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1 Lecturel

In the first lecture we define what is a curve, its length and other geometric quantities such
as the tangent vector and the curvature.

1.1 Basic definitions and examples

Definition 1.1. A curve on M is a function v: I — M, with I C R.
Remark.

1. In general, I will be an interval.

2. In this course M will always be some Euclidean space R"™. Nevertheless, the previous
definition can be generalized when M is a manifold.

3. We will always think that 7 is smooth enough, i.e., that v;(f) are smooth enough

for i = 1,...,n, where y(t) = (71(t),...,7(t)) (C*® is more than necessary for our
purposes).
Example 1.2.
1.
7v: R — R?
x> (2,27).
2.

v:[0,27) — R?
0 — (cosf,sinf).

~(0) = (cos 0, sin )




v: R = R3,
t — (cost,sint,t).

Definition 1.3. A curve 7: [a,b] — M is closed if y(a) = v(b).

Definition 1.4. A curve is embedded if it does not self intersect. That is, the function is
injective. Otherwise, we say that the curve is immersed.

Example 1.5. The lemniscate is an example of a curve which is immersed but not embedded.

1.2 How do we compute the length?

Consider a curve v: I — R?. If we want to obtain the length of a portion of the curve, we
first approximate this portion by a polygonal path and then we calculate the length of the
polygonal path, in order to obtain an approximation of the wanted length.

Example 1.6. Consider the following curve with the following polygonal path

(z(t), y(t1))

(z(t5), y(t5))

(z(t2),y(ta))



In this case, if we write Ax; = x(t;11) — z(¢;) and Ay; = y(t;11) — y(t;), then we have the
approximation

L~ Z V(Azi)? + (Ayi)2.

This motivates the following definition

Definition 1.7. Consider ~v: [a,b] — R% The length of « is defined by

b
Liy) = / (£ dt.

Example 1.8.

1. Consider the curve

v:[0,27] — R?
0 — 2(cosf,sinb).

We have that 7/(f) = 2(—sin 6, cos ). Then,

2w
L(y) = / \/4(81112 0 + cos? 0)df = 4.
0

2. Now consider

v [_17 1] — R27
tes (8,2t +1).

Notice that ~'(t) = (1,2). Then,

L(v) = /11 V1 +4dt = 2V/5.

1.3 Some geometric quantities
1.3.1 The tangent vector

Definition 1.9. Let 7: [a,b] — R? be a curve. The unit tangent vector at ty € (a,b) is
defined by
/
t
7(to) = —7,( JN
7' (o))

Remark. This is only well defined if 7/(ty) # 0. Points at which this holds are called regular.

Example 1.10.



1. For the curve
v: 10,27 — R?
0 +— 2(cosf,sinb),

we have that 7'(0) = 2(—sin 6, cos ). Then, |7/(0)| = V/4sin®§ + 4 cos? @ = 2. There-

fore,
7' (6o) :
7(0y) = ———= = (—sin by, cos bt).
0= rtay] (7ot
2. If we consider
v:[-1,1] = R?,
t (6,2t + 1),

then, 7/(¢t) = (1,2). From this, |7/(t)| = v/1+ 4 = v/5. Thus

rit) = 20— (1. 2)
il ~ \VE'VE)

1.3.2 The arc-length parameter

The same geometric object can be described in different ways, to see this, consider the
following.

Example 1.11. The following maps define the same geometric object, the unitary semicircle
centered at the origin:

710 [0, 7] — R,
0 +— (cosf,sinb),

Yo: [-1,1] — R,
z— (x,V1—x?),

A choice of description is called a parametrization. The curve will be from now on the
geometric object, that is, the set

{7(t);t € [a,b]}.
Let 7: [a,b] — R?. We define the function

s@)= [ hlax
Notice that s is a function from the interval [a, b] to [0, L()], and is increasing. This implies
that s is invertible and we can use to it to parametrize ~:
7v: [0, L(7)] — R,
s = y(x(s)).

Here, x is the inverse of s.



Definition 1.12. The previous parametrization is called the arc-length parametrization.
Remark. Using the chain rule we obtain

dl = @ . do _ (@) _ 7(s).

ds dr ds |y(x)|

From this calculation, we see that why is useful consider a curve with its arc-length parametriza-
tion.

Example 1.13.

1. As before, consider the curve

v:[0,27] — R?,
0 +— 2(cosf,sinf).

