´1
1,f

´

`

BX
˘

rpd`1q

¯

Ď c´1
1,f

´

`

BX
˘

qnd

¯

Ď

´

F n
X,q
˝ c1,f

¯´1
``

BX
˘

d

˘

.

Thus BX is rf spnq-contracting for all n ě Npfq.
By repeated use of Proposition 3.2.1, for all k ě 1 one can find a self correspondence

rĂfks of X (with r rf s :“ rf s) which is a compactification of Γt
fk

and such that rĂfkspnkq is

contracting along BX for all n ě Npfq (see Remark 3.2.3).
Let F :“ j!Q` be the sheaf on X supported on X. For any n ě 1, Lemma 3.1.11

implies that, rĂfkspnkq is a compactification of rΓt
Fnk
X,q˝f

ks. Hence for any n ě 1, as in

Example 1.2.8, the cohomological correspondence

u
pnq
k : pF nk

X,q ˝ f
kq˚Q` Ñ Q` (lifting rΓt

Fnk
X,q˝f

k ]),

extends to a cohomological self-correspondence u
pnq
k of F (lifting rĂfkspnkq).

Now suppose n is an integer greater than or equal to Npfq.

Since F is supported on X and rĂfkspnkq is contracting along BX, Corollary 3.1.17
implies that,

ÿ

βPπ0pFixprĂfkspnkqqq

LTβpu
pnq
k q “

ÿ

βPπ0pFixprĂfkspnkq|Xqq

LTβpu
pnq
k |Xq. (3.3.2)

The correspondence rĂfkspnkq|X is Γt
Fnk
X,q˝f

k and by Lemma 1.3.6 the connected com-

ponents of FixprĂfkspnkq|Xq are just the fixed points of F nk
X,q ˝ f

k. Moreover [8], Corollary

2.2.4 (b) implies that rĂfkspnkq|X is contracting near every closed point in a neighbour-
hood of fixed points. Hence Theorem 3.1.15 (2) implies that the local terms at the each
of the fixed points of F nk

X,q ˝ f
k is precisely 1. Hence the sum on the right hand side of

(3.3.2) is precisely the number of fixed points of F nk
X,q ˝ f

k. The result now follows from
the Lefschetz-Verdier trace formula (see Corollary 1.2.11) applied to the cohomological

correspondence u
pnq
k lifting the proper correspondence rĂfkspnkq, and using the observation

made in Example 1.2.8.

Remark 3.3.2. It follows from Remark 3.2.4 that for a given positive integer k, kNpfq
is possibly not the optimal integer for which one has the desired trace formula (see
(3.3.1)). However from the point of view of iteration it is natural to derive a trace
formula as in Theorem 3.3.1 using this (possibly sub-optimal) bound.
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Example 3.3.3. Here we construct an explicit example with Npfq ą 1. We look at
Example 2.4.2 carefully. We continue using the same notations.

As shown there, Fixpf ˝ F n
T,qq “ |Pf pq

nq| and Trppf ˝ F n
T,qq

˚, H˚
c pT,Q`qq “ Pf pq

nq for
all integers n ě 1. Hence if f is chosen such that detpMf q “ 1 and TrpMf q ą q` 1

q
. Then

Npfq is necessarily greater than 1.
For k ě 1, let Mfk be the linear map on the co-character lattice X˚pT q induced by

fk. Let Pfkptq :“ detp1´ tMfk ;X˚pT qq P Zrts.
We now show that Npfq can be chosen to be the smallest positive integer satisfying

Pf pq
Npfqq ě 0. That is Pf pq

Npfqq ě 0 implies that Pfkpq
kNpfqq ě 0, @k ě 1. Note that

Pfkpq
kNpfqq ě 0 ðñ qkNpfq ` 1

qkNpfq
ě TrpMfkq.

Let α and β be the complex eigenvalues of Mf . Then one has the following possibil-
ities,

(1) α (and hence β) is a real number and maxp|α|, |β|q ą 1.

(2) α (and hence β) is a real number and |α| “ |β| “ 1.

(3) α is not a real number and hence β “ α and |α| “ 1.

Suppose we are in the situation of p2q or p3q above, then for all k ě 1,

qkNpfq ` 1
qkNpfq

ě 2 “ |α|k ` |β|k ě TrpMfkq.

Now suppose we are in the situation of case p1q. That is, α and β are real, and at
least one of them (say αq has modulus greater than 1.

Suppose α is negative then so is β, and for any odd k ě 1, one trivially has

qkNpfq ` 1
qkNpfq

ě TrpMfkq.

Thus we are reduced to the case when either α is positive and k ě 1 or α is negative
and k is an even number greater or equal to 2. Hence, after squaring, we can assume
that α is positive and greater than 1.

