Math 523 Fall 2024 Assignment 4

Name:

1. Let f be a function on **R** so that f is C^1 for x < 0, up to x = 0; and also C^1 for x > 0, again up to x = 0 (i.e., the limits of f and f' from left and right exist). Let [f] be the jump at x = 0. Find a formula for f', where the derivative is in sense of distributions.

2. Following p. 72, #13.

(a) Prove that $F_1 = H(\mu)H(\eta)$ is a fundamental solution of $L = \partial_{\mu}\partial_{\eta}$. Here, H is the Heaviside function. (b) Making the change of variables $\mu = x + ct$, $\eta = x - ct$, find a fundamental solution of $\Box = \partial_t^2 - c^2 \partial_x^2$.

- **3.** p. 72, #16. Show if the operator $L = \sum_{|\alpha| \le m} a_{\alpha}(x) \partial^{\alpha}$ with real coefficients is elliptic, then *m* is even.
- 4. (p. 82. #1(b)) Solve

$$u_{tt} - c^2 u_{xx} = 2t,$$

 $u|_{t=0} = x^2, \quad u_t|_{t=0} = 1.$

5. (p. 82. #6) Solve

$$u_{tt} - c^2 u_{xx} = 1, \quad 0 \le x \le \pi, t > 0,$$
$$u|_{t=0} = u_t|_{t=0} = 0,$$
$$u|_{x=0} = 0, \quad u|_{x=\pi} = -\pi^2/2.$$

6. Solve the following IBVP for the wave equation on the half-line x > 0:

$$u_{tt} - c^2 u_{xx} = 0, \quad x \ge 0, \ t > 0,$$

 $u_{t=0} = g(x), \quad u_t|_{t=0} = h(x),$
 $u|_{x=0} = 0.$

Hint: Odd or even extensions of some functions might be useful. You may assume the compatibility conditions if needed.

7. Prove that the solution of the problem

$$u_{tt} - c^2 \Delta u + q(x)u = 0, \quad x \in \Omega, \ t > 0$$

in a bounded domain $\Omega \subset \mathbf{R}^n$, with the Dirichlet boundary condition on $\partial\Omega$, is unique. Here, $q \ge 0$ is a smooth potential in Ω . You can assume that u is a classical solution.

Is there uniqueness assuming the Neumann boundary condition on $\partial \Omega$?

You may want to compare this question to the other ones on p. 94.