We computed that 7/(0) = 2(—sin 6, cosf). Then

s = / \/4(sin2 0 + cos? 0)df = 2x.
0

Using this, we find that

v: [0,47] — R?,
9 ( s . S)
s cos o, sin g
is the arc- length parametrization of . Also,
7(s) =+'(s) = (— sin g, cos g) :
2. Similarly, consider
e [_]—7 1] — R27
e (8,2t + 1).

As before, 7/(t) = (1,2). Then,
s:/ V1 +ddt = V5(x + 1).
-1

Finally,
v: [0,2V/5] — R?,

3H<%—1,2(%—1>+1>,

is the arc-length parametrization of 7. From this, we can calculate the tangent vector

of the curve: L9
) =76 = (g5 )

6



1.3.3 What is curvature?

Definition 1.14. Consider v: [0, L(s)] — R? parametrized in arc-length parameter. We
define the curvature of + by
k(s) = 17" (s)].

When k(s) # 0, we can define the normal vector of a curve:

Definition 1.15. Let ~: [0, L(s)] — R? be a curve parametrized in arc-length. arco-
parametrizada. We define the normal vector of v (at sg) v as the vector such that {7, v} is
a positive basis. Also, we define the signed curvature by

7' (s) = kv.
Remark. Curves that satisfy v”(s) # 0 for all s are usually called bireqular.

Let us give the geometric intuition that is behind the definition of curvature. In order
to do this, let y(s) be a biregular curve. At a point s, consider a circle that passes through
7(s0) and that have common tangent line to 7 at so. It can be shown that the curvature of
v at sg is exactly the inverse of the radius of this circle. This is the “geometric equivalent”
of a Taylor approximation of order 2.

&,

7(S) S__->

Example 1.16.
1. Consider the curve
v: [0,27] — R,
0 — 2(cosf,sinb).
We already know that its arc-length parametrization is
v: [0,47] — R?,
2 ( % i S)
s cos —, sin —
272/

and 7(s)
' (s)] =

= (cos £,sin$). From this, 7/(s) = 3 (—sin$,cos ), and we obtain x(s) =
3 Also y( ) = (—sin,cos £).

7



2. Consider the curve
v:[-1,1] = R?,
t— (t,2t+1).
Recall that

~v: [0,2v/5] — R2,
5 (%—1,2(%—1>+1>,

is the arc-length parametrization of v and that 7(s) = \%(1,2). This implies that

k(s) = ["(s)| = 0.

So far we have defined the curvature and we gave an geometric interpretation, but why
is the curvature a natural quantity to study? To answer this question, given a arc-length
parametrized curve 7y(s), consider a normal variation of it, that is

V(s,t) = (s) + tp(s)v(s).

Y(s,t)

Clearly
7
_dz = | (s) + tov + tp/|,

where the prime denotes the derivative with respect the arc-length parameter. Then,

L(v)
L(%)(t) = / I7(s) + t¢'v + tor/|ds.
0

We know all the terms in this expression, except for v/. To find it, first recall that at each
s, {7(s),v(s)} is an orthonormal basis of R?. This allows us to write

V'(s) = a(s)T(s) + b(s)v(s).

Since (v,v) = 1, we obtain (v/,v) = 0, and from (v,7) = 0, we conclude (', 7) = — (v, 7).
Therefore,
V'(s) = —kT.



In resume, we have that

L(v)
L(y)(t) = / (1 = tro)T(s) + t'v|ds.
0
To calculate the derivative of this expression, first notice that

4 (1 —trp)7(s) + to'v|* = i[(l —thp)? +12()?] = =2k (1 — try) + 2t(')?.

dt dt
Therefore,
d L)
GO0 == [ s
1.4 Exercises
Exercise 1.1. Let v be a curve such that 4/ = 0. ; What can you say about 7

Exercise 1.2. A circular disk of radius 1 in the plane xy rolls without slipping along the x
axis. The figure described by a point of the circumference of the disk is called a cycloid

1. Obtain a parametrization of the cycloid, and determine its singular points (i.e., the
points where the parametrization is not regular).

2. Compute the length of the cycloid corresponding to a complete rotation of the disk.

Exercise 1.3. Compute the tangent and the normal vector, in addition to the curvature of
the curve (x, —In(cos z)).

Exercise 1.4. Compute the same quantities of the previous exercises but now for the curve
(x,u(x)), where u is smooth enough.