The real valued functions fk : p1,8q Ñ R` given by x ÞÑ xk ` 1
xk

are strictly
increasing for all k ě 1. Hence fkpxq ě fkpyq for some k ě 1 and some x, y P p1,8q
implies fkpxq ě fkpyq for all k ě 1. Since by assumption f1pq

Npfqq ě f1pαq, one has
qkNpfq ` 1

qkNpfq
“ fkpq

Npfqq ě fkpαq “ TrpMfkq for all k ě 1.

Now we give an alternative proof for the density of periodic points for surjective and
proper self-maps of varieties over finite fields (see [9]). The density is true even for non-
proper maps and was derived as a Corollary to more general result on the intersection
of a correspondence with the graph of the (geometric) Frobenius (see [11], Corollary 0.4
and [10]).

We work over k, an algebraic closure of a finite field Fq.
A variety (over k) is a finite type, separated and integral scheme over k.
We shall need the following standard Lemma which we state here without a proof.
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Lemma 3.3.4. Let f : X Ñ Y be a proper surjective morphism between varieties of same
dimension over k. Then, the induced morphism on the top degree compactly supported
cohomology is multiplication by the generic degree of f .

Definition 3.3.5. Let f : X Ñ X be a self map of a finite type scheme over k. A closed
point x P X is said to be a periodic point, if it is a fixed point of fk for some k ě 1.

Theorem 3.3.6. Let X0 be a scheme over Fq and f0 a proper, surjective self morphism
of X0 (over Fq). Then, the set of periodic points of f0 is Zariski dense in X0.

Proof. Let pX, fq be the base change of pX0, f0q to k.
We can assume X0 is reduced (and hence geometrically reduced). Also, the statement

is true for the pair pX0, f0q iff it is true for some pX0,m, f
n
0,mq where pX0,m, f0,mq is the

base change of pX0, f0q to the finite sub-field Fqm of k and n is positive integer.
Since f is dominant, replacing f by a suitable iterate we can ensure that each irre-

ducible component of X is mapped onto itself. Further each of these components are
defined over a finite sub-field of k. Hence if necessary, after replacing f0 by a suitable
iterate and a finite extension of the base field, one can assume that each component of
X0 is geometrically integral and is stabilized by f0.

Thus, we are reduced to the case when f0 is a dominant and proper self map of a
geometrically integral scheme X0 of dimension d.

Let Z0 be the Zariski closure of the periodic points of X0 with the reduced induced
structure. Let Z be the closed subscheme of X obtained by base changing Z0 to k. Then
f0 restricts to a proper and dominant self morphism of Z0. Since f0 and FX0,q commute
and any closed point is a fixed point of FX0,q, we deduce that, a closed point is f0-periodic
iff it is pf0 ˝ FX0,qq-periodic.

Let π : X Ñ X0 be the map induced by base changing X0 to k. A closed point is
pf0 ˝ FX,qq-periodic iff any point on the fiber of π over it is a fixed point of pf ˝ FX,qq

r

for some positive integer r. A similar statement is also true for f0|Z0 . Since Z0 is the
Zariski closure of the periodic points of f0, Theorem 3.3.1 implies that there exists an
integer N ąą 0 such that for all n ě N ,

ZpX0, f0 ˝ F
n´1
X0,q
q “ ZpZ0, pf0q|Z0 ˝ F

n´1
Z0,q
q “ expp

ÿ

rě1

Fixpf r ˝ F nr
X,qqt

r

r
q P Qrrtss, (3.3.3)

where Fixpf r ˝ F nr
X,qq is the number of fixed points of f r ˝ F nr

X,q acting on X.
Let λ ě 1, be the generic degree of f0. Fix an embedding,

τ : Q` ãÑ C. (3.3.4)

Let λmax be the maximum of the spectral radii (with respect to τ) for the actions of f˚

and f |˚Z on the compactly supported `-adic cohomology of X and Z respectively. There
exists an integer N 1 ě 0 such that for all integers n ě N 1, one has



45

λmaxq
npd´ 1

2
q
ă qnd ď qndλ. (3.3.5)

Consider the Zeta functions ZpX0, f0 ˝ F
n´1
X0,q
q and ZpZ0, pf0q|Z0 ˝ F

n´1
X0,q
q for any

n ě maxtN,N 1u. Then (3.3.3) implies that these Zeta functions are the same, and
hence by Corollary 1.4.4 have the same meromorphic continuation as rational functions
(with coefficients in Q) to the entire complex plane. Let Rptq

Qptq
be this analytic continua-

tion, where Rptq and Qptq are co-prime rational polynomials.
Let

Pi,Xptq :“ detp1´ tpf ˝ F n
X,qq

˚, H i
cpX,Q`qq and

Pi,Zptq :“ detp1´ tpf |Z ˝ F
n
Z,qq

˚, H i
cpZ,Q`qq.

