Outline

Introduction

~	_
5 a may /	
Janny	

A communication system:

- Setup: *n* antennas lined up
- Functional system:

 \hookrightarrow when no 2 consecutive defective antennas

• We know that *m* antennas are defective

Problem: compute

P (functional system)

Example: n= 4 m=2 defective

O --> defective I --> non defective For small n, m: enumerate all possibilities

For larger values of n,m > need to count !

A simple example of counting (2)

Particular instance of the previous situation:

- Take n = 4 and m = 2
- Possible configurations:

0011	0101	0110
1001	1010	1100

• We get 3 working configurations among 6, and thus

$$\mathbf{P}(\text{functional system}) = \frac{1}{2}$$

Conclusion: need an effective way to count, that is

Combinatorial analysis