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Synopsis

1 Background: Topological Entropy

A general reference for this section is the ICM article of Oguiso ([12]).

Let (X,d) be a compact metric space. Let f : X — X be a continuous self map
of X. For n > 1, let (X",d,) be a the n-times self-product of X equipped with
the sup-metric induced by d. The continuous map I'fn1 : X — X" given by z —
(z, f(z), -+, f"Yx)), gives an embedding of X — X" Let d(f,n) be the metric
induced on X by restriction of d,, under this embedding.

Intuitively, d( f, n) measures how fast two points which were close to begin with, spread
out or come closer as the case may be, under iteration by f. Let N(e, n, f) be the least
number of balls of radius € with respect to d(f,n), needed to cover X. Since X is com-
pact, this is a finite number, which is non-decreasing as e — 07 (for a fixed n).

Definition 0.0.1. With notations as above, the topological entropy of f denoted by
dyop(f) = lim_g+ h(f, ), where h(f,€) := lim sup,, e EnS)

n

The limit above exists in [0, o0].
Following are the basic properties of topological entropy,

o diop(f) depends only on the underlying topology of X and not on the metric.
e If f is a periodic map then its entropy is 0.

e If f is an isometry then its entropy is 0.

An interesting class of compact metric spaces are compact Kahler manifolds with a
choice of a Kahler metric.

Let M be a compact Kahler manifold and w the associated (1, 1) form. Let f: M —
M be a holomorphic, surjective self map of a compact Kahler manifold. Then, as above
to (M, f) we can associate diop(f) € [0, 0], the topological entropy of f.

Let A(f), Aeven(f), Ap(f) denote the spectral radius for the (linear) action of f* on
H*(M,Q), ®&H*(M,Q) and HP*(M,C). Then,
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Theorem 0.0.2 (Gromov-Yomdin). [1] [2]
With notations as above, diop(f) = log A(f) = 10g Aeven = MaXo<p<aim(x) 10g Ap.

Remark 0.0.3. Infact the proof of Gromov-Yomdin implies that the spectral radius for
the action of f* on H*(M, Q) is obtained on the smallest f*-stable sub-algebra generated
by any Kahler class w.

Corollary 0.0.4. The topological entropy of a surjective self map of a compact Kahler
manifold is finite.

Theorem 0.0.2 is computationally very useful and gives a ‘simple’ way to generate
examples with positive entropy. Further, it linearizes the problem of computing topo-
logical entropy by relating it to the spectrum of f* acting on cohomology. Hence, it is
natural to look for constraints on the spectrum of this operator coming from various
additional structures that can exist on cohomology.

2 Algebraic Entropy

The following proposition is a consequence of the existence of a polarized Hodge structure
on H*(X(C),Q) (with respect to any ample class [w] € H?(X(C),Q)).

Proposition 0.0.5. Let X/C be a smooth proper surface. Let f: X — X be an auto-
morphism and [w] € H*(X(C),Q) an ample class. Then,

1. the spectral radius for the action of f* on H*(X(C),Q) coincides with the spectral
radius for its action on the f*-stable sub-algebra generated by [w].

2. Moreover, f* acts by finite order on H2(X(C),Q), the orthogonal complement
(with respect to the cup-product pairing) of the image of Neron-Severi inside H*(X (C), Q).

The statement of the proposition above, makes sense over an arbitrary base field, with
the Betti cohomology replaced by f-adic cohomology. However, it is not suited for a
proof by specialisation. Esnault and Srinivas observed that a suitable generalisation of
Proposition 0.0.5 specialises well and proved the same by reduction to finite fields.

Theorem 0.0.6 (Esnault-Srinivas). /3]

Let f: X — X be an automorphism of a smooth proper surface over an arbitrary
algebraically closed field k. Let £ be a prime invertible in k. Let [w] € H*(X, Q) be an
ample class. Then for any embedding of Qy inside C,

1. the spectral radius for the action of f* on H*(X,Qy) coincides with the spectral
radius for its action on the f*-stable sub-algebra generated by [w].
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2. Moreover, let V(f,[w]) be the largest f* stable sub-space of H*(X,Qy) in the or-
thogonal complement of [w]| (with respect to the cup-product pairing). Then f* is
of finite order on V(f,[w]).

However, unlike Proposition 0.0.5 the proof of Theorem 0.0.6 is quite delicate and uses
(among many other things) the explicit classification of smooth projective surfaces. In
particular, it relies on lifting of certain K3 surfaces to characteristic 0 based on [4] and
using Hodge theory to resolve this case.

Given the motivic nature of Theorem 0.0.6, it is natural to ask for analogues of
the Gromov-Yomdin theory in positive characteristic (see [3] Section 6.2). This is the
principal aim of this thesis.

Before we state the main results, we recall Varshavsky’s formalism of contracting
correspondences near sub-schemes (see [8]), a crucial ingredient for us.

3 Contracting correspondences near sub-schemes

Fix a base field k£ which is separably closed. Unless otherwise specified, all schemes are
assumed to be of finite type and separated over k. Further, all morphisms of schemes
are to be understood as over k.

Fix a prime ¢ invertible in k. Let A be a coefficient ring which is either finite and
annihilated by a power of £ or is a finite extension of QQ; or is the ring of integers of such
an extension.

Let ch’tf(X ,\) be the sub-triangulated category of the bounded derived category
of sheaves of A-modules on X consisting of complexes of finite tor-dimension with con-
structible cohomology (see [23], 1.1.2). For a closed sub-scheme Z of X, let Z denote it’s
ideal sheaf. By Z,.q we mean the reduced closed sub-scheme underlying Z. By Zy4, d > 1
we mean the closed sub-scheme of X defined by the ideal sheaf Z¢. In particular Z; = Z
and Z, is a closed sub-scheme of Z, whenever r < s.

Definition 0.0.7 (Correspondence). A correspondence from a scheme X to X is a
morphism of schemes ¢ : C' — X; x; Xo. We will denote this by ¢ = (C, ¢y, ¢2) where
c1 = pryocand ¢y 1= pryoc with pr; : X7 x; Xy — X, i = 1,2 being the projections
onto X;, 1 =1,2.

Definition 0.0.8 (Cohomological correspondence). Given a correspondence ¢ = (C, ¢q, ¢3)
from X; to X, and objects F; € D’c’tf(X,»,A) a cohomological correspondence (from JFy
to JF3) lifting ¢ is a morphism u € Hometf(X%A) (carci F1, F2).

Definition 0.0.9. A closed sub-scheme Z is said to be stabilized by c if c¢;*(Z) is a
closed sub-scheme of ¢; (7).

Definition 0.0.10. c is said to be contracting near a closed sub-scheme Z < X if ¢
stabilizes Z and ¢;'(Z,41) is a closed sub-scheme of ¢;'(Z,) for some n > 1.
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For a correspondence ¢, let Fix(c) be the fibered product C' xx,x X where, X
is looked at as an X xj X-scheme via the diagonal embedding. Let ¢ be the induced
morphism from Fix(c) — X.

Definition 0.0.11. A closed sub-scheme Z — X is said to be contracting in a neigh-
bourhood of fixed points if there exists an open sub-scheme W of C containing Fix(c)
such that c|y-contracting is contracting near Z.

Associated to a self-correspondence ¢ of X and a cohomological self-correspondence
u of F e Db(X,A) lifting ¢ and any 3 € m(Fix(c)) proper over k, one has a local term
LTs(u) € A (see [8] 1.2.2).

The following result in [8] about the behaviour of local terms along contracted sub-
schemes, is crucial for this work.

Theorem 0.0.12. (/8/, Theorem 2.1.3)
Letc: C — X x; X be a correspondence contracting near a closed sub-scheme Z < X
in a neighbourhood of fized points, and let 3 be an open connected sub-set of Fiz(c) such

that < (B) n Z # . Then

1. 3 is contained set-theoretically in ¢~'(Z), Hence B3 is an open connected subset of
Fix(c|z).

2. Suppose [ is proper over k. Then, for every cohomological self-correspondence u
of F € DX, A) lifting c, one has LTs(u) = LTp(ulz).

4 Main results

In this section unless otherwise mentioned, we work over I, an algebraic closure of a
finite field IFy. Let ¢ = p”, where p is the characteristic of the finite field. Unless otherwise
specified, all schemes are assumed to be separated and of finite type over F.

A scheme (or a morphism of schemes) is said to be defined over F, if it obtained by
the base change to F of a scheme (or a morphism of schemes) over F,,.

For any scheme X(/F,, let F' : Xy — Xy be the r*_iterate of the absolute Frobe-
nius. We continue to denote by F' the associated endomorphism of X := X, xp,_ F.

Given a self-correspondence ¢ := (C, ¢y, ¢) of a scheme X, both of which are defined
over FF,, denote by c™ the self-correspondence c¢™ := (C,¢; o F™, ¢y) of X.

Let X be a scheme defined over F,. Let j : X <> X be a compactification and
0X be the complement of X in X, with the reduced induced structure. Assume that
j (and hence 0X) is defined over F,. For a self-map f : X — X, we denote by F? =
(X, f,1x) the associated self-correspondence of X. For any proper self-map f : X —
X, lot Te(f*, H (X, Q) == 220" (1) Te(f*, HI(X, Q) € Qe

To understand the action of a proper morphism on cohomology, it is necessary to be
able to calculate the global traces of all its iterates. The following proposition ensures
existence of good compactifications adapted to iteration,
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Proposition 0.0.13. Let f,g be two proper self maps of X defined over Fy. Let [f]
and [g] be compactifications of F? and T, Suppose that 0X is [ f] ™) and [g)™ contract-

ing. Then, there exists a self-correspondence [ﬁ] = (CN'gof,ELgof,Eg,gof) of X and a
morphism [;gof] from T, to [go f] such that,

1. [537‘] is a self-correspondence of X, also defined over F,.

2. [go f] is a compactification of Ff]of and jgof,l = 3gof,2 =7J.

3. 0X is [ﬁ](m+")—contracting.

Moreover, [g o f] is independent of m or n.
Hence, we can deduce the following using Theorem 0.0.12.

Corollary 0.0.14. Let f : X — X be a proper self map such that the pair (X, f)
is defined over F,. There exists a N(f) = 1 such that for all integers n = N(f) and
k=1, Fiz(ffo F"*) = Tr((f*o F™)* H*(X,Qy)), where Fix( f*o F™) is the number of
fized points of f¥o F"* acting on X. Moreover, when X is proper we can take N(f) = 1.

Now we study the consequences of these results to algebraic dynamics.

Let k be either F or the field of complex numbers C. Fix an embedding
7:Qp— C.

Suppose X is a proper scheme over k. Let H*(X) be the f-adic cohomology of X
(when k = F) with its increasing weight filtration or the singular cohomology H*(X(C), Q)
(when k& = C) with its Mixed Hodge structure (see [5] section 2 and [25] Proposition
8.1.20). Let Wi H*(X) be the associated weight filtration.

Let f: X — X be a self-map of X.

Let Aoqqa and Aeven be the spectral radius (with respect to 7, if & = F) for the action
of f* on the oddly and evenly graded cohomology respectively (¢-adic or singular as the
case may be). Let koqq be maximal among integers with the property that, the spectral
radius for the action of f* on Gr’é{}ddH {(X) is Aoad, Where 7 is an odd integer. Similarly
define keyen-

Theorem 0.0.15. Using the above notations,

1. /\even = )\odd-

2. If equality holds in (1), then keen = Koda-

As a result,
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Corollary 0.0.16. Let f : X — X be a self-map of a proper scheme over an arbitrary
field k. Let ¢ be a prime invertible in k and k an algebraic closure of k. Fiz an embedding
7 :Qp < C. Then the spectral radius (with respect to ) for the action of JZ on the entire
(-adic cohomology H* (X3, Q) is equal to the spectral radius for its action on the evenly
graded cohomology.

Moreover, we recover the following result of Fakhruddin [9] (see also [11]).

Theorem 0.0.17. Let Xy be a scheme over k = F, and fo a proper, surjective self
morphism of Xo. Then the set of periodic points of fo are Zariski dense in Xg.



Organization of the thesis

This thesis consists of four chapters; we give a brief outline of the contents here.

In Chapter 1 we discuss the set-up underlying the Lefschetz-Verdier trace formula.
In particular we define the local and global terms of the trace formula, and discuss some
examples of interest. We also recall a trace formula due to Fujiwara and discuss some
applications. Finally in Section 1.3 we define a zeta function associated to a self map
of a variety over a finite field. We also establish some simple analytic properties of this
zeta function.

Chapter 2 begins with a brief motivation for the problem considered in this thesis. In
Section 2.1 we introduce the notion of topological entropy and discuss some foundational
results by Gromov and Yomdin. In Section 2.2, as initiated by Esnault-Srinivas we at-
tempt to understand the results of Section 2.1 from a motivic point of view. In particular
we recall a result by Esnault-Srinivas on the structure of the linear map on the /f-adic
cohomology, associated to an automorphism of a smooth proper surface. In Section 2.3
we establish some constraints on the eigenvalues for the action of a self-map of a proper
scheme on its ¢-adic cohomology. The crucial input here is Deligne’s theory of weights.

In the scenario when the base field is either an algebraic closure of a finite field or the
field of complex numbers, we put further restrictions on the action of such self maps on
the graded pieces of the weight filtration. These results seems to be previously unknown
even for smooth projective varieties over C.

Finally in Section 2.4 we discuss some examples to elucidate the results of the previous
section. The second example serves as a motivation for the question addressed in the
next chapter.

In Chapter 3 we recall the notion of a contracting correspondence as introduced by
Varshavsky and indicate some of its consequences. In particular we review an ‘effective’
trace formula for open correspondences obtained by Varshavsky. In Section 3.2 we con-
struct compactifications adapted to both iteration and contraction. In Section 3.3 we
use the compactifications constructed in the previous section to obtain a trace formula
adapted to iterations, which is of independent interest.

In Chapter 4 we work exclusively with smooth, projective varieties. In Section 4.1
we review the necessary results from intersection theory. Then we establish an uni-
form bound for the intersection of subvarieties of complimentary dimension in a smooth
projective variety. In the final section 4.2 we define the Gromov algebra associated to



a self-map of a smooth projective variety and obtain a generalization of a result of
Esnault-Srinivas, using an idea of O’Sullivan as developed by Truong [30].



Chapter 1

Lefschetz-Verdier trace formula

In this chapter we recall the set-up underlying the Lefschetz-Verdier trace formula. We
essentially follow the treatment in [8]. We also recall a trace formula due to Fujiwara and
discuss some applications of the same. In the final section we introduce a zeta function
associated to a self map of a variety over a finite field.

In what follows we shall use basic properties of étale cohomology as developed in
[19], [15]. A general reference for the framework of Verdier duality in the étale context
is [13], Exposé XVIII. The passage to f-adic coefficients is carried out in [14] and is
summarized in [23], 1.1.

1.1 The set-up

Fix a base field k which is assumed to be separably closed. Unless otherwise specified, all
schemes are assumed to be of finite type and separated over k. Further all morphisms
of schemes are to be understood as over k. For any scheme X, 1y denotes the identity
morphism.