Thus one has,

ZpX0, f0 ˝ F
n´1
X0,q
q “

2d
ź

i“0

Pi,Xptq
p´1qi`1

“
Rptq

Qptq
in Crrtsspvia τ in p3.3.4qq (3.3.6)

and

ZpZ0, pf0q|Z0 ˝F
n´1
Z0,q
q “

2 dimpZq
ź

i“0

Pi,Zptq
p´1qi`1

“
Rptq

Qptq
in Crrtsspvia τ in p3.3.4qq. (3.3.7)

Let α be any complex root of
śd´1

i“0 P2i`1,Xptq. Since, the ith compactly supported
`-adic cohomology is of weight less than or equal to i ([23] Théorème 1 (3.3.1)), (3.3.5)
implies that

1
|α|
ă qndλ.

Further the one-dimensional Q`-vector space H2d
c pX,Q`q is pure of weight d, hence

Lemma 3.3.4 implies that P2d,Xptq “ p1 ´ qndλtq. Thus (3.3.6) implies that Qptq has a
zero at t “ 1

qndλ
.

Suppose Z0 is not equal to X0, then Z is necessarily of smaller dimension than
X. Since the ith compactly supported `-adic cohomology is of weight less than or equal
to i, any complex root α1 of

śdimpZq
i“0 P2i,Zptq satisfies

1
|α1|
ď qnpd´1qλmax.

It follows then from (3.3.5) that, for any such root α1 one has |α1| ą 1
qndλ

. In partic-

ular, (3.3.7) implies that, Qptq does not have a zero at t “ 1
qndλ

. This is a contradiction.





Chapter 4

The case of a smooth projective
variety

In this chapter, we build on an idea of O’Sullivan as developed by Truong in [30] and
obtain a Gromov-Yomdin type bound on the spectral radius for the action of a self-map
of a smooth projective variety over an arbitrary base field on its `-adic cohomology.

Throughout this chapter we will work over an algebraically closed field k. Let ` be
a prime, co-prime to the characteristic of k. We fix, once and for all an isomorphism
of Q`p1q with Q`. Hence we will talk of cycles classes with values in `-adic cohomology
without the Tate twist. We also fix an embedding

τ : Q` ãÑ C. (4.0.1)

A variety (over k) is a finite type, separated and integral scheme over k.

4.1 Some preliminaries from intersection theory

Let X be any smooth, projective variety over k.
Let Z˚pXq be the free abelian group generated by the set of closed subvarieties of

X and graded by co-dimension (see [31] Section 1.3). Let A˚pXq be the graded (by co-
dimension) Chow ring of X (see loc. cit. Section 8.3). The group underlying A˚pXq is
a graded quotient of Z˚pXq by rational equivalence. We shall write ApXq :“ ‘iA

ipXq
when we want to ignore the grading and the ring structure.

The components of an algebraic cycle rZs P Z˚pXq are the subvarieties of X which
appear in rZs with non-zero coefficients. To any closed subscheme Y Ď X we can as-
sociate an effective cycle rY s in Z˚pXq whose components are precisely the irreducible
components of Y (see [31] Section 1.5).

Let A˚numpXq (respectively A˚numpXqQ, respectively A˚numpXqR) be the graded (by
codimension) ring of algebraic cycles on X modulo numerical equivalence, with Z (re-
spectively Q, respectively R) coefficients (see [32] Section 1.1).
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Let A˚hompXqQ be the graded (by codimension) ring of algebraic cycles on X modulo
homological equivalence (with respect to `-adic cohomology), with Q coefficients (see
[15] Chapitre 4, [19] Chapter 6 for a construction of cycle classes). Note that A˚numpXqQ
is a quotient of A˚hompXqQ, which in turn is a Q-subalgebra of ‘iH

2ipX,Q`q.
For a morphism f : X Ñ Y of smooth, projective varieties over k, there is a pull-

back map f˚ : A˚pY q Ñ A˚pXq and a push-forward map f˚ : ApXq Ñ ApY q (see [31]
Proposition 8.3 (a) and Theorem 1.4 ). The pull-back is a morphism of graded rings
and the push-forward is a morphism of abelian groups. Further they satisfy a projection
formula (loc. cit. Proposition 8.3 (c)). In particular there exists a group homomorphism
πX˚ : ApXq Ñ ApSpec pkqq » Z.rSpec pkqs.(see loc. cit. Definition 1.4).

