MA 266 - DIFFERENTIAL EQUATIONS

REVIEW PROBLEMS - MIDTERM 2

Exercice 1. Solve the initial value problem

$$y'' + 2y' + 2y = 0,$$
 $y\left(\frac{\pi}{4}\right) = 2, y\left(\frac{\pi}{4}\right) = -2.$

Exercice 2. Determine the longest interval in which the following initial value problem is certain to have a unique twice-differentiable solution:

$$(x-2)y'' + y' + (x-2)\tan(x)y = 0,$$
 $y(1) = 0, y'(1) = 1.$

Exercice 3. Consider the initial value problem

$$y'' + 2ay' + (a^2 + 1)y = 0,$$
 $y(0) = 1, y'(0) = 0$

3.1. Find the solution y(t) of this problem.

3.2. For a = 1, find the smallest T such that |y(t)| < 0.1 for t > T.

Exercice 4. Solve the initial value problem

$$9y'' + 6y' + 82y = 0,$$
 $y(0) = -1, y'(0) = 2.$

Exercice 5. Consider the initial value problem:

$$9y'' - 12y' + 4y = 0, \qquad y(0) = a, \ y'(0) = -1.$$

5.1. Find the solution y(t) of this problem.

5.2. Find the critical value of the parameter a that separates solutions that become negative from those that are always positive.

Exercice 6. Use the reduction of order method in order to find the second solution of

$$(x-1)y'' - xy' + y = 0,$$
 $x > 1,$ $y_1(x) = e^x.$

Exercice 7. Consider the following initial value problem:

$$y'' + 2y' + 5y = 4e^{-t}\cos(2t), \qquad y(0) = 1, \ y'(0) = 0.$$

7.1. Solve the homogeneous equation.

7.2. Find a particular solution by means of the method of undetermined coefficients.

Exercice 8. Find the correct form of a particular solution of

$$y'' + 4y = t^2 \sin(2t) + (6t + 7)\cos(2t).$$

2

Exercice 9. Use the variation of parameters to find the general solution of:

$$x^{2}y'' - 3xy' + 4y = x^{2}\ln(x), \qquad x > 0, \qquad y_{1}(x) = x^{2}, \ y_{2}(x) = x^{2}\ln(x).$$

Exercice 10. A spring is stretched 10cm by a force of 3N. A mass of 2 kg is hung from the spring and is also attached to a viscous damper that exerts a force of 3N when the velocity of the mass is 5m/s. If the mass is pulled down 5cm below its equilibrium position and given an initial downward velocity of 10cm/s, determine its position u at any time t.