Exercise 1.5. Compute the same quantities of the previous exercises but now for the curve
7(6)(cos d,sin )

Exercise 1.6. Consider 7: [a,b] — R? a parametrized curve with regular parametrization
and let ¢ to be a (strictly) monotone function. Prove that -y o ¢ represent the same curve.
What happens with the geometric quantities if ¢ is decreasing?. Give and example of this.



2 Lecture 11

In this class we introduce the curve shortening flow and some examples. Then, we study the
maximum principle and how to apply it in order to obtain information of the flow.

2.1 What is curvature? (Continuation)

L)
= — / kpds.
t=0 0

If we set ¢ = k, then this is decreasing (and it is the fastest decreasing direction).

Recall that

d

SLEN)

Definition 2.1. The curve shortening flow (CSF) is the deformation of a curve in the normal
direction with a speed equal to its curvature. More precisely, we consider v: I x [0, 00) — R?

satisfying
dry

dt
where k is the signed curvature.
Remark. For each t, v(-,t) is a curve.

Example 2.2. Assume that r(¢)(cos#,sinf) = ~(0,t) is a solution to the curve shortening
%. Now, notice that

flow. In this example, v = —(cos #,sinf) and xk =
d d
d—z = d_Z<COS 0,sin0).
Then,
dry dr
—_— Y = ——
dt dt’
but Z—Z-y:ﬁ:%. Thus,
dr
) = —1
or, equivalently,
Ldr*
2 dt

Integrating we obtain
r(t) = /r2(0) — 2t.

Geometrically, we see that the curves, which are concentric circles, shrink to a point as
2(0)

10



Example 2.3. We look for a solution of the CSF of the form v(x,t) = (z,u(z) +t). In this
case,

2—7:(0,1), and l/:d—x,
t - d_u 2
dx

dry 1

which implies

Now we want to compute v4,. For this, notice that from

SZ/x\/1+u§d)\,
0

it follows that
dx 1

ds \/1—|—u§3'

Using this last calculation, we obtain

ds 7 “ds 1/1_|_u§:’

and from this

ds? T+ u \(1+u2)d 1+u2  (1+u2)?

d27 7.
— V _——_—
ast T (1)l

2 2

Then

11



Since v is a solution of the CSF, we obtain

—:_'V:_Q.V:—?)?
V1t+wu2 o di ds (14 u2)2
or equivalently
ul‘l’
IR

Integrating this we get
xr = arctan u,.

Then
du_sinx__dl( )
dr coszr  dx MCOSL)-

From this, we conclude that
u(z) = —Incos(z) + u(0).

If we choose u(0) = 0 we find another example of solution to the CSF:

(x,t —In(cosx)), forx € (—g, g) :

This solution is called the grim reaper. Below we give the curves for t = —1,0 and 1.

T =10 o

Notice that v(x,t) is the translation of the curve x — (x, —In(cosx)) along the y—axis.

12



2.2 The maximum principle

Now we focus our attention in a very useful tool of differential equations, which we will use
later.
Assume that we have a solution to an ODE of the form

—af’" +bf +c(x)=0, forxe (A B),
with a > 0 and ¢ > 0.

Theorem 2.4. If f satisfies the previous ODE, then does not have a maximum in the
mnterior.

Proof. Assume by contradiction that there exists € (A, B) in which f attains its maximum.
Then, f”(z) <0 and f'(x) = 0. These conditions and the hypothesis that f solve the ODE
implies that

c(z) < —af’"+bf" + c(x) =0,

which is a contradiction since ¢ > 0. O

Remark. The same statement is true for the minimum if ¢ < 0.

Theorem 2.5. If f satisfies the same as before but now with ¢ > 0, the same statements
hold.

Proof. Take f. = f + ee™® and compute as follows:

—af! +bfl = —a(f" +eL?e") + b(f + eLe™™)
= —af’ +bf + c(x) — c(x) + e’ (—La* + Lb)
= —c(x) + e (—L*a + Lb).

For L large enough, —L?a + Lb < 0. Therefore, f. satisfies the condition of the previous
theorem and we can conclude that

fe < max{f.(4), f(B)}.

If we let € — 0, we conclude what we wanted. O

Exercise. Prove that the minimum is attained at the boundary if ¢ < 0.

2.3 An application of the maximum principle

Proposition 2.6. Assume that f; and fy are defined on [0,1] and satisfy
—af!' +bf +c=0,

and f1(0) = f2(0), fi(1) = fo(1). Then, f1 = fo.

13



Proof. Define g := f; — fo. Notice that
—ag” +bg' = —a(fi’ = f3) + b(fi — f3)
= —af] +bfi +c—afy +bfs —c=0.