A˚numpXq and A˚hompXqQ also have similar functorial properties (see [32] Section 1).
We shall denote the intersection product on these rings by a ‘.’. For cycles rZs and

rZ 1s of complimentary co-dimension in X, by abuse of notation we shall denote the
integer πX˚prZs.rZ

1sq by rZs.rZ 1s.
Let rPsks P An´spPnkq, 0 ď s ď n be the class of a s-dimensional linear sub-space

of Pnk . The Chow ring A˚pPnkq is isomorphic to the graded ring Zrxs{pxn`1q under the
map rPn´1s Ñ x (see [31] Proposition 8.4) and the class rPsks generates abelian group
An´spPnkq, 0 ď s ď n (see [31] Example 1.9.3).

Definition 4.1.1. The degree of rZs P AspPnkq is the integer rZs.rPsks. For a subvariety
Z ãÑ Pnk by degpZq we mean degprZsq.

For any two smooth, projective varieties X and Y (over k), there is an exterior
product map (see [31] Section 1.10) A˚pXqbZA

˚pY q Ñ A˚pXˆkY q, which is a morphism
of graded rings (see [31] Example 8.3.7). We shall denote the image of rZs b rZ 1s by
rZs ˆ rZ 1s.

In what follows, we will need a bound (see Proposition 4.1.9) well known to experts
and proved using standard techniques. For ease of exposition we present a proof along
the lines of [34] (compare [31] Example 11.4.1, [33] Lemma 2.2).

Definition 4.1.2. Two subvarieties V and W in a smooth projective variety X are
said to intersect properly, if the each component of V XW has the right dimension (i.e.
dimpV q ` dimpW q ´ dimpXq).

Remark 4.1.3. In a similar vein, cycles rV s and rW s in Z˚pXq are said to intersect
properly if each component of rV s intersects each component of rW s properly.

Suppose now i : X ãÑ Pnk is a closed embedding of a smooth, projective variety of
dimension r.

Fulton’s definition of intersection multiplicities implies the following statement (see
[31] Section 6.2, Section 7.1).

Proposition 4.1.4. Let rCs P Z˚pPnkq be a cycle on Pnk which intersects rXs prop-
erly. Then,
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i˚prCsq “
ř

j ipZj; rXs, rCsqrZjs P A
˚pXq,

where Zj’s are the irreducible components of the intersection of X with the components
of rCs, and ipZj; rXs, rCsq’s are the intersection multiplicities along the Zj’s (see [31]
Definition 7.1).

Remark 4.1.5. By abuse of notation the cycle
ř

j ipZj;X,CqrZjs P Z
˚pXq will also

be denoted by rCs.rXs. Moreover if rCs is an effective cycle so is rCs.rXs (see [31]
Proposition 7.1).

Let V Ď X be a closed subvariety of dimension d. Let L Ď Pnk be a linear subspace
of dimension n´ r ´ 1 disjoint from X.

We denote by CLpV q Ď Pnk , the cone of V (see [34] Section 2) over L or equivalently
the join of V and L (see [31] Example 8.4.5). It is a subvariety of dimension n`d´r, and of
degree equal to the degree of V (see loc. cit. Example 8.4.5). Moreover V is an irreducible
component of CLpV q XX and every component of CLpV q XX is of dimension equal to
d (see [34] Lemma 2).

Remark 4.1.6. Hence for any such L, we see that CLpV q and X intersect properly (see
Defintion 4.1.2) and rCLpV qs.rXs denotes the corresponding cycle on X (see Remark
4.1.5).

For an arbitrary cycle rV s “
ř

imirVis P Z
r´dpXq we define

rCLprV sqs :“
ř

imirCLpViqs P Z
r´dpPnq.

Let V and W be closed subvarieties of X. We define the excess of V (relative to W ) to
be 0 if they do not intersect. Else it is defined to be the maximum of the (non-negative)
integers

dimpY q ´ dimpV q ´ dimpW q ` dimpXq,

where Y runs through all the components of V XW . We denote the excess by epV q. For
a cycle rV s :“

ř

imirVis in Z˚pXq, we define eprV sq :“
ř

imiepViq.
We have the following result from [34] (used there to prove the “Chow moving

Lemma”).

Lemma 4.1.7. (see [34] Main Lemma)
Let i : X ãÑ Pnk be a smooth, projective closed subvariety of dimension r. Let W be

a subvariety of X. For any cycle rV s P Z˚pXq, there exists a dense open subset U of
Gpn, n´ r´ 1q, the Grassmanian of linear sub-spaces in Pn of dimension n´ r´ 1, such
that for any closed point x P U , if Lx denotes the corresponding linear subspace, then:

(1) Lx XX “ H.
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(2) e prCL prV sqs.rXs ´ rV sq ď max pe prV s ´ 1, 0qq. Here the excess is calculated with
respect to W .

