Odds

— Definition 5. | \
Let
@ P a probability on a sample space S

@ A an event

We define the odds of A by

odds(k) = PUA) _ P4
P(A5) _ 1- P(A)
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Odds and conditioning

,—[Proposition 6.]

Situation: We have
@ An hypothesis H, true with probability P(H)
@ A new evidence E

Formula: The odds of H after evidence E are given by

). P(HIE) _ P(H) P(E|H) _
0(6(()0’“5)' P(HC’ E) o P(HC) P(E’ HC) -xo(;f({(;(szu‘l )
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Proof

Inversion of conditioning: We have

P(H| E) w
p(HeE) = TE QE};‘”C)

Conclusion: P(H|E) _ P(H) P(E|H)

P(H[E)  P(H) P(E|H)
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Example: coin tossing (1)

Situation:
@ Urn contains two type A coins and one type B coin.

@ When a type A coin is flipped,
it comes up heads with probability

I

@ When a type B coin is flipped,
it comes up heads with probability

BlW

@ A coin is randomly chosen from the urn and flipped
Question:

Given that the flip landed on heads
— What is the probability that it was a type A coin?
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Example: coin tossing (2)

Model: We set

o A = type A coin flipped
@ B = type B coin flipped
@ H = Head obtained

Data:
P(A) = 2 P(H|A) = L P(H|B) = 3
e 4 4

Aim:
Compute P(A| H)
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Example: coin tossing (3)

Application of Proposition 6:  odd(A) edd(HIA)
P(AIH) P(A) P(H|A
(- ALY PO P(HIA)

P(B|H) P(B) P(H|B)

Numerical result: We get

Pain)  _ PAIH)  2/31/4 2

[-@(AIX) P(B/H) 1/33/4 3

Therefore \
dope =

dgebm

P(A|H) = §
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Generalization of Proposition 3

,—[Proposition 7.]

Let [ 3
@ P a probability on a sample space S ye >
e Fi,..., F, partition of S, i.e
» F; mutually exclusive ﬁ Fr

> U?:]_Fi = 5
@ E another event

_2. F, :F"o W}'ol’«:%

=3P (E|F) P(F)

Then we have  p(g)- RCEIF) PE )+ PER ) PE)
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Generalization of Proposition 4

,—[Proposition 8.]

Let
@ P a probability on a sample space S
@ F1,...,F, partition of S, i.e

» F; mutually exclusive

@ E another event

Then we have

P(E|F;) P(F)
i1 P(E|Fi) P(F)

P(F| €)=
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Example: card game (1)

Situation:
@ 3 cards identical in form (say Jack)

@ Coloring of the cards on both faces:

» 1 card RR
» 1 card BB
» 1 card RB

@ 1 card is randomly selected, with upper side R

Question:
What is the probability that the other side is B?
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Example: card game (2)

Model: We define the events
@ RR: chosen card is all red
@ BB: chosen card is all black
@ RB: chosen card is red and black
@ R: upturned side of chosen card is red

Aim:
Compute P(RB| R)
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Example: card game (3)

Application of Proposition 8:

P (RB|R)
B P (R| RB) P(RB)
~ P(R|RR)P(RR) + P (R| RB) P(RB) + P (R| BB) P(BB)

Numerical values:

P (RB|R) =

N[N
X | X
WR(W(—

_I_
o
X
W=
|
W~

1x

W=

_|_
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Example: disposable flashlights

Situation:
@ Bin containing 3 different types of disposable flashlights
@ Proba that a type 1 flashlight will give over 100 hours of use is .7
@ Corresponding probabilities for types 2 & 3: .4 and .3

@ 20% of the flashlights are type 1, 30% are type 2,
and 50% are type 3

Questions:
@ What is the probability that a randomly chosen flashlight will
give more than 100 hours of use?
@ Given that a flashlight lasted over 100 hours, what is the
conditional probability that it was a type j flashlight, for
j=1,2,37
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Example: disposable flashlights (2)

Model: We define the events
@ A: flashlight chosen gives more than 100h of use
@ Fj: type j is chosen

Aim 1:
Compute P(A)
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Example: disposable flashlights (3)

Application of Proposition 7:

Numerical values:

P(A)=07x02+04x03+0.3x05= 41
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Example: disposable flashlights (4)

Aim 2:
Compute P(F| A)

Application of Proposition 8:

P(A)
Numerical value:
0.7x02 14 o
P(F|A) = o4l - @ ~ 41%
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Outline

@ Independent events

=] & = E DA
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Definition of independence

—~ Definition 0.

Let
@ P a probability on a sample space S

e E,F two events
Then E and F are independent if

P(EF)=P(E)P(F)

Notation:

E and F independent denoted by £ Il F
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