Also, g(0) = ¢g(1) = 0. From the maximum principle, we have that ¢ < 0 and —g < 0.
Therefore, g =0, i.e., f1 = fo. [

We will be interested in equations of the form

_afxx + b.f:c +c= ft'

Following the preceding ideas, we can define

f(t) = max f(z,1).

z€[0,1]
If f is regular enough, we would have

c<(f)e (or f=f(1,t)or f=f(0,%)).
In particular, if ¢ > 0, f is increasing. Similarly, we can define

£(t) = min f(a.1)

and

(e <e (or f=f(Lt)or f=f0,2)).

If ¢ <0, f is decreasing. Therefore

rx;ixf(x,t) = max { max f(:z:,O),m?X{f(O,t), f(l,t)}} :

z€[0,1]

The set of points where f attains its maximum is called parabolic boundary

14



2.4 A return to CSF

Theorem 2.7. Assume that (x,ui(x,t)) and (x,us(x,t)) are solutions of the CSF. Assume
in addition that

1. ui(x,0) > ug(x,0) for z € [—1,1],
2. w(£1,) > us(£1,1).
Then uy(z,t) > us(x,t) for every x € [—1,1] and t € [0,T).

Exercise. Show that

T (w2
Proof. Let v. = u; — ug + €t. The conditions 1 and 2 of the hypothesis implies that
1. ve(z,0) >0
2. v.(%1,t) > 0.

Assume that there is an oy € (—1,1) and a first ¢y € (0,7) such that v.(xg,to) = 0 (that
is, us (g, to) = uy(xo,to) + cto > uy(xo,to). Since for t < ty we have v.(xg,t) > 0, then we
obtain

7 (x0,t0) < 0. (*)

Since this is a minimum we have

dv, d?v.
o= 0 and s

Also, by the previous exercise

dva dul du2 (ul )a:a: (U'Z)J:x

dt  dt dt T 1+ (w2 1+ (w)?
If we use (¥) and (7)), at (9, o) we obtain

dva (Us)zax
> = —
U2 T Tz T

xT

+ €.

which is a contradiction. Therefore, v. > 0, i.e., for every € > 0
uy(z,t) > us(x,t) — et.
Finally, we let £ — 0 to conclude what we wanted. [

Theorem 2.8. If vi(z,t) and vo(z,t) are two bounded closed curves such that v, (x,0) N
Y2(z,0) = 0, then y1(x,t) N ye(z,t) = 0 while solutions are defined.

Proof. 1f they touch at some point, we can locally (after rotation and translation) write them
as graphs and then we can apply the previous result. O

Corollary 2.9. If y(x,t) is a compact (bounded) curve, the solution can ezists at most for
a finite time.

15



2.5 Exercises

Exercise 2.1. Assume that v satisfies the CSF and ¢(z,t) is an increasing function en z
for every t. Compute the equation that satisfies y(¢(z,t),t).

Exercise 2.2. Prove that if
—af"+bf' +cf =0 in (0,1),

and a >0, ¢ >0, f(0) >0, f(1) >0, then f > 01in (0,1).

16



3 Lecture III

Theorem 3.1 (Main Theorem). Every compact, embedded, C? curve converges to a point
in finite time.

This foundational theorem was first proved in the mid 80’s by a combination of results
due to Gage & Hamilton and Grayson, see [GH86] and |[Gra87]. A few alternative proofs
have been published later. Here we will analyze one provided by G. Huisken in [Hui98].

In order to reach our objective, we first check the following simpler result:

Theorem 3.2. Let v: I x [0,T] — R? be an open curve that evolves under curve shortening
flow (in its interior). Let

5w,y t) = (e 1) — (1) and Ca,y.t) = / "l (1)l

Assume that % attains an infimum in the interior at time ty. Then

d (6
— (= >
dt <é> (‘Tvyat()) - 07

with equality when 7 s a straight line.

Remark. In general % < 1, since / is the shortest distance.

The “isoperimetric quantity” % gives a quantitative measure of how ~ differs from a

straight line.

Remark. For an open curve we need to specify the behavior at the boundary. Two standard
choices to have a well defined problem are the following:

1. To prescribe the points.

2. To prescribe an angle with fixed lines.

P

Note that if we fix the end points, then

d (6§ sdt 5 (9
~(Z(P = — = 2ds >
dt (£< ’Q’t>> pa—pf, =20

with equality only for a straight line.

17



Sketch of the proof. Assume that at ¢y the infimum is attained at z, yo.