Let i : X ãÑ Pnk be a smooth, projective closed subvariety of dimension r. Let V and
W be closed subvarieties of X. Let d be the dimension of V .

The following Lemma is now easy to deduce.

Lemma 4.1.8. There exists a positive integer k ď r ` 1 and a sequence of effective
cycles trVjsu0ďjďk and trEjsu1ďjďk in Zr´dpXq such that,

(1) rV0s “ rV s in Zr´dpXq.

(2) rVjs “ rEj`1s ´ rVj`1s in Zr´dpXq for all 0 ď j ď k ´ 1.

(3) For all j ě 1, the rEjs’s are ‘ambient’ cycles that is, rEjs “ i˚
`

deg prVj´1sq rPn´d`rk s
˘

in Ar´dpXq.

(4) Every component of rVk´1s and rVks intersects W properly (see Definition 4.1.2).

In particular

rV s “
řk
j“1p´1qj`1rEjs ` p´1qkrVks in Zr´dpXq.

Proof. Let

rV0s :“ rV s P Zr´dpXq.

For any integer j ě 1, having defined rVj´1s P Z
r´dpXq and proven that it is effec-

tive, we define

rEjs :“ rCLj
prVj´1sqs.rXs P Z

r´d
pXq (4.1.1)

where Lj is linear sub-space of Pn of dimension n ´ r ´ 1 (see Remark 4.1.6), chosen
such that

epi˚rCLj
prVj´1sqs ´ rVj´1sq ď maxpeprVj´1s´q1, 0q (see Lemma 4.1.7).

Here the excess is with respect to W . Since rCLj
pVj´1qs and rXs intersect properly

(see Definition 4.1.2 and [34] Lemma 2), Remark 4.1.5 implies that rEjs is an effective
cycle.

For any integer j having defined rVj´1s and rEjs, we define,

rVjs :“ rEjs ´ rVj´1s in Zr´dpXq.
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Since for any subvariety V Ď X, V is an irreducible component of CLpV q XX (see
[34] Lemma 2), the effectivity of rVjs for any j ě 1, is a consequence of the effectivity of
rEjs.

Since eprV0sq “ eprV sq ď r, for any j ě r, the excess eprVjsq “ 0. Let k ´ 1 be the
smallest integer j with the property that eprVk´1sq “ 0. Then every component of the
algebraic cycles rVk´1s and rVks intersects W properly.

For any j ě 1 since CLprVj´1sq and X intersect properly (see [34] Lemma 2), Propo-
sition 4.1.4 implies that

rEjs “ i˚ prCLprVj´1sqsq P A
r´d
pXq. (4.1.2)

For any j ě 1 since rCLprVj´1sqs as a cycle on Pnk has degree equal to the degree of
rVj´1s (see [31] Example 8.4.5), thus (4.1.2) implies that,

rEjs “ i˚
`

deg prVj´1sq rPn´d`rk s
˘

in Ar´dpXq.

Now we derive a basic estimate which is needed later.

Proposition 4.1.9. Let i : X ãÑ Pnk be a smooth, projective variety. There exists a
constant C depending only on X such that, for any two closed subvarieties V,W of
complimentary dimension in X, |rV s.rW s| ď Cdegpi˚prV sqqdegpi˚rW sq.

Proof. We use Lemma 4.1.8 to construct a sequence of algebraic cycles trVjsu0ďjďk and
trEjsu1ďjďk in Zr´dpXq where d is the co-dimension of V in X and satisfying properties
(1)-(4) in Lemma 4.1.8.

Since,

rV s “
řk
j“1p´1qj`1rEjs ` p´1qkrVks in Zr´dpXq,

one has that

|rV s.rW s| ď
k
ÿ

j“1

|rEjs.rW s| ` |rVks.rW s|. (4.1.3)

Note that rEjs “ i˚
`

degprVj´1sqrPn`d´rk s
˘

(see Lemma 4.1.8 (3)) and hence for every
j ě 1,

rEjs.rW s “ degpW qdegprVj´1sq. (4.1.4)

Since every component of rVk´1s intersects rW s properly, rVks.rW s is bounded above
by rEks.rW s “ degpW qdegprVk´1sq (see [31] Proposition 7.1). Combining (4.1.3) and
(4.1.4) we get,
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|rV s.rW s| ď

˜

k
ÿ

j“1

degprVj´1sq ` degprVk´1sq

¸

degpW q. (4.1.5)

Projection formula implies that for every j ě 1,

degprEjsq “ degpXqdegprVj´1sq.

Since the rEjs’s and rVjs’s are effective,

degprVjsq ď degprEjsq “ degpXqdegprVj´1sq.

