Example: time of first success (1)

Experiment:

- Coin having probability *p* of coming up heads
- Independent trials: flipping the coin
- Stopping rule: either *H* occurs or *n* flips made

Random variable:

 $X = #$ of times the coin is flipped

State space:

$$
X\in\{1,\ldots,n\}
$$

 QQQ

Example: time of first success (2)

Probabilities for *j < n*:

$$
\mathbf{P}(X=j) = \mathbf{P}\left(\{(t,\ldots,t,h)\}\right) = (1-p)^{j-1}p
$$

Probability for $j = n$:

$$
\mathbf{P}(X=n) = \mathbf{P}(\{(t,\ldots,t,h); (t,\ldots,t,t)\}) = (1-p)^{n-1}
$$

∢ □ ▶ ⊣ 倒 ▶

目

 QQ

Example: time of first success (3)

Checking the sum of probabilities:

$$
\mathbf{P}\left(\bigcup_{j=1}^{n} \{X=j\}\right) = \sum_{j=1}^{n} \mathbf{P}\left(\{X=j\}\right)
$$

= $\rho \sum_{j=1}^{n-1} (1-\rho)^{j-1} + (1-\rho)^n$
= 1

∢ □ ▶ ⊣ 倒 ▶

 \rightarrow \equiv \rightarrow

目

 QQ

Next aim . Find a proper description of a random variable

(i) Cumulative distribution function $(Cd f)$

(ii) Probability mass function (Pmf)

Cumulative distribution function Here X is described by a function F: R -> IO, J

Definition 1.

Let

- **P** a probability on a sample space *S*
- $X : S \to \mathcal{E}$ a random variable, with $\mathcal{E} \subset \mathbb{R}$

```
For x \in \mathbb{R} we define
```

```
F(x) = P(X \leq x)
```
Then the function *F* is called cumulative distribution function or distribution function

つひい

 $3a$ one-to-one map $\epsilon \rightarrow w$

 $Examples: 31, ..., n9$, \mathbb{Z}^d , α \mathbb{S}^d , \mathbb{N}^d , even numbers,

Sets which are not countable :

 \mathbb{R}^d , \mathbb{C}^d

Outline

Random variables

- Discrete random variables
- **Expected value**
- Expectation of a function of a random variable
- **Variance**
- The Bernoulli and binomial random variables
- ⁷ The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

4 0 F

 Ω

General definition

 200

Probability mass function **Definition 3.** Here X is described by a sequence $\{ \rho(x_i); i \geq 1 \}$

Let

- **P** a probability on a sample space *S*
- $\mathcal{E} = \{x_i; i \geq 1\}$ countable state space
- $X : S \rightarrow \mathcal{E}$ discrete random variable

For $i > 1$ we set

$$
p(x_i) = \mathbf{P}(X = x_i)
$$

Then the probability mass function of *X* is the family

 ${p(x_i); i > 1}$

つへへ

Remarks

Sum of the pmf: If *p* is the pmf of *X*, then

 \sum $i \geq 1$ $p(x_i) = 1$

Graph of a pmf: Bar graphs are often used. Below an example for $X =$ sum of two dice

Example of pmf computation (1)

Definition of the pmf: Let *X* be a r.v with pmf given by

$$
\begin{array}{ll}\n\text{m1: Let } X \text{ be a r.v with pmt given by} \\
\mathcal{E} = \{0, 1, 2, \dots \} \\
p(i) = c \frac{\lambda^i}{i!}, \quad i \ge 0,\n\end{array}
$$

where $c > 0$ is a normalizing constant

Question: Compute

\n- **①**
$$
P(X = 0)
$$
\n- **②** $P(X > 2)$
\n

∢ □ ▶ ⊣ *←* □

 QQQ

Example of pmf computation (2)

Computing *c*: We must have

$$
c\sum_{i=0}^{\infty}\frac{\lambda^i}{i!}=1
$$

Thus

$$
c=e^{-\lambda}
$$

Computing $P(X = 0)$: We have

$$
\mathbf{P}(X=0)=e^{-\lambda}\frac{\lambda^0}{0!}=e^{-\lambda}
$$

÷.

 QQ

K ロ ▶ K 何 ▶

Example of pmf computation (3)

Computing $P(X > 2)$: We have

$$
\mathbf{P}\left(X>2\right)=1-\mathbf{P}\left(X\leq 2\right)
$$

Thus

$$
\mathbf{P}\left(X>2\right)=1-e^{-\lambda}\left(1+\lambda+\frac{\lambda^2}{2}\right)
$$

K ロ ▶ K 何 ▶

 \Rightarrow

 2990

Cdf for discrete random variables