Fix a prime ¢ invertible in k. Let A be a coefficient ring which is either finite and
annihilated by a power of £, or is a finite extension of (O, or is the ring of integers of
such an extension. For most of our purposes, it suffices to consider A = Q.

Let D!, ;(X,A) be the bounded derived category of sheaves of A-modules on X, con-
sisting of complexes of finite tor-dimension with constructible cohomology (see [15] Rap-
port 4.6, (23] 1.1.2-1.1.3). Let D?, ;(A) denote the triangulated sub-category of the derived
category of A-modules consisting of perfect complexes. For any scheme X, let Ay be the
constant sheaf on X with coefficients in A.

For any scheme X, let mx : X — Spec (k) denote the structural morphism. Let
Ky = 7T!XAspec (k), be the dualizing complex of X, and denote by Dy := RHom( , Kx)
the Verdier duality functor. For an embedding f : Y — X and any F € Dth(X ,A\)
we write Fly instead of f*F. We identify D7 ;(Spec (k), A) with D2, ;(A) such that the
functor mx, gets identified with RI.(X, ).
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For schemes X; and Xs, let pr; and pr, denote the projection morphisms from
X1 x4 X5 onto X and X5 respectively. Let F; € Dgtf(Xi, A), i = 1,2 be two complexes
of sheaves. Denote by JF; [x] F» the object priF; ®% priF, in Dgtf(Xl xj Xo, A).

For a closed sub-scheme Z of X let 7, denote it’s ideal sheaf. By Z,.; we mean the
reduced closed sub-scheme underlying Z. By Z;, d > 1 we mean the closed sub-scheme
of X defined by the ideal sheaf I%. In particular Z; = Z and Z, is a closed sub-scheme
of Z,, whenever r < s.

For a morphism of schemes f : X — Y, (f*, f.) and (f,, f') are adjoint pairs. Further
when f is proper we have an adjoint triple (f*, fs, f').

For any scheme X, mo(X) denotes the set of its connected components.

Definition 1.1.1 (Correspondence). A correspondence from a scheme X; to X5 is a
morphism of schemes ¢ : C' — X; x; Xo. We will denote this by [¢] = (C, ¢, ¢2) where
cp:=pryocand cy:=pryoc.

Example 1.1.2. The natural isomorphism ¢, : Spec (k) — Spec (k) X Spec (k) is a
self-correspondence of Spec (k), denoted by [cy] = (Spec (k), Lspec (k) Lspec (k))-

Example 1.1.3. Given a morphism of schemes f : Xy — X, we get a correspondence
[F}] = (Xo, f,1x,) from X; to X5. We identify X, with its image F} inside X; x5 X,
via the correspondence [I'%].

Definition 1.1.4 (Morphism of correspondences). Let [¢] = (C, ¢, ¢2) be a correspon-
dence from X; to X, and let [b] = (B,by,b) be a correspondence from Y; to Ys. A
morphism of [c] to [b] consists of a triple of morphisms [f] := (f1, f¥, f2) which make
the following diagram commutative.

X, <20 —2-X,

lfl Lf# lf2

Vi<g—B——=Y;
Example 1.1.5. Let ¢ : C' — X; x; X5 be a correspondence from X; to Xs. Then,
[7]e := (7x,, 7o, Tx,) is @ morphism from [c] to [c | called the structural morphism of

[].

We say a morphism of correspondences [f] = (fi, f#, f2) is proper (resp. an open
immersion, resp. a closed immersion) if each of the fi, f# and f, is proper (resp. an
open immersion, resp. a closed immersion).

We say a correspondence [c]| is proper over k, if [7]. is proper.

Definition 1.1.6 (Compactification of correspondences). A compactification of a cor-
respondence ¢ : C — X; x; Xs, is an open immersion [j] = (ji, 5%, j2) of [c] into a
correspondence ¢ : C — X x; Xo, such that [¢] is proper and j;, j#, j, are dominant.
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Lemma 1.1.7. Let [¢] be a compactification of [¢] as above. If ¢y is proper, then the
natural map C — C x5, Xy is an isomorphism. Similarly, if ¢y is proper, the natural
morphism C — C X%, X2 18 an isomorphism.

Proof. Assume ¢; is proper, then the dense open immersion C' — C X%, X1 1s also
proper and hence, an isomorphism. A similar proof goes through when ¢, is proper.

]

Definition 1.1.8 (Restriction of a correspondence to an open sub-scheme). Let [¢] =
(C, 1, ¢2) be a correspondence from X to itself. Let U < X be an open sub-scheme. Then
the restriction of ¢ to U is the correspondence,

) - —1
el = (7' (U) n 3 (U)701|c;1(U)mc;1(U)7C2|c;1(U)mc;1(U))

from U to itself. Let c|y denote the induced morphism from ¢, (U) ne; {(U) — U x;, U.

Similarly if W < C' is an open sub-scheme of C| the restriction of C' to W is the
correspondence [c]|w := (W, c1|lw, c2|lw). As above c|y denotes the induced morphism
from W — X x; X.

Definition 1.1.9 (Cohomological correspondence). Given a correspondence [c] = (C, ¢y, ¢2)
from X; to X, and objects F; € D% ;(X;, A) a cohomological correspondence (from F
to Fy) lifting [c] is a morphism u € Hometf(Xz,A) (caci Fr, Fa).

Example 1.1.10. Let f : X5 — X; be a morphism. Then, the natural isomorphism
f*Ax, — Ax, is a cohomological correspondence lifting [F}] (see Example 1.1.3).

Eventually we will be interested in cohomological correspondences lifting non-proper
correspondences. To study these, it will be necessary to push-forward these cohomologi-
cal correspondences to the compactifications of these non-proper correspondences. Con-
versely we will also need to pull-back cohomological correspondences lifting proper cor-
respondences along an open sub-scheme (see Defintion 1.1.8).

1.1.1 Restriction of cohomological correspondence to an open
sub-scheme

Let ¢ : C — X x;, X be a self-correspondence of X. Let C° € C'and X? € X, i = 1,2 be
open sub-schemes such that, ¢ induces a correspondence ¢ : C° — X7 x; X9. Then, one
has the following commutative diagram,

coC_ i o

lcg lcz
on

XS% X,
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For any sheaf F in Di’tf(C’, A), there exists a natural adjunction morphism F —
chear F. Applying j& to the above morphism and using the adjunction between ¢, and
Y, one gets a base change morphism BCO(F) : ¢,(F|co) — (e F)|xg-

Let u € Hom DY, (X2,0) (ca1cf F1, F2) be a cohomological correspondence lifting [¢]. Then
one can restrict u to give a cohomological correspondence from F| xo to Fo xg lifting

[co] as follows,

BC(c*Fi) ul x0
= (enc} F) [ xg ——

u® s eyt (Filxo) = ey (i Fileo) Falxg -

In particular, for any open sub-scheme U < X we have a cohomological correspon-
dence u|y lifting [c]|y (see Definition 1.1.8).

1.1.2 Action of a correspondence on cohomology

Now suppose, one has a correspondence ¢ : C' — X; x; X5 and a cohomological corre-
spondence u between Fy € DY (X3, A) and Fy € DY (X5, A) lifting [c]. Further assume
that there exists an open sub-scheme X{ < X such that F; is supported on X? and
cileorxy 1 C° 1= e H(XY) — XV is proper. Then, as shown in Section 1.1.1, one gets a
correspondence [°] := (C°) ¢i|co, ca|co) between X and X5, and a cohomological cor-
respondence u’ between J|yo and F; lifting [c”]. Let ¢ and ¢3 be the induced morphism
from CY to X and X, respectively.

Note that we have obvious isomorphisms RI'.(X1, F1) ~ REc(X7, Fi|xo) = mxo(Fi|x,)
and o) (Fa) =~ mx,1c5¢5 (Fz). Since ¢f is proper one also has myo,cl, c¥*(Filx,) =~
Tooc*(Fi|xo). Further there is a morphism induced by adjunction Tx1CnCS (Fo) —
T x,1(F2). Thus applying meoy to u® gives a morphism RT.(u) : RT.(X1, F1) — RL(Xo, Fy).
In particular if X; = X3 and F; = F, then, one gets an endomorphism RI'.(u) of the
perfect complex RI'.(X,F).

1.2 The trace formula

In this section we describe a recipe to obtain the local and global terms of the Lefschetz-
Verdier trace formula. We continue using the notations and conventions of the previous
section.

1.2.1 Scheme of fixed points

Let ¢ : C — X xj; X be a correspondence. The scheme of fized points of [c], is the
closed sub-scheme Fix(c) := C' x xx,x X of C, where X is looked at as a scheme over
X xj X via the diagonal embedding A. Let A’ denote the embedding of Fix(c) inside C'
and let ¢ be the restriction of ¢ to Fix(c). Note that ¢; o ¢ = ¢9 0 ¢. Hence, we have a
commutative diagram,
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Fix(c) — X
ok
C = X x X

Example 1.2.1. Let ¢ : C' — X x;, X be a correspondence from X to itself. Let u be
a cohomological correspondence of F € D, (X, A) to itself lifting [c]. Further assume
that ¢y is quasi-finite. The proper base change theorem ([15] Chapitre 1, Théoreme
4.5.4) implies that for any closed point x € X, the stalk at = of ¢y ¢} F is isomorphic to
@es(y)=aFei (y)- Hence u, induces a morphism @, (y)—zFe, () — Fz- In particular, for any
closed point y € Fix(c), there exists an induced endomorphism wu, of Fy ().

Suppose now, [¢] = [I'%] for a morphism f : X — X. Then, the closed points
of Fix(c) are precisely the ‘fixed points’ of f, that is closed points y € X such that
f(y) = y. Further if u is the cohomological correspondence of Example 1.1.10, the
induced endomorphism u, of A, for any fixed point y of f, is the identity map of A.

Definition 1.2.2 (Naive local trace). Using the assumptions and notations in Example
1.2.1, for any closed point y € Fix(c), we define the naive local term at y to be the trace
of the endomorphism u,. We denote this by NL,(u) € A.

As we shall see later, the Lefschetz-Verdier trace formula is a consequence of the
commutativity of certain trace maps with proper push-forward. Now we describe these
trace maps.

1.2.2 Trace maps

Let ¢ : ¢ — X x; X be a correspondence from X to itself. Let F € D% (X, A). Let
A : X — X X, X be the diagonal embedding.

One has the natural evaluation map DxF ® F — Kx. Since pullback commutes
with (derived) tensor product, A*(DxF X F) ~ DxF ® F, by adjunction one gets
a morphism Dy F x| F — A,Kx. Further one has the base change isomorphism (of
functors) ¢'A, ~ A’c". Thus, applying ¢' to the morphism Dy F X F — A,Kx one gets
a morphism ¢r : ¢ (DxF X F) — ¢(AKx) ~ ALd'Kyx ~ A, Kpix(c), where the last
isomorphism follows from the functoriality of the upper shriek functor.

In [17] (see (3.1.1) and (3.2.1) in loc. cit.), Illusie obtained a canonical isomorphism

RHom(ciF,chF) ~ H(DxF X F).
Precomposing the above isomorphism with ¢, we get a morphism
Tr: RHom(ci F, o F) — A, Kpix(o)-

Applying H°(C, ) to the above morphism one obtains the Trace map
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Tr. : Hom(coc; F, F) — HO(Fix(c), Krix(c))-

For an open subset § of Fix(c), let jz denote the inclusion of § into Fix(c). The
natural adjunction morphism Kpiyc) — Jg« ngFiX(C) induces a morphism

Resg : HY(Fix(c), Kpixe)) — H°(B, K3).

Denote by T rz the composition Resg o Tr.. If further [ is proper over k, then the
adjunction mgmzA — A gives rise to a morphism Intg : H%(3, K) — A. Thus we get a
morphism

LTs :=Intg o Trg : Hom(co i F, F) — A.

Definition 1.2.3 (Local term). For any proper connected component 3 of Fix(c) and
any cohomological correspondence u lifting [c], the local term at [ is defined to be

Remark 1.2.4. Our definition of a local term is the one in [8], 1.2. It is compatible
with the definition in [17], 4.2.5 (see [8], Appendix A).

Example 1.2.5. Let [¢] = [c¢] as defined in Example 1.1.2. Recall that we have
identified ch’tf(Spec (k),A) with the triangulated category of perfect complexes of A-
modules. Moreover Fix(¢;,) = Spec (k). Hence the trace map is a morphism from
H OMpy, (A) (F,F) — A. The recipe above for the trace map implies that it coincides

with the usual trace map for endomorphisms of perfect complexes.

Now we define the push-forward of a cohomological correspondence, in various situ-
ations which appear in our context.

1.2.3 Push-forward of cohomological correspondence

Let [c] = (C, ¢, ¢2) be a correspondence from X to X5 and [b] := (B, by, by) a correspon-
dence from Y; to Ys. Let [f] = (f1, f#, f2) be a morphism from [c] to [b](see Definition
1.1.4). Let F; € Db (X;, A), i = 1,2.

X, <2 0—2-X,

lfl Lf# lf2
Vi< B Y5

1 2

Suppose one of the following holds,

1. the left hand square is cartesian. Then there exists a base change isomorphism, BC' :
bifu — f!#c’f.
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2. fi and f# are proper. Since the left hand diagram is commutative, there exists a
natural transformation by f1, — ff c; which by the properness assumption is the
same as a natural transformation, BC' : bf f1 — f!#cf.

3. by and c¢; are proper. By adjunction there is a natural transformation f;; —
fuciecl ~ bl*f!#cf. Thus, in this case also, we get (by adjointness) a base change
morphism, BC' : b% f, — f7 ¢t

Suppose at least one of the conditions above holds true, and let u be a cohomological
correspondence between F; and F; lifting [¢]. Then we can associate a cohomological
correspondence [f]i(u) between f1,.F; and foF; lifting [b], as follows:

boyb* (f11.F1) -2 boy 7 5 Fy =~ fz!CmC’f]:lﬂfz!fz-

Example 1.2.6. Let [¢] = (C,c¢1,¢2) be a proper correspondence between X; and
Xs. Then [7]. : [¢] — [ci] satisfies the condition (2) above and hence [7]q(u) makes
sense for any cohomological correspondence w lifting [c]. Then it is immediate from defi-
nition that the push-forward as defined above, coincides with the action on cohomology
defined earlier (see sub-section 1.1.2). Further, if X; = X, = X and w is a cohomo-
logical self-correspondence of F € DY (X, A), then [r]a(u) can be identified with the
endomorphism RI'.(u) of the perfect complex RI'.(X,F).

Example 1.2.7. Suppose f : Xy — X; is a proper morphism of schemes. Let F}
be the correspondence from X, to X associated to f (see Example 1.1.3). Then, the
structural morphism [W]th : [T%] — [ew] satisfies the condition (3) above. Hence one can
push-forward the cohomological correspondence defined in Example 1.1.10. The recipe

above implies that the induced morphism on cohomology is the obvious pullback on
cohomology, f*: H¥(X1,A) — H*(X5, A) induced by f.