Thus for every j ě 1

degprVjsq ď degpXqjdegpV q ď degpXqr`1degpV q. (4.1.6)

Thus (4.1.5) and (4.1.6) together imply that

|rV s.rW s| ď pr ` 2qdegpXqr`1degpV qdegpW q.

4.2 Gromov algebra

Let i : X ãÑ Pnk be a smooth, projective variety over an algebraically closed field k.
Let rHs P A1pXq be the class of a hyperplane section.
Let ω be the cohomology class of rHs in H2pX,Q`q.
For j ě 1, let rHsj denote the jth self-intersection (in A˚pXq) of rHs.
Let f : X Ñ X be a self-map of X{k.
For integers j,m ě 1 let

δjpf
m
q :“ rHsr´j.fm˚prHsjq “ fm˚prHsjq.rHsr´j. (4.2.1)

We have a commutative diagram,

X ˆk X

1Xˆf
m

��
X �
� Γfm //* 


∆X
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X ˆk X
� � iˆi // Pnk ˆk Pnk

.

Here Γfm is the graph of fm.

Lemma 4.2.1. Using the above notations,

ppiˆ iq ˝ Γfmq˚ prXsq “
r
ÿ

j“0

δr´jpf
m
qprPr´jk s ˆ rPjksq (4.2.2)
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Proof. Clearly we can assume m “ 1. Let rY s :“ ppiˆ iq ˝ Γf q˚ prXsq.
The exterior product map A˚pPnkq bZ A

˚pPnkq Ñ A˚pPnk ˆk Pnkq is an isomorphism of
graded rings (see [31] Example 8.3), hence

rY s “
řr
j“0 njprP

r´j
k s ˆ rPjksq, where for any j ě 0, nj “

`

rY s.
`

rPjks ˆ rP
r´j
k s

˘˘

.

The projection formula and the commutative diagram above imply that

nj “ rY s.
`

rPjks ˆ rP
r´j
k s

˘

“ rXs.Γ˚f prHs
j ˆ rHsr´jq “ rXs.∆˚

X prHs
j ˆ f˚ prHsr´jqq .

The definition of intersection product (see [31] Section 8.1 and Corollary 8.1.3) implies
that

rXs.∆˚
X prHs

j ˆ f˚ prHsr´jqq “ δr´jpfq.

Thus for any m ě 1, ppiˆ iq ˝ Γfmq˚ prXsq “
řr
j“0 δr´jpf

mqprPr´jk s ˆ rPjksq.

Definition 4.2.2. The homological Gromov algebra AGr
hompf, ωqQ is the smallest f˚-stable

sub-algebra of A˚hompXqQ containing ω.

Definition 4.2.3. The numerical Gromov algebra AGr
numpf, rHsqQ is the smallest f˚-

stable sub-algebra of A˚numpXqQ containing rHs.

The numerical Gromov algebra with real coefficients AGr
numpf, rHsqR is the R-algebra

AGr
numpf, rHsqQ bQ R.

Let λi be the spectral radius of f˚ acting on AinumpXqQ, 0 ď i ď dimpXq.
Let χi be the spectral radius of f˚ acting on AihompXqQ, 0 ď i ď dimpXq.
Let µj be the spectral radius (with respect to τ in (4.0.1)) of f˚ acting onHjpX,Q`q, 0 ď

j ď 2 dimpXq.
Let λGr and χGr be the spectral radii of f˚ acting on AGr

numpf, rHsqQ and AGr
hompf, ωqQ

respectively.
Note that λGr is also the spectral radius of f˚ acting on AGr

numpf, rHsqR.
The following lemma is obvious.

Lemma 4.2.4. Using the above notations we have inequalities,

λGr ď max
0ďiďdimpXq

λi ď max
0ďiďdimpXq

χi ď max
0ďjď 2dimpXq

µj.

Further

λGr ď χGr ď max
0ďiďdimpXq

χi.

Lemma 4.2.5. Let tam,iumě1, 1 ď i ď s be a collection of sequences of complex num-
ber. Let bi, i ď i ď s be non-zero complex numbers. Then,
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lim sup
m

|
řs
i“1 am,ibi|

1{m ď max
1ďiďs

lim sup
m

|am,i|
1{m.

Proof. For every i replacing the sequence tam,iumě1 by tam,ibiumě1 we can assume with-
out any loss of generality that bi “ 1 for all i, since for any b ‰ 0, lim

mÑ8
|b|1{m “ 1.

The claimed inequality is obvious for s “ 1. Suppose that s ě 2.
Let ta1m,2umě1 :“ t

řs
i“2 am,iumě1. Then |

řs
i“1 am,ibi|

1{m “ |am,1`a
1
m,2|

1{m. Hence the
claimed inequality is true for a collection of s sequences iff it is true for a collection of
s´ 1 sequences. Hence we are reduced to the case when s “ 2.