V(xp, to)

v(Yo, to)

Without loss of generality, we can assume that v(z, to) is parametrized in arc-length param-
eter, that is, = € [0, L(to)]. To show that

d (o 3 —1U6
—(=)="——>0,
dt \ ¢ 2

we first consider the following one variable function:
o
fi(A) = 2(950 + A, Yo, to)-

Since f; has a minimum at A = 0, we obtain

d
%(xowo,to) = 0.

In order to understand what this means, we will compute this derivative. First, we will
compute their ingredients: since (-, () is parametrized in arc-length parameter,

Yo
€($0+>\,y0,t0) = / 1dOé:y0—l'0—)\.
o+

This implies that % = —1. Also, since

0*(zo + A yo + ) = [y(2o + A, to) — Y (v, to) |,

then 452 ds
— =20— = 2((o, o) — 7(¥0, o), T(x0, t0))-
dX A=0 dA A=0
Thus,
0= gy _ tn 0k
d\ e
_n, 0
A 2
<w,7’($0,t0)> é
l 2’

18



Wh(?re w = % In a similar way, if we consider fo(\)
notice that of
2
—=(0)=0
dA ( ) )
e iy (oo te)) 0
_ 92 _ _\WTWo b)) O
0= d\ (0) l iz
Therefore,

{w, T(wo,t0)) = (W, T(Yo, t0))-

From here, we separate the proof into two cases.

[
¢

($an0 + )‘at())? we

e Case 1: 7(x0,1) = 7(yo, to). Here we consider the function f;(\) = 8 (@o+ A, Yo+, to).

n |7 (20, to) — 7(Yo, to)|?

ol

Note that ~ -
dfl d fl
I = d —— > 0.
N (0)=0 an e (0) >0
Similar to the previous computations, using the second order quotient rule we obtain
7 25 dfy d¢ 7 d%¢
0< Lhg - == 2R & - N
— dN\? l
1 d*6
Y
_ (w, K(z0, to)v(T0,t0) — K (Yo, to)v (Y0, o))
l
B <w7 7—<an tO) - T(y()) t0)> d_5
020 dA

_{w, K(o, to)v(wo, o) — K(Yo, o)V (Yo, to))

14
Now notice that since v satisfies the CSF, then

dé  (w, K(xo, to)v (o, to) — K(Yo, o)V (Yo, o))

dt /

and (from the computations of the previous lectures)

Yo
2—5: —/ K2ds.
zo

Therefore,

>0

dt \ ¢ 7 /

19

d (6\ 6 —15  (w,k(xo,to)v(To,t0) — K(Yo,t0)V (Yo, o))
(7)-

9

5 Yo
+Z/ k2ds > 0.

zq



case|2

e Case 2: 7(x0,t0) # (1o, to). In this case, we consider fo(\) = S(mo+ A yo— A tg). As

before, . .
2
‘fi—f;?m) ~0 and %(0) >0,
Also, )
0= dfs _ {w,7(x0,t0) + 7(yo, o)) | 26
d\ 14 2’
and

fy  (w, &(xo, to)v(20,t0) — K(¥o, to)V (Yo, o))
dx2 l
n |7 (@0, to) + 7(Yo, to)|*  {w, 7(x0,%0) + 7(y0, %0))
drl dl '

Let us write 7 = 7(x¢, to) and 75 = 7(¥o, o). Then

(11 — 7o, 71 + T2) = (11, 71) + (11, T2) — 2(T2, T1) + (T2, T2) =0,
that is, 1 — 70 L 7 + 79. Since we also have 11 — 75 Lw, we obtain 77 4+ 75 //w and (since

now @ = T2 (w7 + 7)? = |1 + 7ol Therefore,

0< d2f2 _ (w, (o, to)v (0, to) — K(Yo, to)v (Yo, to))
— d)\? J4 ’

and we can conclude as in the previous case.

Finally, note that for the equality necessarily

Yo
/ k2ds = 0,
Zo

which implies that x = 0, that is, the curve is a straight line. O]

Remark. The situation is similar for closed curves, and the picture at the critical values looks
as follows:

20



For our Main Theorem a similar idea can be used, but we need to consider a different

«w : : ) 4 )
isoperimetric profile”. Instead of § we use o were

- f).

where L(t) is the total length at time ¢.The computation in this case is similar and we leave
it to the interested reader.

For further study about the CSF and some of its generalizations, we highly recommend
the book |CZ01] and [Zhu02].
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