Example 1.2.8. Let [¢] := (C, ¢, ) be a correspondence between X; and X, with
¢, proper. Let [¢] := (C,¢;,¢) be a compactification of [c] via [j] := (ji,57, j2)(see
Definition 1.1.6). Since ¢ is proper, [j] satisfies the condition (1) above (see Lemma
1.1.7). Thus for any JF; € D% #(Xi, A), i = 1,2 and any cohomological correspondence u
between them lifting [c|, one gets a cohomological correspondence [j]i(u) between jy1F;
and joFo.

Suppose further that X; = Xy = X and u is a cohomological self-correspondence
of F e D% (X,A). Then [r]. : [c] — [¢] satisfies condition (3) above and one gets an
endomorphism RT'.(u) of RT'.(X,F), by pushing forward u along the structural map
[7].. Tt is immediate from the definition of [j];(u) that, this endomorphism is the same
as the endomorphism RT.([j]iu) of RT.(X, jiF) ~ RI.(X,F) obtained by pushing
forward [j]i(u) (as defined above) along the structural map [7]z (see Example 1.2.6).
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1.2.4 Lefschetz-Verdier Trace formula

One can recover the Lefschetz-Verdier trace formula (see [17] Corollary 4.7) as a special
case of commutativity of trace map with proper push-forward (see [17] Corollary 4.5, [§]
4.3.4).

Theorem 1.2.9. Let [c¢] = (C,c1,ca) be a correspondence from X to itself and [b] =
(B, by, by) be a correspondence fromY to itself. Let [f] = (f, f7, f) be a proper morphism
from [c] to [b]. Then the morphism f' : Fiz(c) — Fix(b) (see Definition 1.2.1) induced
by [f] is proper and for every cohomological correspondence u from F € D’gtf(X, A) to
itself, lifting [c] one has,

Tro([f1:(w) = fl(Tre(u) € H(Fia(b), K pia))-

Here f; : HY(Fiz(c), K pia(e)) — H°(Fiz(b), K piw)) is the morphism induced by apply-
ing H°(Fiz(b), ) to the adjunction f{ K pigey — Kria)-

Remark 1.2.10. The theorem as stated is proved in [8], since we do not require ¢ or b
to be proper, unlike in [17].

An immediate corollary is the Lefschetz-Verdier trace formula.

Corollary 1.2.11. Let c: C — X x;, X be a correspondence with C' and X proper over
k. Then for every cohomological correspondence u from F € Dgtf(X, A) to itself lifting ¢
one has,

Tr(RT(u)) = ZﬁEWO(FiI(C)) LTs(u).

Here Tr(RT.(u)) is the trace of the endomorphism RI'.(u) of the perfect complex of
A-modules R (X, F), induced by u (see Example 1.2.6).

Proof. The result follows from Theorem 1.2.9 applied to [7]. : [¢] — [ct]. Exam-
ples 1.2.6 and 1.2.5 imply that the term on the left (of Theorem 1.2.9) evaluates to
Tr(RTc(u)). That the term on the right is >Jsc gy (o)) LT3 (u) follows from the definition
of a local term (see Definition 1.2.3).

O]

Given the Lefschetz-Verdier trace formula, the computation of global traces (for a
proper correspondence) is reduced to the problem of computing local terms on the scheme
of fixed points. Since the local terms are defined very non-explicitly, computing them
in general can be quite difficult. However when one is working over an algebraic closure
of a finite field, and under certain circumstances, these local terms can be computed
explicitly. In fact under these circumstances, these local terms happen to be equal to the
naive local terms (see Definition 1.2.2). Moreover the Lefschetz-Verdier trace formula
can be used to compute the global traces (whenever they are defined) of cohomological
correspondences lifting correspondences which are not necessarily proper. This was con-
jectured by Deligne and first proved (conditionally) by Pink ([7]) and unconditionally
by Fujiwara ([6]).
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1.3 Fujiwara’s trace formula and applications

Let ko = F, be a finite field with ¢ elements of characteristic p. Let k be an algebraic
closure of IF,. Let ¢ be a prime co-prime to p.

Finite type and separated schemes over F, will be denoted by a sub-script o (for exam-
ple X, Yo, etc.). Similarly morphisms of schemes over I, will be denoted by fo, go, etc.
. The corresponding object over k will be denoted without a sub-script, for example
X, f,etc. .

For any finite type and separated scheme X /k, let H(X,Q,) and H!(X, Q) respec-
tively denote the i*® usual and compactly supported f-adic étale cohomology of X.

For any self map f : X — X of a finite type and separated scheme X over k, we
define

Te(f*, H(X, Q) = 202" (<L) Te(f*; H' (X, Qo)) € Q.
Similarly when f is proper, we define
Tr(f*, H (X, Q) i= X250 (1) Tr(f* HA(X, Qo)) € Q.

Definition 1.3.1 (Absolute Frobenius). For any scheme X,/IF,, the absolute Frobenius
(with respect to F,) Fg , : Xo — Xp is the morphism which is the identity on the
underlying topological space, and for any open affine sub-scheme U, < X, Fj}o’q|Uo
corresponds to the ring endomorphism of T'(Uy, O, ) given by a — a4, Ya € I'(Uy, Oy,).

Remark 1.3.2. The absolute Frobenius is a F,-linear morphism.

Lemma 1.3.3. Let X/F, be a finite type and separated scheme. Then X/F, is unram-
ified (and hence étale) iff F , is an unramified morphism.

Proof. The map induced on the differentials, d : F §z7qQ§(0 w, Q%O R, is the zero
map. Hence Xy/F, is an unramified morphism iff Qﬁ(o /R, is the zero sheaf iff Xy/F,

is unramified (see [19] Chapter 1, Proposition 3.5).
[

Definition 1.3.4 (Geometric Frobenius). For a scheme X,/F, let X denote the base
change of X to k. The geometric Frobenius (with respect to F,) is the morphism Fyx , :
X — X induced from F¥ , : Xo — Xo by base change.

Remark 1.3.5. The geometric Frobenius morphism is a k-linear morphism.

A scheme X /k is said to be defined over F,, if there exists a scheme X,/F, and
an isomorphism of k-schemes between X and X, xg, k. Given any such scheme X /k
defined over [y, the geometric Frobenius morphism F’ Xoxzk induces an endomorphism
of X /k. We call this the geometric Frobenius (with respect to ;) and denote it by Fix ,.
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In a similar vein, a diagram of schemes over k is said to be defined over [ if it is
obtained as a base change of a diagram over F,.

Now suppose fp : Xo — Xy is a self-map of a finite type and separated scheme over
F,. Let (X, f) be the corresponding pair over k, obtained by base change. Let 1"’}00 Fy
be the transpose of the graph of fo o I , and Ax, denote the diagonal embedding of
Xo in Xy xp, Xo. Note that fy and F%, , commute.

Lemma 1.3.6. With notations as above, the scheme F?OO(F; ym 0 A is étale over Fy
0.9
for allm > 1.

Proof. 1f m is greater than 1, replacing fy by fyo (Fj‘éo’q)mfl we reduce to the case m = 1.
Let Zo := Tpporg , O Ax, and go := foo F¥, - Consider the diagram,

Zg(—i> X,

P b

XO(—ﬁOXO XFq Xopr1—> X(J

K |

Xo

Here, the morphism FZO is the transpose of the graph of gy and pr;,, i = 1,2 are
the projections. The commutativity of the above diagram implies that, (fy o) o Fz .=
(fo o Fx,q) 0 is a closed immersion. Hence Fg  is a closed immersion and thus an
unramified morphism. Lemma 1.3.3 now implies that Z; is unramfied (and hence étale)
over F,.

O
Let f: X — X be a self-map of a finite type scheme over k.

Definition 1.3.7 (Fixed point). A closed point z € X is said to be a fixed point of f if
flz) = .

Proposition 1.3.8. Let fy: Xg — X be a self morphism of a smooth, proper scheme
over Fy. Then, Tr((f™ o F% )% H*(X,Q)) is the number of fized points of f™ o F}
acting on X.

Proof. This is an immediate consequence of Lemma 1.3.6 and the trace formula in
[15], Chapter 4, Corollaire 3.7.
O

The above proposition naturally leads to the following questions, for an arbitrary
Xo, a proper fy and integers m > 1.
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Question 1.3.9. Is the (-adic number Tr ((f o F§)*, H¥(X,Qy)) an integer? If yes, then
is it equal to the number of fixed points of f o Fi’ acting on X7

A trace formula by Fujiwara sheds some light on these questions. We need one more
definition before we can state Fujiwara’s result.

Let C, X; and X be finite type and separated schemes over k defined over F,. Let
[c] := (C,c1,¢2) be a correspondence (see Definition 1.1.1) from X; to X, also defined
over F,.

Definition 1.3.10. For every n > 1 let [c]™ := (C,F% , o c1,¢), a correspondence
from X; to X,.

Remark 1.3.11. Note that [c]™ is also defined over F,.
Suppose now that X; = Xy = X and ¢; is proper and ¢, is quasi-finite.

Theorem 1.3.12. (6], Corollary 5.4.5)
There exists an integer No depending only on the correspondence [c| such that for all
integers n = Ny,

1. Fir(c™) is finite (as a scheme over k).
2. Moreover for any sheaf F € ch’tf(X, A) and any cohomological self-correspondence

u lifting ™ one has,

Tr(RTc(u)) = 2eng (Fia(eny) NLa(w).

Here RT'.(u) is the endomorphism of RU'.(X,F) as defined in Example 1.2.8 and
NL,(u) is the naive local term at x (see Definition 1.2.2).

When X is proper we can take Ny = deg(ca) := mazzex (dimkHO(cgl(x), chl(xﬂ).
Now we are in a position to answer the questions 1.3.9.

Corollary 1.3.13. Both the questions in 1.3.9 have a positive answer, if m is sufficiently
large. Moreover when Xy is proper any m = 1 would do.

Proof. Let [c] = [T'}]. Then [c] is defined over F, and for any n > 1, the correspondence
[I%]m) = [Cyopy 1 Let F = Q¢ and let u™ be the cohomological self-correspondence

of Q; as in Example 1.1.10 lifting [I' ?OF; ] = [c]™. Then Fujiwara’s trace formula
»q
(Theorem 1.3.12) implies that there exists an integer m such that, for all integers n > m,

Tr((f o F™)*, H¥ (X, Qu)) = Tr(RLc(u™)) = 3 ooy N La(ut™).



20

The first equality is a consequence of Example 1.2.7. That the right hand side com-
putes the number of fixed point of fo Fy  is a consequence of Lemma 1.3.6 and Example
1.2.1. Moreoever we can choose m = 1 when X, is proper.

]

Definition 1.3.14. Let no(f) be the least integer m such that, both the questions in
1.3.9 have a positive answer.

Fujiwara’s trace formula implies that for a non-proper Xj, questions 1.3.9 have a
positive answer for m sufficiently large. An ‘effective’ upper bound for ng(f) is an im-
mediate consequence of [8], Theorem 2.3.2 (see Corollary 3.1.14). However, there is no
obvious relationship between these upper bounds for ng(f) and no(f"), r > 1. For the
purpose of understanding the action of f* on cohomology, it is useful to understand
the growth of these upper bounds with respect to r. We shall address this question in
Chapter 3.

We end this section with an interesting application of Fujiwara’s trace formula (see

[16], 3.5 b)).

Proposition 1.3.15. Let f : X — X be a proper self map of a finite type and separated
scheme over an arbitrary algebraically closed field k. Then for any prime { invertible
in k the (-adic number Z?igm(x)(—l)iTr(f*;Hz(X, Qp)) is in fact a rational number
independent of .

Proof. By a standard spreading out and specialisation argument, one is immediately
reduced to the case where k is an algebraic closure of a finite field F,, and the pair
(X, f) is defined over F,. Then Corollary 1.3.13 implies that there exists an integer
N such that, the traces Tr (f o Fy,, H¥(X,Q)) are rational (in fact integral) for all
integers m > N. The result is then an immediate consequence of Lemma 8.1 in [16] (see
Remark 8.2, loc. cit.).

[

Now we shall introduce a zeta function associated to a self map of a finite type and
separated scheme over F,. The analytic properties of this zeta function will be central
to the results in Chapter 2.

1.4 A zeta function associated to a self map

We continue using the notations and conventions from the previous sections.

Let X, be a finite type and separated scheme over F, and f, : Xo — X a proper self
map (also defined over IF,)). Let £ be a prime invertible in F,.

For any field K, K[[t]] and K((¢)) respectively be the ring of formal power series
and the field of formal Laurent series with coefficients in K.
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Definition 1.4.1. The zeta function Z(Xy, fo,t) corresponding to (Xo, fo) is defined to
be

((f o FX,Q>n*7 Hc*<X7 QZ))tn
n

Tr
Z(Xo, fo,t) = exp(2,2 ) € Qe[[t]] = Qe((2))-
Remark 1.4.2. When f; is the identity, one recovers the Hasse-Weil zeta function of
the scheme X,.

Lemma 1.4.3. Z(Xy, fo,t) belongs to Q(t) n Qu[[t]] = Qu((t)) and is independent of £.

Proof. Proposition 1.3.15 implies that the above power series is actually in Q[[¢]] and
is independent of ¢. The trace-determinant relation ([22] 1.5.3) implies that Z (X, fo,1)
is a rational function in Q. Hence, Z (X, fo,t) € Q(t) n Q[[t]] = Q¢[[t]] = Q.((2)).

For any field K, a formal power series > _, ant™ € K[[t]] is a rational function in ¢ iff
there exists N and M sufficiently large such that, for all £ > N, the Hankel determinants
Hy := det(Ag) vanish, where the matrix Ay is a (M + 1) x (M + 1) matrix and its
(¢,7)™M-entry is a;yj1x, 0 <1i,j,< M (see [18] Chapter 5, Section 5, Lemma 5, compare
[19] Chapter VI, Remark 12.5). Hence for any field L containing K, L(t) n K[[t]] =
K(t) n K[[t]] = L((t)) since, the vanishing of Hankel determinants corresponding to a
formal power series can be checked after a field extension.

Thus Z(Xo, fo,t) € Q(t) and is independent of ¢.

O

Corollary 1.4.4. The formal power series Z(Xo, fo,t) € Q[[t]] < C[[t]] has a non-
trivial radius of convergence about the origin in the complex plane and has a meromorphic
continuation onto the entire complex plane as a rational function.

Proof. It follows from Lemma 1.4.3 that, the formal power series Z(Xo, fo,t) coincides
with the power series expansion (about the origin) of a rational function with coefficients
in Q, as elements of Q[[¢]]. Hence the result.

O

Example 1.4.5. Suppose X is geometrically connected and fy : Xo — X is a constant
map (necessarily mapping to a [F-valued point). The associated zeta function Z(Xo, fo, )

is L e Q[[]].






Chapter 2

Constraints on eigenvalues

In this chapter we establish some constraints on the eigenvalues for the linear action of
a self map of a proper variety on its ¢-adic cohomology. We begin with some motivation
coming from topological entropy and then give a short summary of some recent work
by Esnault-Srinivas ([3]). The results of this chapter partially answer a generalisation of
some questions posed by Esnault-Srinivas (see loc. cit. 6.3).

2.1 Background: Topological entropy

A general reference for this section is the ICM article of Oguiso ([12]).