Note that

lim sup
m

|am,1 ` am,2|
1{m

“ lim sup
m

|am,1 ` am,2|
1{m

21{m
“ lim sup

m
p
|am,1 ` am,2|

2
q
1{m. (4.2.3)

Without any loss of generality we can assume that

a :“ lim sup
m

|am,1|
1{m ě lim sup

m
|am,2|

1{m.

Hence for any ε ą 0 there exists an integer M ąą 0 such that for all m ě M and
i “ 1, 2,

|am,i| ď pa` εq
m.

In particular

|am,1 ` am,2| ď 2pa` εqm for all m ěM .

Thus

lim sup
m

p
|am,1`am,2|

2
q1{m ď lim sup

m
pa` εq “ a` ε for any ε ą 0.

Then (4.2.3) implies the required bound.

Let V be any finite dimensional vector space over R (or Cq and T : V Ñ V a linear
map. Let ||.|| be any matrix norm.

We have the following theorem of Gelfand (see [20] Theorem 18.9 )

Theorem 4.2.6. lim sup
m

||Tm||1{m “ ρpT q, where ρpT q is the spectral radius of T .

Though the following can be possibly deduced by other standard results, we attempt
to give an elementary argument.

Lemma 4.2.7. Let µi, 1 ď i ď n be complex numbers of unit modulus. Then for any
ε ą 0, there exist infinitely many integers m such that, for every integer i P r1, ns one
has |µmi ´ 1| ă ε. In particular for any such m, Repµmi q ą 1´ ε.
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Proof. First we observe that, given any ε ą 0, it suffices to produce one m which does
the job. This is because, by making ε smaller we can then produce infinitely many such
m.

Let p be any integer greater than 2π
ε

. Then we can cover the unit circle by p many
arcs Ji, 1 ď i ď p, each which has an arc length less than ε.

Let T n be the real torus of dimension n. Then T n can be covered by pn sets, each of
the form Jip1q ˆ Jip2q ¨ ¨ ¨ Jipnq with 1 ď ip1q, ip2q ¨ ¨ ¨ , ipnq ď p.

Consider the infinite sequence of (possibly non distinct) points tpµk1, µ
k
2, ¨ ¨ ¨ , µ

k
nqukě1 P

T n. Clearly there exist distinct positive integers k and k1 such that both pµk1, µ
k
2, ¨ ¨ ¨ , µ

k
nq

and pµk1, µ
k
2, ¨ ¨ ¨ , µ

k
nq belong to Jip1qˆJip2q ¨ ¨ ¨ Jipnq, for some indices 1 ď ip1q, ip2q ¨ ¨ ¨ , ipnq ď

p (this includes the case when the all the µi’s are roots of unity).

Clearly m “ |k ´ k1| does the job.

Let K be a normed field such that, there exists an embedding τ : K ãÑ C of normed
fields.

Let V be any finite dimensional vector space over K and T : V Ñ V a linear
map. Then,

Proposition 4.2.8. lim sup
m

|TrpTmq|1{m “ ρpT q, where ρpT q is the spectral radius of T .

Proof. Using the embedding τ and base changing to C, we can assume that V is a
complex vector space, and T is a linear operator on V .

Since we are over C, Theorem 4.2.6 (with the `1-norm) implies that

lim sup
m

|TrpTmq|1{m ď ρpT q.

Thus it suffices to prove the reverse inequality. Clearly we can assume T has at least
one non-zero eigenvalues.

Let λi, 1 ď i ď n be the collection of non-zero eigenvalues of T .

Let µi :“ λi
|λi|

be complex numbers with unit modulus.

Lemma 4.2.7 shows that there exist infinitely many m such that, for every integer
i P r1, ns one has Repµmi q ą

1
2
.

Then for any such m

|TrpTmq| ě RepTrpTmqq ě
ř

i Repλmi q ě
ř

i |λi|
m

2
ě

ρpT qm

2
.

Thus lim supm |TrpTmq|1{m ě ρpT q and we get the required equality.

Now we prove the principal result of this chapter.
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Theorem 4.2.9. Let X be a smooth, projective variety over an arbitrary algebraically
closed field k. Let i : X ãÑ Pnk be a closed embedding and rHs P A1pXq (respectively
ω P H2pX,Q`q) be the class of an hyperplane section in the Chow group (respectively
`-adic cohomology). Let f : X Ñ X be a self-map of X{k. Then all the inequalities in
Lemma 4.2.4 are in fact equalities.

Thus, the spectral radius of f˚ acting on H˚pX,Q`q with respect to τ : Q` ãÑ C is
independent of τ , and coincides with the spectral radius of f˚ on the numerical Gromov
algebra.

