Math 523/Fall 2024, Assignment 1

1. (10 pts) Show that the Laplace operator Δ is invariant under orthogonal change of coordinates and translations. In other words, let $\Delta_x = \partial_{x_1}^2 + \ldots + \partial_{x_n}^2$ as usual and let y = Ux + a be a change of variables, where U is an orthogonal matrix $(UU^T = U^T U = I)$ with constant coefficients and a is a constant vector in \mathbf{R}^n . Show that after the change of coordinates, Δ_x transforms into $\Delta_y = \partial_{y_1}^2 + \ldots + \partial_{y_n}^2$.

2. (10 pts) Let u(x, y) and v(x, y) solve the Cauchy-Riemann system $u_x = v_y$ and $u_y = -v_x$. Show that both u and v solve the Laplace equation $\Delta u = 0$ in \mathbb{R}^2 .

3. (10 pts)

(a) Find a linear change of coordinate $t \mapsto T$ that reduces the wave equation $u_{tt} = c^2 \Delta u$ into the wave equation $u_{TT} = \Delta u$.

(b) Find a linear change of coordinates $x \mapsto y$ that reduces the wave equation $u_{tt} = c^2 \Delta_x u$ into the wave equation $u_{tt} = \Delta_y u$.

4. (16 pts) For the Maxwell equations

$$\epsilon \partial_t E = \operatorname{curl} H, \quad \mu \partial_t H = -\operatorname{curl} E, \quad \operatorname{div} E = \operatorname{div} H = 0$$

where $\epsilon > 0$, $\mu > 0$ are constants;

(a) Prove that each component E_j of the electric field E and each component H_j of the magnetic field H solves the scalar wave equation $u_{tt} = c^2 \Delta u$ with $c = 1/\sqrt{\varepsilon \mu}$.

(b) Prove that if $\operatorname{div} E = \operatorname{div} H = 0$ for t = 0 only and (E, H) solves the rest of the Maxwell system, then $\operatorname{div} E = \operatorname{div} H = 0$ for any t.

5. (16 pts) Prove that the elastic wave equation in \mathbb{R}^3

$$\rho u_{tt} = \mu \Delta u + (\lambda + \mu) \nabla \nabla \cdot u$$

with ρ , λ and μ positive constants, admits the following solutions. Let $c_1 = \sqrt{(\lambda + 2\mu)/\rho}$ and $c_2 = \sqrt{\mu/\rho}$. Let the scalar function ϕ and the vector function v solve wave equations $\phi_{tt} = c_1^2 \Delta \phi$ and $v_{tt} = c_2^2 \Delta v$. Then the vector function $u = \alpha \nabla \phi + \beta \nabla \times v$ solves the elastic wave equation for any two constants α , β . Note that here $\nabla \times v = \operatorname{curl} v$ where \times stands for the vector product in \mathbf{R}^3 .