Let (X,d) be a compact metric space. Let f : X — X be a continuous self map of
X.Forn > 1,let (X", d,) be a the n-fold self-product of X equipped with the sup-metric
induced by d. The continuous map I'ya-1 : X — X" given by x — (z, f(x), ---, " *(z)),
gives an embedding of X — X". Let d(f,n) be the metric induced on X by restriction
of d,, under this embedding.

Intuitively d( f, n) measures how fast two points which were close to begin with, spread
out or come closer as the case may be, under iteration by f. Let N(e,n, f) be the least
number of balls of radius € with respect to d(f,n), needed to cover X. Since X is com-
pact, this is a finite number, which is non-decreasing as € — 0% (for a fixed n).
Definition 2.1.1. With notations as above, the topological entropy of f denoted by
diop(f) 1= elir(g h(f,e€), where h(f,€) := lim sup X enl)

n
n

The limit above exists in [0, 0].
Following are the basic properties of topological entropy,

o diop(f) depends only on the underlying topology of X and not on the metric.
e If f is a periodic map then its entropy is 0.

o If f is an isometry then its entropy is 0.
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An interesting class of compact metric spaces are compact Kahler manifolds with a
choice of a Kahler metric.

Let M be a compact Kahler manifold and w the associated (1,1) form. Let f : M —
M be a holomorphic, surjective self map of a compact Kahler manifold. Then as above
to (M, f) we can associate diop(f) € [0, 0], the topological entropy of f.

Let A(f), Aeven(f), Ap(f) denote the spectral radius for the (linear) action of f* on
H*(M,Q), ®H*(M,Q) and H?*(M, C). Then one has the following result obtained by
combining results of Gromov [1] and Yomdin [2],

Theorem 2.1.2. Let f : M — M be a holomorphic and surjective self map of a com-
pact Kahler manifold M. With notations as above, dip(f) = logA(f) = log Aeven =
MAaXo<p< dim(x) 108 Ap-

Remark 2.1.3. In fact the proofs of Gromov and Yomdin imply that the spectral radius
for the action of f* on H*(M,Q) is obtained on the smallest f*-stable sub-algebra
generated by any Kahler class w.

Corollary 2.1.4. The topological entropy of a surjective self map of a compact Kahler
manifold is finite.

Theorem 2.1.2 is computationally very useful and gives a ‘simple’ way to generate
examples with positive entropy. Further it linearizes the problem of computing topo-
logical entropy by relating it to the spectrum of f* acting on cohomology. Hence it is
natural to look for constraints on the spectrum of this operator, coming from the various
additional structures that can exist on cohomology.

2.2 Algebraic entropy

The following proposition is a consequence of the existence of a polarized Hodge struc-
ture on H*(X(C),Q) (with respect to any ample class [w] € H?*(X(C),Q)) (see [3]
Proposition 5.1).

Proposition 2.2.1. Let X/C be a smooth proper surface. Let f : X — X be an auto-
morphism and [w] € H*(X(C),Q) an ample class. Then we have the following.

(1) The spectral radius for the action of f* on H*(X(C),Q) coincides with the spectral
radius for its action on the f*-stable sub-algebra generated by [w].

(2) Moreover f* acts by finite order on H2(X (C),Q), the orthogonal complement (with
respect to the cup-product pairing) of the image of Neron-Severi inside H*(X (C), Q).

Here (1) can also be obtained as a consequence of the results of Gromov and Yomdin
(see Remark 2.1.3).
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The statement of the proposition above, makes sense over an arbitrary base field, with
the Betti cohomology replaced by f-adic cohomology. However it is not suited for a
proof by specialisation. Esnault and Srinivas observed that a suitable generalisation of

Proposition 2.2.1 specialises well, and proved the same by reducing to the case of a finite
field (see [3]).

Theorem 2.2.2 (Esnault-Srinivas). Let f : X — X be an automorphism of a smooth
proper surface over an arbitrary algebraically closed field k. Let ¢ be a prime invertible
in k. Let [w] € H*(X,Qy) be an ample class. Then for any embedding T of Q, inside C,

(1) the spectral radius for the action of f* (with respect to 7) on H*(X,Qy) coincides
with the spectral radius for its action on the f*-stable sub-algebra generated by [w].

(2) Moreover, let V(f,|[w]) be the largest f* stable sub-space of H*(X,Qy) in the or-
thogonal complement of |w] (with respect to the cup-product pairing). Then f* is
of finite order on V(f,[w]).

Remark 2.2.3. The assumption, with respect to 7 is superfluous, thanks to the result
of Katz-Messing ( [26] Theorem 2, (2)).

However, unlike Proposition 2.2.1 the proof of Theorem 2.2.2 is quite delicate and uses
(among many other things) the explicit classification of smooth projective surfaces. In
particular, it relies on lifting of certain K3 surfaces to characteristic 0, based on [4], and
using Hodge theory to resolve this case.

2.3 Some new constraints on the eigenvalues

We use the notations and conventions of Section 1.3.

Lemma 2.3.1. Let G(t) € tQ|[[t]] be a formal power series with non-negative coeffi-
cients and with no constant term. Then the formal power series exp(G(t)) € Q[[¢t]] and
G(t) have the same radius of convergence about the origin in the complex plane. In
particular, in the disc of its convergence, the formal power series exp(G(t)), considered
as a holomorphic function, coincides with the exponential (in the analytic sense) of a
holomorphic function.

Proof. Suppose G(t) converges in a disc of positive radius around the origin. Then it
exists as a holomorphic function on the disc. Hence F(t) := exp(G(t)) is a holomorphic
function on this disc (here exp is the analytic exponential map).

Note that the power series expansion of the holomorphic function F(t) about the ori-
gin (considered as an element of Q[[¢]]) coincides with the formal power series exp(G(t)).
Hence the formal power series exp(G(t)) converges on the (open) disc of convergence of

G(t).
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Hence the radius of convergence of the formal power series exp(G(t)) is at least as
large as that of the formal power series G(t), subject to the latter having a non-trivial
radius of convergence.

To complete the proof, it suffices to show that the radius of convergence of the formal
power series exp(G(t)) is bounded above by the radius of convergence of G(t).

Using the standard expression for the radius of convergence of a formal power series
(see [20] 10.5, (2)), it suffices to show that 2= (exp(G(t)))|i—o = G (0) where G™(¢) is
the n*® formal derivative of G(t). We shall show by induction on n that,

dm(exp(G(t) = P(GO(1), GA(t), -+ G (1) exp(G(t)) in Q[[t]],

where P(x1, 9, ,x,) is a polynomial with positive integral coefficients and is of the
form P(xy,z9, -+ ,x,) = x, + P(x1,29, -+ ,x,_1) for some polynomial P in one less
variable.

For n = 1 the statement is obviously true. Assume now that the statement is true
with n = k, the chain rule of differentiation then implies the statement for n = k + 1. In
particular, one observes that

L (exp(G(1))) |10 = G™(0) + P(GM(0), GD(0),--- , G™=(0)).

The non-negativity of the coefficients of G(t) implies the non-negativity of G (0)
for each n > 1. Since the coefficients of the polynomial P are positive we are done.
O

Let @g be an algebraic closure of Q; and let Q be the algebraic closure of Q < Q
inside Q,. An element in Q, is said to be an algebraic number, if it belongs to Q.

The following proposition on existence of functorial weight filtrations is standard. We
prove it here due to lack of an appropriate reference.

Proposition 2.3.2. Let X,y be a finite type and separated scheme over a finite field
F,. For any integer i € [0,2dim(X)], there exists an unique increasing (finite) weight
filtration Wi, H:(X,Qy), k = 0 such that,

(1) (Functoriality) the weight filtration is functorial for proper morphisms of finite type
and separated schemes over F,. That is, for any proper morphism fo: Xo — Yo of
finite type and separated schemes over F,, the induced morphism f* : H{(Y, Q) —
Hi(X, Q) respects the weight filtration. In particular there is an induced action of
F} . on Griy, H(X, Qy).

(2) (Purity) For any integer i € [0,2dim(X)] and all integers k > 0, the non-zero
Gri, HY(X,Qy) are pure of weight k. That is, for any integer i € [0,2dim(X)] and
all integers k, the eigenvalues (in Q,) of F% , acting on Gri H (X, Qy) (assumed to
be non-zero) are algebraic numbers, all of whose complex conjugates have absolute
value qg.
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(8) (Strictness) For any proper morphism fy : Xo — Yo of finite type and separated
schemes over B, the induced morphism f* : H(Y,Qy) — HL(X,Qy) is strict (in
the sense of [24] 1.1.5) for the weight filtration.

Proof. Let A be the abelian category of Q[t]-modules. For any finite type and separated
scheme Xo/F,, H:(X, Q) can be considered as a Q,[t]-module with ¢ acting on H:(X, Q)
as Fy .

Let Cr, be the category whose objects are finite type and separated schemes over
F, and morphisms being proper morphisms of schemes over IF,. Then for any i, X, —
H!(X,Qy) is a (contravariant) functor from Cr, to A.

Théoréme 1 (3.3.1) in [23] implies that the eigenvalues (in Q,) of F %, acting on
Hi(X,Q) are algebraic numbers of weight less than or equal to ¢ (in the sense of [23]
Définition 1.2.1). In particular all the roots (in Q,) of an irreducible factor of the minimal
polynomial of F , (acting on H:(X,Qy) ) are algebraic numbers. Moreover Gal(Q,/Qy)
acts transitively on the set of these roots and hence all of them have the same weight.

For any X, and any integer ¢, the Q[t]-module H'(X,Q,) is canonically a direct
sum of Qy[t]-sub-modules of H!(X,Qy), such that each sub-module is supported only
on an (ideal defined by) irreducible factor of the minimal polynomial of F% acting
on H(X,Q). Thus each of these sub-modules is pure of a fixed weight. Now define
WiLH! (X, Q) to be the direct sum of those sub-modules whose weights are less than or
equal to k. Hence purity of Gr’IfVH (X, Qy) is obvious from construction.

Functoriality and uniqueness are an immediate consequence of that fact that, there
are no non-zero morphisms between Q,[t] modules with disjoint supports. Strictness is
also obvious from the construction of the filtration (from an underlying direct sum).

O

Remark 2.3.3. Alternatively Hi(X,Q,) =PH!(Rrx1Qyx), where PH' is the i*" per-
verse cohomology on D°(Spec (k), Q) for the middle perversity (see [28] 2.2.18). Thus
Hi(X, Q) is a mixed perverse sheaf on Spec (k) and consequently has a functorial weight
filtration (see [28] Théoreme 5.3.5).

Remark 2.3.4. Suppose X is a finite type and separated scheme over k (an algebraic
closure of a finite field). Then after choosing a model for X over a finite sub-field of
k and using Proposition 2.3.2, one can associate a weight filtration on H'(X, Q,). Fur-
ther, uniqueness and functoriality (in Proposition 2.3.2) imply that, this filtration is
independent of the chosen model and is functorial for proper self-maps of X /k.

Let k be either the algebraic closure of a finite field or the field of complex numbers
C. Fix a prime ¢ invertible in k (if char(k) > 0), and an embedding
7:Qp— C. (2.3.1)

Suppose X is a proper scheme over k. Let H*(X) be the f-adic cohomology of X
(when char(k) > 0) with its increasing weight filtration (Proposition 2.3.2, Remark 2.3.4)
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or the singular cohomology H*(X (C), Q) (when k = C), with its Mixed Hodge structure
([25] Proposition 8.1.20). Let W, H*(X) be the associated weight filtration.

Let f: X — X be a self map of X.

Let Aoqa (resp. Aeven) be the spectral radius (with respect to 7 if char(k) > 0) for
the action of f* on @;soH* ™ (X) (resp. @i=0H*(X)). Let kogqa be maximal among
integer k with the property that the spectral radius for the action of f* on GrI]iVH “(X)
is A\oad, where 7 is an odd integer. Similarly define keyen.

Theorem 2.3.5. Using the above notations, we have that

(1) /\even = )\odd-
(2) If equality holds in (1), then kepen = Koda-

Proof. Suppose k = C, then choose a model (X,F) of (X, f) over a finitely generated
domain R over Z such that the structure morphism 7 : X — Spec (R) is proper and flat
(see [21] Ch. IV Théoreme 8.10.5). If necessary shrink Spec (R) to keep ¢ invertible. Then
the higher direct images R'r,Qy are constructible sheaves on Spec (R) (see [15] Théoréme
4.6.2) . Thus shrinking Spec (R) if necessary, we can assume that R'r,Q; is a local system
for 0 < i < 2dim(X).

The morphism §*(Q;) — Qg induces an endomorphism ®; of the local system
Rm,Qy, 0 <i < 2dim(X), which by functoriality of the proper base change morphism
for 7, induces f*: H(X,Q,) — H'(X, Q) on the geometric generic fibre base changed
to k. Since Spec (R) has been chosen so that R'm,Qy is a local system, the specialization
map between the stalk of this local system at an algebraic geometric point over a closed
point (in the sense of [15] Chapitre 1, 2.3.1) and the geometric generic point (with re-
spect to the geometric point Spec (k) — Spec (R)), is an isomorphism. Moreover this
isomorphism is equivariant for the induced endomorphisms ®;, and respects the weight
filtration (see [28] 6.2.2). Thus we are reduced to the case when k is an algebraic closure
of a finite field.

Suppose Aogq > Aeven- We shall obtain a contradiction.

Note that for any positive integer r, the spectral radius (with respect to 7) of f™*
acting on the odd and even degree cohomology are A[,;; and A, respectively. There
exists an iterate of f which maps a connected component of X into itself. Hence, f*
acting on H°(X,Q,) has at least one eigenvalue of modulus 1 (with respect to any
7). Thus, Aodd > Aeven = 1.

Choose a model (X, fy) for the pair (X, f) over a finite field F,, whose algebraic
closure is [F. Since Aoqq > Aeven, there exists an integer » >> 0 such that,

)\gvenqdim(X) < )‘gdd' (232>

We fix one such r. Consider the zeta function (see Definition 1.4.1) of the pair
(Xo, f§). It follows from Corollary 1.4.4 that this zeta function is defined as a holo-
morphic function in a non-trivial neighbourhood of the origin, and has a meromorphic
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continuation onto the entire complex plane as a rational function. Suppose that % is
the meromorphic continuation, where R(t) and Q(t) are co-prime rational polynomials

in t. Moreover using the trace-determinant relation (see [22] 1.5.3), one has

2dim(

X) _
Z(Xo.fo.t) = [ POV in Qf[t]] = C[[]](via 7) (2.3.3)

1=0

where P;(t) = det (1 — ¢ (Fxqo0 f")* , H (X,Q)), 0 < i< 2dim(X).
Moreover, one also has

R(t)
Q(1)

Hence (2.3.3) and (2.3.4) imply that the complex roots of R(t) and Q(t) are a subset
of the inverse eigenvalues of (Fx 4o f")* acting on the odd and even degree cohomol-
ogy, respectively. In particular, they are non-zero. Also, note that f* and F§  commute
and hence can be simultaneously brought to a Jordan canonical form. Hence any eigen-
value of F'y o f™ acting on any H “(X,Qy) is a product of an eigenvalue of F' %4 and one
of fm* acting on the same H'(X, Q).