Proof. Suppose dimpXq “ r. Clearly it suffices to show that λGr ě µj, 0 ď j ď 2r.
Recall that δjpf

mq “ rHsr´j.fm˚prHsjq “ fm˚prHsjq.rHsr´j (see Definition (4.2.1)).
We shall first show that for any integer i P r0, 2rs,

µi ď max
0ďjďr

lim sup
m

|δjpf
m
q|

1{m. (4.2.4)

It is clear from the definitions of µi and δjpf
mq that they specialise well, and thus it

suffices to prove the bound (4.2.4), when k is an algebraic closure of a finite field (see
for example the proof of Theorem 2.3.5, where such a reduction to the case of a finite
field is carried out).

Hence we now assume that k is an algebraic closure of a finite field.
For any integer m ě 1, let rΓfms P A

r
numpX ˆXq be the cycle corresponding to the

graph of fm.
The work of Katz-Messing ([26] Theorem 2.1) and the Lefschetz trace formula (see

[35] Section 3.3.3) implies that, for every integer i P r0, 2rs, there exist an algebraic cycle
πiX P Z

rpX ˆXqQ (the ith ‘Kunneth component’) such that,

Trpfm˚;H i
pX,Q`qq “ p´1qirΓfms.π

2r´i
X , (4.2.5)

representing the trace as an intersection product (on the product variety X ˆk X).
Recall that we have fixed an embedding τ : Q` ãÑ C (see (4.0.1)). Thus Q` is a

normed field via this embedding.
Proposition 4.2.8 and (4.2.5) together imply that,

µi “ lim sup
m

|rΓfms.π
2r´i
X |

1{m, 0 ď i ď 2r. (4.2.6)

There exist finitely many subvarieties W 2r´i
j Ď X ˆk X of codimension r (the com-

ponents of the ‘Kunneth components’) and a constant C 1 such that for every m ě 1,

|rΓfms.π
2r´i
X | ď C 1

ÿ

j

|rΓfms.rW
2r´i
j s|, 0 ď i ď 2r. (4.2.7)

Note that we have the Segre embedding X ˆk X ãÑ Pn2`2n
k .
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The estimate in Proposition 4.1.9 (applied to the smooth projective variety XˆkX Ď

Pn2`2n
k ) and (4.2.7) imply that there exists a constant C2 (depending only on i : X ãÑ Pnk

and the choice of Kunneth components), such that for every m ě 1,

|rΓfms.π
2r´i
X | ď C2degprΓfmsqp

ÿ

j

degpW 2r´1
j qq, 0 ď i ď 2r. (4.2.8)

The degree in (4.2.8) is with respect to the embedding X ˆk X ãÑ Pn2`2n
k . Moreover

Lemma 4.2.2 implies that

degpΓfmq “
řr
j“0 δr´jpf

mqdegprPr´jk s ˆ rPjksq.

Hence (4.2.6) and (4.2.8) together with Lemma 4.2.3 imply that, for any integer
i P r0, 2rs,

µi ď max
0ďjďr

lim sup
m

|δjpf
m
q|

1{m. (4.2.9)

Thus we have obtained the bound (4.2.4) over an arbitrary algebraically closed field.

For the rest of the proof we work over the algebraically closed field k, we started
with. Let AGr

numpf, rHsqR be the numerical Gromov algebra with R-coefficients (see Defi-
nition 4.2.3).

Let ||.|| be any norm on the finite dimensional R-vector space AGr
numpf, rHsqR. Note

that f˚ is a graded linear transformation of AGr
numpf, rHsqR. For every integer m ě 1, we

denote the norm of the linear map fm˚ acting on AGr
numpf, rHsqR by ||fm˚||.

Recall that δjpf
mq “ fm˚prHsjq.rHsr´j. Since the intersection product is bilinear, the

map from the jth graded part of AGr
numpf, rHsqR to R, obtained by taking intersection

product with rHsr´j is linear. Consequently there exists a constant ĂC 1 independent of
m, such that for any m ě 1,

|δjpf
m
q| ďĂC 1||fm˚pHj

q||, 0 ď j ď r. (4.2.10)

Since f˚ is a linear map, (4.2.10) implies that there exists a constant rC independent
of m such that, for any m ě 1,

|δjpf
m
q|

1{m
ď rC1{m

||fm˚||1{m, 0 ď j ď r. (4.2.11)

Thus Theorem 4.2.6, (4.2.9) and (4.2.11) together imply

µi ď λGr, 0 ď i ď 2r.

Remark 4.2.10. Note that Theorem 4.2.9 generalizes Theorem 2.2.2 (1) to higher
dimensions.
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