Let a be any complex zero of [ [y ;cqim(x) F2i(t) € C[t] (via 7 in (2.3.1)). Since the

Z(X07f(§7t> =

in Q[[t]]. (2.3.4)

ith compactly supported f-adic cohomology is of weight less than or equal to i ([23]

Théoreéme 1 (3.3.1)), one has,

L<)\T

dim(X) < " 2.3.5
’Oé’ evend odd ( )

1
)‘de

Since !, is the spectral radius (with respect to 7) for f™* acting on the oddly graded
cohomology, there exists an odd index 2i + 1 and a complex root § of Py;41(t) such that,

In particular, Q(t) has no roots on the closed disc of radius

1 1
T mB) S
odd¥ Aodd

8= 5 (2.3.6)

where 2m() is a non-negative integer (corresponding to the weight of the Frobenius).
In particular, 3 is not a root of [ [o;<gim(x) F2i(t) € C[t]. Hence 3 is a root of R(t). Thus
R(t) has a root in the closed disc of radius 17—, while Q(t) has no roots on this closed

gdd ’
disc.
The equality between the Zeta function Z(X, f,t) and the rational function % is
in the ring Q[[¢]]. Since the power series corresponding to B 5 convergent in an open

Q(t)
disc not containing any of the zeroes of Q(t), the radius of convergence of Z(Xy, f§,t) €

Q[[t]] = C[[t]] is strictly larger than

1
Aodd
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It follows from Corollary 1.3.13 that the zeta function Z(Xy, f¥,t) is of the form
exp(G(t)), where G(t) € tQ[[t]] has non-negative coefficients. Thus Lemma 2.3.1 implies
that the rational function % coincides with the exponential of a holomorphic function
in the disc of convergence of the zeta function Z (X, fi,t) and in particular, in an open
neighbourhood of the closed disc of radius ﬁ Hence R(t) cannot have a zero in this
open neighbourhood. However (2.3.6) implies that that R(8) = 0, |5] < ﬁ This is a
contradiction. ’

Hence Acven = Aodd-

Now suppose Aeven = Aodd, PUt keven < Koaa. As before we shall obtain a contradiction.

Let u; be the spectral radius (with respect to 7 in (2.3.1)) for the action of f* on
H?(X,Qy) for each 0 < i < dim(X). Then there exists an integer r >> 0 such that, for
any integer ¢ € [0, dim(X)] with p; # Aeven, We have

H even ko
pEgTmO) <N < N < Agag 2

even ~ “‘even

(2.3.7)

We fix one such r. As before Lemma 1.4.3 and Corollary 1.4.4 imply that the zeta
function Z(Xo, fj,t) has a non-trivial radius of convergence about the origin and has
a meromorphic continuation of the form R(t)/Q(t) onto the entire complex plane, with
R(t) and Q(t) being co-prime rational polynomials. Also the zeroes of R(t) and Q(t), are
a subset of the inverse eigenvalues of (Fx, o f")* acting on the odd and even degree
cohomology respectively.

Since the i*" compactly supported f-adic cohomology is of weight less than or equal
to i ([23] Théoreme 1 (3.3.1)), the weight filtration on H*(X,Q,) (Proposition 2.3.2)
satisfies Wy H (X, Q) = H'(X,Qy) for k > 1.

Let

Pii(t) :=det(1 —t(Fx g0 f1)*, Cri, H(X,Qp)), 0 < k <4, 0 <i < 2dim(X).
As before,
Pi(t) := det(1 — t(Fx 40 f7)*, H(X,Qy)), 0 < i< 2dim(X).

Since the weight filtration is respected by the action of F% o f™ (Proposition
2.3.2), one has an equality,

H?izrg(x) ilo P ge(t) = HOSiédim(X) Py;(t) € C[t] (via 7 in (2.3.1)).

Let a be any complex zero of [ [o;cqim(x) F2i(t) € C[t]. Then o is a zero of Py (t)
for some integer ¢ € [0, dim(X)] and 0 < k < 2i. If 14; # Aeyen, then (2.3.7) implies,

kodd

< g™ < Ngag (2.3.8)

On the other hand the definition of ke, implies that, if g; = Aeyen, then £ <
Keven- Thus (2.3.7) implies that
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1 even ko
o] S Myend® < Myen 5% < Mogqa 2 (2.3.9)
kO
Thus in any case \Ell < AN uq 2" for any complex root a of [ Tocicdim(x) 2i(t). In

particular, the same holds true for any complex root of Q(¢).

Moreover from the definition of k.qq it follows that, there exist an odd index 27 + 1

ko .

and a complex root 5 of Py;i1 ., (t) such that, \T%I = Nqq 2. Hence, f is not a root
of [ [ocicdim(x) F2i(t) and thus is necessarily a root of R(t). Thus R(t) has a root on the

1

Fodd ?
. Abaad o
before, we arrive at a contradiction. Hence kogq < Keven-

closed disc of radius while @(¢) has no roots on this closed disc. Arguing as

]

Corollary 2.3.6. Let f : X — X be a self-map of a proper scheme over an arbitrary
field k. Let ¢ be a prime invertible in k and k an algebraic closure of k. Fiz an embedding
7 : Qp — C. Then, the spectral radius (with respect to T) for the action of fz on the
entire (-adic cohomology H*(X3,Qy) is equal to the spectral radius for its action on

DizoH* (X5, Q).

2.4 Two examples

The following simple example shows that the inequality (1) in Theorem 2.3.5 need not
be strict.

Example 2.4.1. Let k = C and X = E x £ x P! where E is any elliptic curve over C.

Let f be the automorphism of X given by f(z,y, z) = (22 + 3y, x + 2y, z). We have
f =g x 1p1, where g : E — FE is the automorphism (z,y) — (2x + 3y,x + 2y). Let
Aevens Modd, Keven, koda be as defined in the previous section for the action of f* on
H*(X(C), Q).

We have an injective ring homomorphism,
End(E x E) ~ Matgxe(End(E)) — End (H,(E(C) x E(C),Z)),

induced by functoriality of singular homology (see [27], Chapter IV). Hence the minimal
polynomial for the linear action induced by g on H;(F(C) x E(C),Q) is t* — 4t + 1. In
particular the eigenvalues of g, on H,(E(C) x E(C),Q) are A\; := 2++/3, Ay :=2—+/3 =
/\il with some multiplicities. By functoriality of the universal coefficient isomorphism, the
eigenvalues of ¢* on H'(FE(C) x E(C), Q) are also A\; and Ay with the same multiplicity.

The cohomology ring H*(E(C) x E(C),Q) is isomorphic (as graded rings) to the
exterior algebra on the Q-vector space H'(E(C) x E(C), Q). Further this isomorphism is
equivariant for the action of g* and since, g* acts as identity on H*(E(C) x E(C), Q), the

mutiplicities of A\; and Ay on H'(E(C) x E(C), Q) should be precisely 2 each.
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Since H'(E(C) x E(C),Q) is a 4-dimensional vector space over Q, the eigenvalues
of g* on H*(E(C) x E(C),Q) ~ A*H'(E(C) x E(C),Q) are A2, A3, M)Ay = 1 with
multiplicities 1, 1 and 4 respectively. On the other hand, as representations of the cyclic
group {g**, k € Z), H3(E(C) x E(C),Q) is dual to H'(E(C) x E(C), Q). Thus it follows
from the Kunneth formula that Aeven = Aodqa = A3, While keyen = 4 and koqq = 3.

The following example shows that Theorem 2.3.5 is false without the properness
hypothesis, even for smooth varieties.

Example 2.4.2. Let T'/k be a rank 2 torus (split over F,) and f : 7' — T any group
automorphism of 7. Then, ker(f o Fft, — 17) is a finite étale group scheme. Since it
is a sub-group scheme of a torus, its order (or rank) is co-prime to p. For any integer
n e N, let Fix(f o F ) be the number of fixed points of f o FT acting on T. Then

Fix(f o F) = |Pr(q")]

where Py(t) := det(1 — tMy; X*(T')), and My is the linear map on the co-character
lattice X*(T'), induced by f.

The only non-trivial compactly supported f-adic cohomology groups of T are H2(T, Q) ~
Qq, H3(T,Qq) ~ Qu(—1)®2 and HX(T,Q,) ~ Q(—2). Thus for all integers n > 1,

Tr((f o Fp)* H (T, Q) = ¢** — Te(f*, HX(T, Qu)q" + Tr(f*, HZ(T, Q).
It follows from Corollary 1.3.13 that for n large enough,
Tr((f o Fp,)* HX(T, Q) = Fix(f o ) = Pr(q") = ¢*" = Tr(My)q" + det(My).
Thus

Tr((f o Fr,)*, H(T, Q) = Pr(q")

for all integers n > 1.

Let f be chosen such that |Tr(My)| > 2 and det(M;) = 1. Note that the eigenvalues
of f* acting on the compactly supported (-adic cohomology are algebraic integers inde-
pendent of £. Since Tr((foF},)*, HX(T,Q.)) = Ps(q"), it follows that, for any embedding
7:Q— C,

(1) f* acting on H2(T,Qy) has at least one eigenvalue of modulus greater than 1.
(2) f* acts as identity on H?(T,Qy) and H(T, Q).
Hence Aoqqa > Aeven-

A careful look at the proof of Theorem 2.3.5 shows that the failure of Theorem 2.3.5
without the properness hypothesis (as in Example 2.4.2), can be attributed to ng(f*)
(see Definition 1.3.14) being strictly greater than 1. This motivates us to consider the
growth of an upper bound for ng(f*) with respect to k for non-proper varieties. This
will be a topic of interest in the next chapter.



Chapter 3

Growth of an upper bound for
no(f*) with respect to k

In this section, we study the growth of an upper bound for ng(f*) (see Definition 1.3.14)
with respect to k. A crucial input for us is Varshavsky’s notion of a ‘contracting’ corre-
spondence (see [8] 2.1). We recall the necessary notations and definitions from [8].

We continue using the notations and conventions from previous sections.

3.1 Varshavsky’s trace formula

We work over a separably closed base field k. All schemes are assumed to be separated
and finite type over k.
Let ¢: X — Y be a morphism of schemes.

Definition 3.1.1 (Ramification along a closed sub-scheme). For a reduced closed sub-
scheme Z < Y its ramification along c is the smallest n € N such that ¢ (7)) <
(¢(Z)red)n- We denote this by Ram(Z, c).

Definition 3.1.2 (Ramification degree of a morphism). If ¢ above is quasi-finite, then
ram(c) is defined as the maximum of ram(y, c¢), as y varies over all the closed points of
Y. We denote this by ram(c).

Remark 3.1.3. Note that our notation for ramification along a closed subscheme differs
from the one in [8] to avoid any possibility of a confusion with the notation for the
ramification degree of a morphism.

Now let ¢: C' - X x; X be a self-correspondence of X.

Definition 3.1.4 (Invariant closed subset). A closed subset Z < X is said to be c-
invariant if ¢;(c;*(Z)) is set theoretically contained in Z.
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Definition 3.1.5 (Locally invariant closed sub-set). A closed subset Z < X is said to
be locally c-invariant if for each x € Z there exists an open neighbourhood U of z in X
such that, Z n U is [¢]|y-invariant (see Definition 1.1.8) .

Example 3.1.6. If ¢y is quasi-finite then any closed point of X is locally c-invariant
(see [8] Example 1.5.2).

Remark 3.1.7. Suppose [¢] is a correspondence, locally invariant along a closed subset
Z. Let u be a cohomological correspondence from F € DY (X, A) to itself lifting [c] (Def-
inition 1.1.9). Then we can define a self-correspondence [c]|7z of Z and a cohomological
self-correspondence u|z of F|y lifting [c]|z as in [8], 1.5.6.

Definition 3.1.8. A closed subscheme Z is said to be stabilized by c if ¢;* (Z) is a closed
subscheme of ¢;'(Z).

Recall that for a closed subscheme Z of X, 7, is the closed subscheme of X defined
by the ideal Z%.

Definition 3.1.9. c is said to be contracting near a closed subscheme Z < X if ¢
stabilizes Z and c;'(Z,41) is a closed subscheme of ¢;*(Z,) for some n > 1.

Definition 3.1.10. A closed subscheme Z < X is said to be contracting in a neighbour-
hood of fized points if there exists an open subscheme W of C' containing Fix(c) such
that [c]|w is contracting near Z (see Definition 1.1.8).

Unless otherwise stated, henceforth in this section, we work over k, an algebraic
closure of a finite field IF,.
We record the following obvious lemma.

Lemma 3.1.11. Let [¢] := (C, c1, ¢2) be a self correspondence of X defined over F,. Let
[c] := (C,&1,¢) be a proper self correspondence of X also defined over F,. Suppose there
exists an open immersion [j] = (j1, 77, j2) : [c] = [€] defined over F,. Then, for all n >
1, [1] := (5%, 41, 52) : [c]™ — [€]™ (see Definition 1.3.10) is an open immersion, which
is a compactification, if [j] : [¢] — [€] is a compactification.

An important result in [8] is the following trace formula.

Theorem 3.1.12. (/8/, Theorem 2.3.2)
Let c: C — X x;, X be a correspondence defined over F,.

(1) Suppose cy is quasi-finite. Then for any n € N with ¢" > ram(cs), the scheme
Fiz(c™) is zero-dimensional.

(2) Let U < X be an open subscheme also defined over F, such that C1’C;1(U) 18
proper, 02|C;1(U) is quasi-finite, and the closed subset X\U is locally c-invariant.

Then there exists a positive integer d = ram(02|cgl(U)) with the following prop-
erty: for every F € Dgtf(X, A) with Flx\wv = 0 and every n € N with ¢* > d, and
for any cohomological self-correspondence u of F lifting [c]™, one has
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TT(RFC(U>) = ZyeFix(c(M)mc;l(U) Tr(uy)-

Here u,, is the induced endomorphism on F, (see Example 1.2.1).

(8) In the notation of (2) as above, assume that X and C' are proper over k. Then
d =: maz{ram(ca| 1), ram(ca, X\U)}

satisfies the conclusion of (2).

Remark 3.1.13. When U = X the conclusion of assertion (2) above is the same as
that of Fujiwara ([6] Corollary 5.4.5).

3.1.1 A compactification of the transpose of a graph

Let X be a finite type and separated scheme over k and f : X — X a proper mor-
phism. Assume that the pair (X, f) is defined over F,. Let [I'}] be the associated self

correspondence of X as in Example 1.1.3. Let j : X — X be an arbitrary compactifica-
tion of X (assumed to be defined over F,). Let 0X := X\X, with the reduced induced
structure.

Let F_ﬁc be the Zariski closure of F? inside X x;, X. Let c1,5 and ¢y ¢ be the map

induced from F_ﬁc to X, by the first and second projection respectively. Let j; : X < F_}
be the open immersion. Let ¢; s and ¢y 5 be the restrictions of ¢, y and ¢, ¢ respectively

to X (via jg). Let @f? be the complement of X inside fjc with the reduced induced
structure. For i = 1,2 let 0¢; s be the restriction of ¢; s to 8?;. Then [f] := (ftf,617f,627f)
(a self correspondence of X) is a compactification of [I'}] via [js] := (4, js, J)-

Since f is proper and [f] := ('}, €1 7, Ca,5) is a compactification of [T';], Lemma 1.1.7

implies that 0X is [f]-invariant. Hence we have a commutative diagram,

X1 Xt 55X

e, p=f C1,f fﬁ,fT
Jf =t if t

X< r ool
! !

Cg’f::lx C27fl 8cQ7fl

X Xt 59X

Corollary 3.1.14. For all n > log, (Ram(0X,¢,y)), one has

Fia(f o Fy ,) = Tr((f o Fx )", HZ (X, Q).
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Here Fix(f o F ) is the number of fived points of f o Fy  (see Lemma 1.5.6).

Proof. For any n > log,(Ram(0X, %)) let uén) be the cohomological self correspon-
dence of Qy lifting [F%;} of) as in Example 1.1.10. It follows from Lemma 3.1.11 that

[f]™ is a compactification of [F%; o) Let u™ be the cohomological self correspon-
»q

dence of 5,Q, obtained as in Example 1.2.8 lifting [ f]™. Example 1.2.8 implies that the

endomorphisms RI',(u(™) and RPC(U(()”)) of RI'.(X,Qy) are identical. The result then
follows by applying part (3) of Theorem 3.1.12 to u(™ (see Example 1.2.1).
[

Corollary 3.1.14 implies that no(f) < Ram(0X,% ;) (see Definition 1.3.14). The
procedure above gives an ‘effective’ upper bound for ng(f) in terms of the geometry
of the chosen compactification of X. However there is no obvious relationship between
these bounds for ng(f) and no(f"), r > 1.

Given the Lefschetz-Verdier trace formula, one obtains a trace formula as in Var-
shavsky [8], using additivity of trace maps (see [8] Section 5) and making the corre-
spondence contract along the boundary. The contraction along the boundary ensures
that the contribution to the local terms of the trace formula coming from the boundary
is trivial. The condition (3) in Theorem 3.1.12 ensures contraction along the boundary
after twisting the correspondence with a high enough iterate of the Frobenius. The key
step is the following theorem.

Theorem 3.1.15. (/8], Theorem 2.1.3)
Letc: C' — X x, X be a correspondence contracting near a closed subscheme Z < X
in a neighbourhood of fized points, and let 5 be an open connected subset of Fix(c) such

that ¢(B) N Z # & (see 1.2.1). Then

(1) B is contained set-theoretically in =1 (Z), hence B is an open connected subset of
Fix(c|z) (see Remark 3.1.7).

(2) For every cohomological correspondence u from F to itself lifting ¢, one has Trg(u) =
Trs(ulz). In particular, if B is proper over k, then LTg(u) = LT3(u|z) (see Remark
3.1.7).

Remark 3.1.16. The theorem above holds true over arbitrary separably closed fields
and ¢ need not be proper.

The following corollary can be read off from the proof of Theorem 3.1.12 in [8].

Corollary 3.1.17. Let ¢ : C — X x;. X be a self-correspondence of a scheme X. Let
U < X be an open subscheme and F € Dgtf(X, A) be supported on U. Suppose also that ¢
is contracting near the closed subscheme Z, where Z,.q = X\U. Let u be a cohomological
self-correspondence of F lifting [c|. Then
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ZBENO(M(C)) LTs(u) = de(m(m(cw))) LTs(uly)

Remark 3.1.18. That the right hand side makes sense is a part of the corollary (see
Chapter 1, Section 1.1.1 for the definition of u|y).

Proof. Consider the following diagram of schemes (see 1.2.1),

Fix(c) X
| A
C - X x X

If a connected component [ of Fix(c) is such that ¢/(8)nZ = J then, ¢1(8) = c2(B) is
disjoint from Z. Hence, one has the inclusion 8 < ¢;(U) nc; H(U). Thus f3 is a connected
component of Fix(c|yy). On the other hand if ¢(8) N Z # &, Theorem 3.1.15 implies that
LT3(u) = LTj(ulz). Since F restricted to Z is trivial and ulz is a cohomological self-
correspondence of F|; (see Remark 3.1.7), one necessarily has LTs(u) = 0if ¢/(8) nZ #
.

Moreover (1) of Theorem 3.1.15 implies that if 5 € my(Fix(c|y)) is such that § <
B' € mo(Fix(c)) then, () n Z = . Hence 8 = /3. Thus the connected components
of Fix(c|y) are precisely the connected components of Fix(c) whose image under ¢’ does
not intersect Z. In particular these connected components are proper over k. Hence the
right hand side makes sense. Since the local term at a connected component 3 < Fix(c)
depends only on an open neighbourhood of 3, the result follows.

[

3.2 Compactifications adapted to iteration and con-
traction

Let X be a finite type and separated scheme over a field k, an algebraic closure of a
finite field F,. Let X be a compactification of X. Let j : X < X be the open dense
inclusion. Let 0X be the complement of X in X, with the reduced induced structure. Let
i: 0X < X be the closed immersion. Assume that X, X and j are defined over Fy,.

Let f and g be two proper self maps of X both defined over F,. Let [f] = (C, @, ¢, Co.f)
and [g] := (Cy,¢14,Cay) be self-correspondences of X compactifying [I';] and [I'] re-
spectively, and also defined over F,. Let j; : X — @ and j, : X — Ug be the open
dense inclusions. Also let 86f be the complement of X in ﬁf with the reduced induced
structure. Similarly define 0C,. Let if : dC; < C; be the closed immersion and sim-
ilarly one also has i4. Let ¢y and cy ; be the restrictions of ¢, y and ¢, ; respectively
tol = X — Cy. Similarly define ¢; , and ¢y . Let 0¢; ¢, i = 1,2 be the restriction of
Cip, i = 1,2 to dCy. Similarly define d¢; ,, i = 1,2.
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Since f and g are proper, Lemma 1.1.7 implies that the dense open immersions
X — Ef}(X) and X — ¢ (X) are isomorphisms. Thus 0Cy < E;}(@Y), i=1,2 and
C, Ei_,gl((?y), i = 1,2. Moreover, the supports of dC'; and E;}(&Y), i = 1,2 are equal
and a similar result is true for g.

Hence as before one has the following commutative diagram,

x4 Xt 55X
Cl,f—f] Cl,f] 551,4
X" o, 0,
N Y
x4 Xt 55X

There exists a similar diagram for g too.

Proposition 3.2.1. Let [f] and [g] be compactifications of [T'}] and [T'] as above. Sup-
pose that 60X is [f]™ and [g]™ contracting (see Definition 3.1.9). Then, there exists a
self-correspondence [g o f] of X and a morphism [3gof:| 1= (;gof,la.;:jif73gof72) from [thof]

—~—

to [g o f] such that,

1. [gfo\j”] is a self-correspondence of X, also defined over F,.

2. [go f] is a compactification of Fgof (via [}gof]) and Fgoﬁl = }gof,2 =7J.
3. 0X is [ﬁ](m”)—contmctz’ng.

Proof. Consider the following diagram,

X—L X (3.2.1)
)
CrxxC,— T, X
b
X’ .o, X
o s

xe J X
Each square in the above diagram is cartesian. .
Here 6/17 s and 51279 arise from base change of ¢, ; and ¢, respectively. Let [go f] :=

—_— — ! — 7
(Cf xx Cy,C1g0C 4,Caf 0Ty ).
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Note that the composite morphism c1,r o jr factors via j : X — X and hence, the
base change of j; : X — C} by 62 v 18 at once isomorphic to X under the projection
map and also an dense open immersion inside C e < Cy.

Hence there exists a dense open immersion j s from X to C; x% C, such that

[]gof] = (],]gof, ) from Fgof to [go flis a compactlﬁcatlon. Further it is clear that

[m] is also defined over F,.

Let 8(?'} X f;) be the complement in T; X% ftg of X with the reduced induced
structure.
Since, 0X is [f]™ and [¢]"™ contracting, it is in particular stabilized by [f]" and

[g]™. Thus, there exist inclusions of closed subschemes

_— -1
& H(eX) < (F%q 07y, f) (6X) (3.2.2)
and
— -1
5 LX) < (ng 0 5179) (6X) . (3.2.3)

Hence (3.2.2) implies that

’ -1 —
(Cop 0 Ty,) 1 (0X) c Ty, ((F;}q o 51,f> (aX)) . (3.2.4)
Since ¢4 © E/l,f = C1,; 0 Gy, (see Diagram 3.2.1) , one has
/_1 -1 e r_1 -1 P

o ((F;;q oTiy) (ax)) — 7 ((F;;q 0Ty ) (ax)) . (3.2.5)

Moreover, since Fig 0Ty =Cog0 FE | (3.2.3) implies that

B — m+n | — 1=

71 ((F;q o@,g> (é’X)) <) <<FX; 0 cu,) (ax)) . (3.2.6)

Combining (3.2.4), (3.2.5) and (3.2.6) one gets,

(o) () = (R e (aed) (7).
Thus, 0X is stabilized by [m] (m-+n)_

Moreover by the contracting properties of [f]™ and [g]"™), there exist d,e € N and
inclusions of closed subschemes,

& ((0%) ) < (Fa,0ms) (X)) (3.2.7)

and
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(v N
s ((0X),,,) = (g, 0,)  ((0X),). (3.2.8)
Hence (3.2.7) implies that

(@,,c o E’Qvg> -1 <(5Y)de+d+e+1) c ey, ((F;q o Eldc) -1 ((07)d(e+1)>> . (3.2.9)

. _ s _ —r .
Since €y, 0Ty ; = €1y 0Ty, (see Diagram 3.2.1), one has

3 () () 5 (30 (). 020

: - " o
Moreover, since FY,q 0Cgy = Ca40 Fég,q’ (3.2.8) implies that

¢ ((FX ony) ((aY)d(eH))) e ((F;g; oty) ((aY)de)) (3211

Thus, combining (3.2.9), (3.2.10) and (3.2.11) one has,

4 - 5% m+n — -/ -1 v
(EZJ 052,9) ' <(6X)de+d+e+l> < (FX; © (6179 © Cl,f)) (aX)de‘

Since
_ ! —1 —— — ! —1 X
(C2vf © 62,9) <(aX)de+1) = (C2vf © 0279) ((aX)de+d+e+1>’

we conclude that 0X is [ﬁ] (m+n)_contracting.
O]

Remark 3.2.2. Suppose [f] and [g] above, are the compactifications of [I';] and [I']
as obtained in 3.1.1. Let go\j‘ denote the morphism induced from fjc xyfz to X x X

—~——

by [g o f]. Denote by thof, the Zariski closure of I'} , inside X xj X. Let j,o; denote

the inclusion of X inside fzo - Then one has a commutative diagram,

Ejif =t =t

XL T x5 T,
Jgof gFOVf

=1

X 5, X
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Clearly FZO ;C gof (f; XYFZ). If f;o s is properly contained in gof (f; XYFZ), choose

—~——

a point x € (Fgof)c Nngo f(fjc nyZ). In particular x ¢ X and hence z is in the image of
=t —t =t —~ =t =t

an element ' € J(I'; x5 I',). Hence (g o f)—l((I‘go_ft)c N g_to f(I'y xxT,)) is a non-empty

open set containing 2’ and hence intersects X < I'; xx ') non trivially, a contradiction.

. o . —t =t | =t
Hence there is a proper birational morphism from I'y x5 I') to T’

gof» the more ‘obvi-
ous’ choice for a compactification of Fgo - However this morphism being in the ‘wrong’

direction does not help in proving that [g o f] has the right contraction properties.

—~—

Remark 3.2.3. Note that by construction [go f] is independent of m or n. Hence, if
0X is contracted by [f]™) and [g]™") for some m/,n’ € N, then it is contracted by
[g o F107 ).

Remark 3.2.4. As pointed out by the referee, an argument along the lines of the proof

—

of Proposition 3.2.1 shows that [go f]'™*™ is contracting along 0X even when 0X is
only stabilized by [g]™.

3.3 A trace formula

Recall that X was a finite type and separated scheme over k, defined over a finite field
F,, and f: X — X was a proper self map, also defined over F,.

Theorem 3.3.1. There exists an integer N(f) = 1 such that for all integers n = N(f)
and k > 1,

Fia(* o ) = To(f* 0 F)*, H2 (X, Q0)), (33.1)

where Fiz(f* o F}}fﬂq) is the number of fized points of f*o F)’éf“q acting on X . Moreover
when X is proper we can take N(f) = 1.

Proof. When X is proper the claim follows from Corollary 1.3.13. Hence we can assume
that X is not proper.

Let [f] be the compactification of ' as defined in 3.1.1. As observed in 3.1.1, the
closed sub-schemes Ei}(ﬁy) and €, }(67) have the same support. Hence

62’7}(87) = (E;} (67))red,r - (Ei} (67))red,r s Ei} ((ay)r) )

where 7 = Ram(0X, ;) (see Definition 3.1.1).
In particular, since 0X is also defined over F,,

I _ —1 .
e} (0X) o ((0X),) € (P2, ony) (%)
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for all n > log,(r).
Let N(f) be the smallest integer greater than log,(r). Then there exists d € N such
that 1+ 1/d < ¢¥)/r. For such a choice of d and all n = N(f),

52_}” ((ay)d+1> El_} ((&X) d+1)) El_} ((ay)q"d> s <F%q oElaf> B ((ay)d)'

Thus 0X is [f]™-contracting for all n > N(f).

By repeated use of Proposition 3.2.1, for all £ > 1 one can find a self correspondence
[ fk] of X (with [f] := [f]) which is a compactification of I'y, and such that [F] (nk) jg
contracting along 0X for all n > N(f) (see Remark 3.2.3).

Let F := qug be the sheaf on X supported on X. For any n > 1, Lemma 3.1.11

implies that, [ f’“](”k’) is a compactification of [T Hence for any n > 1, as in

F'nk fk]
Example 1.2.8, the cohomological correspondence

ug - (Fgh o f7)*Qp — Qg (lifting [P o))

extends to a cohomological self-correspondence ﬂ,in) of F (lifting [/f’;] (nk)).
Now suppose 7 is an integer greater than or equal to N(f).

Since F is supported on X and [}\’;]("’“) is contracting along ¢X, Corollary 3.1.17
implies that,

D LTs(u") = D LT x). (3.3.2)
Bemo (Fix([fF]9)) Bemo(Fix([fF]9)|x))
The correspondence [rf\’;] (k)| is T kot and by Lemma 1.3.6 the connected com-

ponents of le([jf\’;] (k)| x) are just the fixed points of Fi% o f*. Moreover [8], Corollary

2.2.4 (b) implies that [}“\’g](”m x is contracting near every closed point in a neighbour-
hood of fixed points. Hence Theorem 3.1.15 (2) implies that the local terms at the each
of the fixed points of F' Q{“q o f¥ is precisely 1. Hence the sum on the right hand side of
(3.3.2) is precisely the number of fixed points of F’ Q’“ o f*. The result now follows from
the Lefschetz- Verdler trace formula (see Corollary 1.2. 11) apphed to the cohomological
correspondence u uk hftlng the proper correspondence [ f ’“] ), and using the observation
made in Example 1.2.8.

O

Remark 3.3.2. It follows from Remark 3.2.4 that for a given positive integer k, kN (f)
is possibly not the optimal integer for which one has the desired trace formula (see
(3.3.1)). However from the point of view of iteration it is natural to derive a trace
formula as in Theorem 3.3.1 using this (possibly sub-optimal) bound.
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Example 3.3.3. Here we construct an explicit example with N(f) > 1. We look at
Example 2.4.2 carefully. We continue using the same notations.

As shown there, Fix(f o F} ) = |P;(q")| and Tr((f o F7,)*, HX(T,Q¢)) = Ps(g") for
all integers n > 1. Hence if f is chosen such that det(M;) = 1 and Tr(My) > ¢+ %. Then
N(f) is necessarily greater than 1.

For k > 1, let M be the linear map on the co-character lattice X*(T") induced by
f¥. Let Ppe(t) := det(1 — tMp; X*(T)) € Z[t].

We now show that N(f) can be chosen to be the smallest positive integer satisfying
Pi(gN) = 0. That is Pr(¢¥)) = 0 implies that P (¢"¥9) = 0, ¥k > 1. Note that

Pp(¢"N) 2 0 = ¢V + gy = Te(Mp).
Let a and § be the complex eigenvalues of M. Then one has the following possibil-
ities,

(1) « (and hence (3) is a real number and max(|al,|5]) > 1.
(2) « (and hence f) is a real number and |a| = |3] = 1.
(3) « is not a real number and hence f = @ and |a| = 1.

Suppose we are in the situation of (2) or (3) above, then for all £k > 1,

¢ + gy = 2= |aff + |B]F = Te(Mp).

Now suppose we are in the situation of case (1). That is, @ and [ are real, and at
least one of them (say «) has modulus greater than 1.
Suppose « is negative then so is £, and for any odd k > 1, one trivially has

qu(f) + m = TI"(Mfk).

Thus we are reduced to the case when either « is positive and k£ > 1 or « is negative
and k is an even number greater or equal to 2. Hence, after squaring, we can assume
that « is positive and greater than 1.

The real valued functions f;, : (1,00) — R given by z — 2% + I% are strictly
increasing for all k = 1. Hence fi(x) = fi(y) for some k& > 1 and some z,y € (1,0)
implies fy(z) > fi(y) for all k& > 1. Since by assumption fi(¢¥)) > fi(a), one has

VD + b = (@) = fila) = Te(Mpe) for all k> 1.

Now we give an alternative proof for the density of periodic points for surjective and
proper self-maps of varieties over finite fields (see [9]). The density is true even for non-
proper maps and was derived as a Corollary to more general result on the intersection
of a correspondence with the graph of the (geometric) Frobenius (see [11], Corollary 0.4
and [10]).

We work over k, an algebraic closure of a finite field F,.

A variety (over k) is a finite type, separated and integral scheme over k.

We shall need the following standard Lemma which we state here without a proof.
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Lemma 3.3.4. Let f : X — Y be a proper surjective morphism between varieties of same
dimension over k. Then, the induced morphism on the top degree compactly supported
cohomology is multiplication by the generic degree of f.

Definition 3.3.5. Let f : X — X be a self map of a finite type scheme over k. A closed
point z € X is said to be a periodic point, if it is a fixed point of f* for some k > 1.

Theorem 3.3.6. Let X, be a scheme over IF, and fy a proper, surjective self morphism
of Xy (over F,). Then, the set of periodic points of fy is Zariski dense in X.

Proof. Let (X, f) be the base change of (X, fo) to k.

We can assume X is reduced (and hence geometrically reduced). Also, the statement
is true for the pair (Xo, fo) iff it is true for some (Xom, fg,,) Where (Xom, fom) is the
base change of (Xy, fo) to the finite sub-field F,m of k and n is positive integer.

Since f is dominant, replacing f by a suitable iterate we can ensure that each irre-
ducible component of X is mapped onto itself. Further each of these components are
defined over a finite sub-field of k. Hence if necessary, after replacing f, by a suitable
iterate and a finite extension of the base field, one can assume that each component of
Xy is geometrically integral and is stabilized by fj.

Thus, we are reduced to the case when fy is a dominant and proper self map of a
geometrically integral scheme X, of dimension d.

Let Zy be the Zariski closure of the periodic points of Xy with the reduced induced
structure. Let Z be the closed subscheme of X obtained by base changing Z, to k. Then
fo restricts to a proper and dominant self morphism of Z,. Since fy and Fl, , commute
and any closed point is a fixed point of Fly, 4, we deduce that, a closed point is fy-periodic
iff it is (fop o Flx,,q)-periodic.

Let m : X — X, be the map induced by base changing X, to k. A closed point is
(fo o Fx4)-periodic iff any point on the fiber of 7 over it is a fixed point of (f o Fix,)"
for some positive integer r. A similar statement is also true for fy|z,. Since Z; is the
Zariski closure of the periodic points of fy, Theorem 3.3.1 implies that there exists an
integer N >> 0 such that for all n > N,

Fix(f7 o F )"

r

Z(Xo, foo F34) = Z(Zo, (fo)lzy 0 Fy ) = exp()

r=1

)€ Q[lt]], (3:3.3)

where Fix(f" o ') is the number of fixed points of f" o ¥’ acting on X.
Let A > 1, be the generic degree of fy. Fix an embedding,

7:Q— C. (3.3.4)

Let Apax be the maximum of the spectral radii (with respect to 7) for the actions of f*
and f|% on the compactly supported ¢-adic cohomology of X and Z respectively. There
exists an integer N’ > 0 such that for all integers n > N’, one has
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Anax™ 472 < ¢ < "N, (3.3.5)

Consider the Zeta functions Z(Xo, fo o Fi, ) and Z(Zo, (fo)lz, o Fy,,) for any
n = max{N, N'}. Then (3.3.3) implies that these Zeta functions are the same, and
hence by Corollary 1.4.4 have the same meromorphic continuation as rational functions
(with coefficients in Q) to the entire complex plane. Let % be this analytic continua-

tion, where R(t) and () are co-prime rational polynomials.
Let

P, x(t) :=det(1 —¢(f o F§7q)*,H§(X, Qy)) and
Piz(t) :=det(1 — t(flz 0 F )" H(Z,Q0)).

Thus one has,

2d

n—1y _ _1)i+l R(t) . . .
Z(Xo. foo F ) = QB,X@)( = a0 " C[[t]](via 7 in (3.3.4))  (3.3.6)
and
Z(Zo, (fo)lzooFg0) = ﬁ Py () = % in C[[t]](via 7 in (3.3.4)). (3.3.7)

Let a be any complex root of H?;(]l Py; 11 x(t). Since, the i*" compactly supported
(-adic cohomology is of weight less than or equal to i ([23] Théoreme 1 (3.3.1)), (3.3.5)
implies that

fal < 4"

Further the one-dimensional Q-vector space H2¢(X,Q,) is pure of weight d, hence
Lemma 3.3.4 implies that Py x(t) = (1 — ¢"@\t). Thus (3.3.6) implies that Q(t) has a
zero at t = q%i)\ .

Suppose Z; is not equal to Xy, then Z is necessarily of smaller dimension than
X. Since the i*! Compactly supported f-adic cohomology is of weight less than or equal
to 4, any complex root o/ of ]_[dlm(z) Py, Z(t) satisfies

Ia’l

It follows then from (3.3.5) that, for any such root o/ one has |o/| > ,}d 5 In partic-

ular, (3.3.7) implies that, Q(¢) does not have a zero at t = nd 5. This is a contradlctlon
O]






Chapter 4

The case of a smooth projective
variety

In this chapter, we build on an idea of O’Sullivan as developed by Truong in [30] and
obtain a Gromov-Yomdin type bound on the spectral radius for the action of a self-map
of a smooth projective variety over an arbitrary base field on its /-adic cohomology.

Throughout this chapter we will work over an algebraically closed field k. Let ¢ be
a prime, co-prime to the characteristic of k. We fix, once and for all an isomorphism
of Q(1) with Q,. Hence we will talk of cycles classes with values in ¢-adic cohomology
without the Tate twist. We also fix an embedding

7:Qp— C. (4.0.1)

A variety (over k) is a finite type, separated and integral scheme over k.

4.1 Some preliminaries from intersection theory

Let X be any smooth, projective variety over k.

Let Z*(X) be the free abelian group generated by the set of closed subvarieties of
X and graded by co-dimension (see [31] Section 1.3). Let A*(X) be the graded (by co-
dimension) Chow ring of X (see loc. cit. Section 8.3). The group underlying A*(X) is
a graded quotient of Z*(X) by rational equivalence. We shall write A(X) := @;A"(X)
when we want to ignore the grading and the ring structure.

The components of an algebraic cycle [Z] € Z*(X) are the subvarieties of X which
appear in [Z] with non-zero coefficients. To any closed subscheme Y < X we can as-
sociate an effective cycle [Y] in Z*(X) whose components are precisely the irreducible
components of Y (see [31] Section 1.5).

Let A% ,.(X) (respectively A% (X)g, respectively A* (X)r) be the graded (by

codimension) ring of algebraic cycles on X modulo numerical equivalence, with Z (re-
spectively Q, respectively R) coefficients (see [32] Section 1.1).
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Let Af. (X)qg be the graded (by codimension) ring of algebraic cycles on X modulo
homological equivalence (with respect to f-adic cohomology), with Q coefficients (see
[15] Chapitre 4, [19] Chapter 6 for a construction of cycle classes). Note that A%, (X)o
is a quotient of Af (X)g, which in turn is a Q-subalgebra of @®; H* (X, Q).

For a morphism f : X — Y of smooth, projective varieties over k, there is a pull-
back map f*: A*(Y) — A*(X) and a push-forward map f, : A(X) — A(Y) (see [31]
Proposition 8.3 (a) and Theorem 1.4 ). The pull-back is a morphism of graded rings
and the push-forward is a morphism of abelian groups. Further they satisfy a projection
formula (loc. cit. Proposition 8.3 (c)). In particular there exists a group homomorphism
Txs : A(X) — A(Spec (k)) ~ Z.[Spec (k)].(see loc. cit. Definition 1.4).

A% (X)) and A (X)g also have similar functorial properties (see [32] Section 1).

We shall denote the intersection product on these rings by a .. For cycles [Z] and
[Z'] of complimentary co-dimension in X, by abuse of notation we shall denote the
integer mx.([Z].[Z']) by [Z].[Z'].

Let [P{] € A" *(P}), 0 < s < n be the class of a s-dimensional linear sub-space
of P?. The Chow ring A*(P}) is isomorphic to the graded ring Z[z]/(z"*!) under the
map [P""!] — z (see [31] Proposition 8.4) and the class [P{] generates abelian group
A"3(PR), 0 < s <n (see [31] Example 1.9.3).

Definition 4.1.1. The degree of [Z] € A*(P}) is the integer [Z].[P;]. For a subvariety
Z — P} by deg(Z) we mean deg([Z]).

For any two smooth, projective varieties X and Y (over k), there is an exterior
product map (see [31] Section 1.10) A*(X)®zA*(Y) — A*(X x,Y"), which is a morphism
of graded rings (see [31] Example 8.3.7). We shall denote the image of [Z] ® [Z'] by
[Z] x [Z"].

In what follows, we will need a bound (see Proposition 4.1.9) well known to experts
and proved using standard techniques. For ease of exposition we present a proof along
the lines of [34] (compare [31] Example 11.4.1, [33] Lemma 2.2).

Definition 4.1.2. Two subvarieties V' and W in a smooth projective variety X are
said to intersect properly, if the each component of V' n W has the right dimension (i.e.

dim(V') + dim(W) — dim(X)).

Remark 4.1.3. In a similar vein, cycles [V] and [W] in Z*(X) are said to intersect
properly if each component of [V] intersects each component of [W] properly.

Suppose now 7 : X — P} is a closed embedding of a smooth, projective variety of
dimension 7.

Fulton’s definition of intersection multiplicities implies the following statement (see
[31] Section 6.2, Section 7.1).

Proposition 4.1.4. Let [C] € Z*(P}) be a cycle on P} which intersects [X] prop-
erly. Then,
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#(1C]) = X, i(Z5: [X], [CDIZ,] € A*(),

where Z;’s are the irreducible components of the intersection of X with the components
of [C], and i(Z;;|X],[C])’s are the intersection multiplicities along the Z;’s (see [31]
Definition 7.1).

Remark 4.1.5. By abuse of notation the cycle >};i(Z;; X, C)[Z;] € Z*(X) will also
be denoted by [C].[X]. Moreover if [C] is an effective cycle so is [C].[X] (see [31]
Proposition 7.1).

Let V < X be a closed subvariety of dimension d. Let L < [P} be a linear subspace
of dimension n — r — 1 disjoint from X.

We denote by CL(V) < P}, the cone of V' (see [34] Section 2) over L or equivalently
the join of V and L (see [31] Example 8.4.5). It is a subvariety of dimension n+d—r, and of
degree equal to the degree of V' (see loc. cit. Example 8.4.5). Moreover V' is an irreducible
component of C(V) n X and every component of Cp(V) n X is of dimension equal to
d (see [34] Lemma 2).

Remark 4.1.6. Hence for any such L, we see that C,(V') and X intersect properly (see
Defintion 4.1.2) and [CL(V)].[X] denotes the corresponding cycle on X (see Remark
4.1.5).

For an arbitrary cycle [V] = >, m;[V;] € Z"=%(X) we define
[CL(VD] == 2 milCL(Vi)] € Z74(P").

Let V and W be closed subvarieties of X. We define the ezcess of V' (relative to W) to
be 0 if they do not intersect. Else it is defined to be the maximum of the (non-negative)
integers

dim(Y) — dim(V) — dim(W) + dim(X),

where Y runs through all the components of V' n W. We denote the excess by e(V'). For
a cycle [V] := >, m;[Vi] in Z*(X), we define e([V]) := >, me(V;).

We have the following result from [34] (used there to prove the “Chow moving
Lemma”).

Lemma 4.1.7. (see [3}] Main Lemma)

Let v : X — P} be a smooth, projective closed subvariety of dimension r. Let W be
a subvariety of X. For any cycle [V] € Z*(X), there exists a dense open subset U of
G(n,n—r—1), the Grassmanian of linear sub-spaces in P™ of dimension n—r —1, such
that for any closed point x € U, if L, denotes the corresponding linear subspace, then:

(1) Lyn X = .
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(2) e([CL ([V]D].[X] = [V]) < maz(e([V]—1,0)). Here the excess is calculated with
respect to W.

Let ¢ : X — P} be a smooth, projective closed subvariety of dimension 7. Let V' and
W be closed subvarieties of X. Let d be the dimension of V.
The following Lemma is now easy to deduce.

Lemma 4.1.8. There exists a positive integer k < r + 1 and a sequence of effective
cycles {[V;]}o<j<r and {[E;]}i<j<r in 274 X) such that,

(1) [Vo] = [V] in Z74(X).
(2) [V;] = [Ejs1] — [Vig1] in Z7=4X) for all 0 < j <k —1.

(3) Forallj =1, the [E;]’s are ‘ambient’ cycles that is, [E;] = i* (deg ([V;_1]) [P}~""])
in A74X).

(4) Every component of [Vi_1] and [Vy] intersects W properly (see Definition 4.1.2).

In particular

[V] = 3o (L E] + (D)MW in 274(X).

Proof. Let
[Vo] :== [V] e Z~(X).

For any integer j > 1, having defined [V;_;] € Z"~%(X) and proven that it is effec-
tive, we define

[E;] = [Cr, (V] [X] e 277(X) (4.1.1)
where L; is linear sub-space of P" of dimension n —r — 1 (see Remark 4.1.6), chosen
such that

e(*[Cr, ([Vi—1])] = [Vj-1]) < max(e([Vj-1]—)1,0) (see Lemma 4.1.7).

Here the excess is with respect to W. Since [Cp,(V;_1)] and [X] intersect properly
(see Definition 4.1.2 and [34] Lemma 2), Remark 4.1.5 implies that [E;] is an effective
cycle.

For any integer j having defined [V;_;] and [E}], we define,

[Vl = [Ej] = [Viea] in Z7~4(X).
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Since for any subvariety V' < X, V is an irreducible component of C7(V) n X (see
[34] Lemma 2), the effectivity of [V] for any j > 1, is a consequence of the effectivity of
[E5]

Since e([Vo]) = e([V]) < r, for any j = r, the excess e([V;]) = 0. Let £k — 1 be the
smallest integer 7 with the property that e([Vk_l]) = 0. Then every component of the
algebraic cycles [Vj_1] and [V}] intersects W properly.

For any j > 1 since C(|V;-1]) and X intersect properly (see [34] Lemma 2), Propo-
sition 4.1.4 implies that

[E5] = ([CL([Vi-])]) € A™(X). (4.1.2)

For any j > 1 since [C([V;-1])] as a cycle on P} has degree equal to the degree of
[Vi—1] (see [31] Example 8.4.5), thus (4.1.2) implies that,

[£;] = i* (deg ([Vj—1]) [PE~*"]) in A7~4(X).

Now we derive a basic estimate which is needed later.

Proposition 4.1.9. Let ¢ : X — P} be a smooth, projective variety. There exists a
constant C' depending only on X such that, for any two closed subvarieties V.W of
complimentary dimension in X, |[V].[W]| < Cdeg(i.([V]))deg(i.[W]).

Proof. We use Lemma 4.1.8 to construct a sequence of algebraic cycles {[V;]}o<;<k and
{[E;]}1<j<r in Z7%(X) where d is the co-dimension of V in X and satisfying properties
(1)-(4) in Lemma 4.1.8.

Since,

[V]= S5 (P E] + (1) V] in 2774(X),

7=1

one has that

Z W+ [[Vi] [W]|. (4.1.3)

Note that [E;] = i* (deg([V;_1])[P;7*""]) (see Lemma 4.1.8 (3)) and hence for every
J=1

[E;1.[W] = deg(W)deg([V;-1]). (4.1.4)

Since every component of [Vj_1] intersects [W] properly, [Vi].[W] is bounded above
by [Ex].[W] = deg(W)deg([Vi-1]) (see [31] Proposition 7.1). Combining (4.1.3) and
(4.1.4) we get,
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V]IW]l < (Z deg([Vj]) + deg(Wk—ﬂ)) deg(W).

Projection formula implies that for every 7 > 1,
deg([E;]) = deg(X)deg([V;_1]).

Since the [Ej]’s and [V}]’s are effective,

deg([V;]) < deg([Ey]) = deg(X)deg([Vj-1]).
Thus for every j > 1

deg([Vj]) < deg(X ) deg(V) < deg(X)"*"deg(V).

Thus (4.1.5) and (4.1.6) together imply that

[[VIIW]] < (r + 2)deg(X)"* deg(V)deg(W).

4.2 Gromov algebra

(4.1.5)

(4.1.6)

Let i : X — P} be a smooth, projective variety over an algebraically closed field k.

Let [H] € AY(X) be the class of a hyperplane section.

Let w be the cohomology class of [H] in H*(X, Q).

For j > 1, let [H] denote the j* self-intersection (in A*(X)) of [H].
Let f: X — X be a self-map of X /k.

For integers j,m > 1 let

6;(f™) = [H] 2 f([H)) = f([H)).[H].
We have a commutative diagram,
X Xk X
1x x fm™

X xp X0 o P, BT

Ax

Ff?’n

Here I'ym is the graph of f™.

Lemma 4.2.1. Using the above notations,

r

((i % d) o Tpm), (IX]) = X 6y (F™) ([P 7] % [BR))

=0

(4.2.1)

(4.2.2)
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Proof. Clearly we can assume m = 1. Let [Y] := ((i x 1) o I'y)_ ([X]).
The exterior product map A*(P}) ®z A*(P}Y) — A* (P} x; P?) is an isomorphism of
graded rings (see [31] Example 8.3), hence

[V] =3 _on; ([P, 7] x [PY]), where for any j >0, n; = ([Y]. ([B,] x [P, ])).

The projection formula and the commutative diagram above imply that

ny = Y] ((B] % [B71) = XL (LY < (H]") = [X]A% ((HP  f* () 9)).

The definition of intersection product (see [31] Section 8.1 and Corollary 8.1.3) implies
that

[(X]A% ([HP x f*([H]"7)) = 6,—;(f)-

Thus for any m > 1, ((i x 4) o I'ym), ([X]) = 27, Sr—i (F™([P} 7] < [PL)). -

Definition 4.2.2. The homological Gromov algebra AS" (f,w)q is the smallest f*-stable
sub-algebra of Af (X)g containing w.

Definition 4.2.3. The numerical Gromov algebra AST (f,[H])g is the smallest f*-
stable sub-algebra of A% (X)g containing [H].

num (

The numerical Gromov algebra with real coefficients AS" (f, [H])g is the R-algebra
AST (£, [H])g 8 R.

Let \; be the spectral radius of f* acting on A’ (X)g, 0 <i < dim(X).

Let y; be the spectral radius of f* acting on A} (X)g, 0 < i < dim(X).

Let p1; be the spectral radius (with respect to 7 in (4.0.1)) of f* acting on H? (X, Qy), 0 <

j < 2dim(X).

Let A°" and x©" be the spectral radii of f* acting on AS" (f,[H])g and AS" (f,w)g
respectively.

Note that A\ is also the spectral radius of f* acting on A" (f,[H])r.

The following lemma is obvious.

Lemma 4.2.4. Using the above notations we have inequalities,

AT max A < max ;< max .
O<i<dim(X) o<i<dim(X) 0<j< 2dim(X)

Further

AN < max ;.
0<i<dim(X)

Lemma 4.2.5. Let {ay, i}m>1,1 < @ < s be a collection of sequences of complex num-
ber. Let b;, © < i < s be non-zero complex numbers. Then,

~
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Hmsup | 57 @i Y™ < max limsup |a,, ;|™.
o i<i<s

Proof. For every i replacing the sequence {ap, ;}m>1 by {@m,ibi}m=1 we can assume with-
out any loss of generality that b; = 1 for all 7, since for any b # 0, lin}O b/ = 1.

The claimed inequality is obvious for s = 1. Suppose that s > én

Let {al, 5}m=1 1= {Di_ @mi}ms1- Then | D3| @ ibi] ™ = |am,1 + a, »|"/™. Hence the
claimed inequality is true for a collection of s sequences iff it is true for a collection of
s — 1 sequences. Hence we are reduced to the case when s = 2.

Note that
Um + ama|™ A +
lim SUp |1 + Apmo|Y™ = limsup .1 Si/m 2 = lim SUp(%)I/W (4.2.3)
Without any loss of generality we can assume that
1/m 1/m‘

a = limsup |a, 1|

> lim sup |, o
m m

Hence for any € > 0 there exists an integer M >> 0 such that for all m > M and
1=1,2,
lami| < (a+ €)™,
In particular
|am1 + amo| < 2(a+ €)™ for all m = M.

Thus

lim sup(%ﬂ)l/m < limsup(a + €) = a + € for any € > 0.

Then (4.2.3) implies the required bound.
O

Let V be any finite dimensional vector space over R (or C) and 7 : V — V a linear
map. Let ||.|| be any matrix norm.
We have the following theorem of Gelfand (see [20] Theorem 18.9 )

Theorem 4.2.6. limsup ||T™||Y™ = p(T'), where p(T) is the spectral radius of T.

Though the following can be possibly deduced by other standard results, we attempt
to give an elementary argument.

Lemma 4.2.7. Let p;, 1 <1 < n be complex numbers of unit modulus. Then for any
e > 0, there exist infinitely many integers m such that, for every integer i € [1,n] one
has | — 1| < €. In particular for any such m, Re(u*) > 1 —e.
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Proof. First we observe that, given any € > 0, it suffices to produce one m which does
the job. This is because, by making € smaller we can then produce infinitely many such
m.

Let p be any integer greater than 27” Then we can cover the unit circle by p many
arcs J;, 1 <1 < p, each which has an arc length less than e.

Let T™ be the real torus of dimension n. Then 7" can be covered by p" sets, each of
the form Jiy x Jio) - -+ Jiy with 1 < i(1), i(2)---,i(n) < p.

Consider the infinite sequence of (possibly non distinct) points {(u¥, 5, -+, pF)}is1 €
T™. Clearly there exist distinct positive integers k and k" such that both (uf, p&, -+ k)
and (pf, &, -+, pF) belong to Jyayx i) - - - Ji(n), for some indices 1 < (1), i(2) -+ ,i(n) <

p (this includes the case when the all the u;’s are roots of unity).
Clearly m = |k — k’| does the job.
O

Let K be a normed field such that, there exists an embedding 7 : K < C of normed
fields.

Let V be any finite dimensional vector space over K and T' : V — V a linear
map. Then,

Proposition 4.2.8. limsup | Tr(T™)|Y™ = p(T), where p(T) is the spectral radius of T

Proof. Using the embedding 7 and base changing to C, we can assume that V is a
complex vector space, and 7' is a linear operator on V.
Since we are over C, Theorem 4.2.6 (with the ¢!-norm) implies that

lim sup | Te(7™)[V™ < p(T).

Thus it suffices to prove the reverse inequality. Clearly we can assume 7" has at least
one non-zero eigenvalues.

Let \;, 1 <7 < n be the collection of non-zero eigenvalues of T'.

Let p; := &—z‘

Lemma 4.2.7 shows that there exist infinitely many m such that, for every integer
i € [1,n] one has Re(uf") > 3.

Then for any such m

be complex numbers with unit modulus.

ITe(T™)| = Re(Tr(T™)) = 3, Re(AT) > & \;il’" > 20"

Thus limsup,, | Tr(7™)[Y™ = p(T) and we get the required equality.

Now we prove the principal result of this chapter.
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Theorem 4.2.9. Let X be a smooth, projective variety over an arbitrary algebraically
closed field k. Let i : X — P? be a closed embedding and [H] € AYX) (respectively
w e H*(X,Qp)) be the class of an hyperplane section in the Chow group (respectively
(-adic cohomology). Let [ : X — X be a self-map of X /k. Then all the inequalities in
Lemma 4.2.4 are in fact equalities.

Thus, the spectral radius of f* acting on H*(X, Q) with respect to T : Qp — C is
independent of T, and coincides with the spectral radius of f* on the numerical Gromov
algebra.

Proof. Suppose dim(X) = r. Clearly it suffices to show that A" > yu;, 0 < j < 2r.
Recall that &;(f™) = [H]" 7. f™([H}?) = f™([H)?).[H]"™ (see Definition (4.2.1)).
We shall first show that for any integer i € [0, 2r],

: m\|1l/m
i < ()Iil?éllmnfup 10;(f™)|Y™. (4.2.4)

It is clear from the definitions of y; and ¢;(f™) that they specialise well, and thus it
suffices to prove the bound (4.2.4), when k is an algebraic closure of a finite field (see
for example the proof of Theorem 2.3.5, where such a reduction to the case of a finite
field is carried out).

Hence we now assume that k is an algebraic closure of a finite field.

For any integer m > 1, let [['ym] € A}, (X x X) be the cycle corresponding to the
graph of f™.

The work of Katz-Messing ([26] Theorem 2.1) and the Lefschetz trace formula (see
[35] Section 3.3.3) implies that, for every integer i € [0, 2r], there exist an algebraic cycle
mi € Z"(X x X)g (the i*" ‘Kunneth component’) such that,

Tr(f™ H(X,Qp)) = (=1)'[Tjm].75 ", (4.2.5)

representing the trace as an intersection product (on the product variety X x; X).
Recall that we have fixed an embedding 7 : Q; < C (see (4.0.1)). Thus Q, is a
normed field via this embedding.
Proposition 4.2.8 and (4.2.5) together imply that,
p; = limsup |[T g .72 ~4Y™ 0 < i < 2r (4.2.6)

There exist finitely many subvarieties Wj%_i < X X X of codimension 7 (the com-
ponents of the ‘Kunneth components’) and a constant C” such that for every m > 1,

[T ] < O YD g [WP ), 0 < < 2 (4.2.7)
J

Note that we have the Segre embedding X x, X — ]P>Z2+2".
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The estimate in Proposition 4.1.9 (applied to the smooth projective variety X x; X <
]P’;f””) and (4.2.7) imply that there exists a constant C” (depending only on ¢ : X — P}
and the choice of Kunneth components), such that for every m > 1,

[T 7% 7| < C"deg([Tym]) (O deg(W7™1)), 0 < i < 2r (4.2.8)
J

The degree in (4.2.8) is with respect to the embedding X x; X «— IP’Z2+2". Moreover
Lemma 4.2.2 implies that

deg(I'pn) = 357 6r—j (f™)deg ([P} 7] x [B1]).
Hence (4.2.6) and (4.2.8) together with Lemma 4.2.3 imply that, for any integer
ie[0,2r],

o<j<r

i < max limsup |5;(f™)|Y™. (4.2.9)
Thus we have obtained the bound (4.2.4) over an arbitrary algebraically closed field.

For the rest of the proof we work over the algebraically closed field k, we started
with. Let AS" (f,[H])r be the numerical Gromov algebra with R-coefficients (see Defi-
nition 4.2.3).

Let ||.|| be any norm on the finite dimensional R-vector space AS" (f,[H])g. Note

num

that f* is a graded linear transformation of AS" (f,[H])r. For every integer m > 1, we

denote the norm of the linear map f™* acting on AS" (f,[H])r by ||f™*||.

num

Recall that 6;(f™) = f™([H)").[H]" . Since the intersection product is bilinear, the
map from the j® graded part of AS" (f [H])z to R, obtained by taking intersection

num
product with [H]"™7 is linear. Consequently there exists a constant C” independent of
m, such that for any m > 1,

6;(f™) < Y f(HT)]|, 0<j <. (4.2.10)

Since f* is a linear map, (4.2.10) implies that there exists a constant C independent
of m such that, for any m > 1,

S5(fmVm < GV e 0 < < (12.11)
Thus Theorem 4.2.6, (4.2.9) and (4.2.11) together imply
pi < A0 <i < 2r
[

Remark 4.2.10. Note that Theorem 4.2.9 generalizes Theorem 2.2.2 (1) to higher
dimensions.
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