Let X r.v. with $\rho m f \rho$. Then $E[X] = \sum x_i p(x_i)$ $E [g(x)] = Z g(x; Y g(x; Y))$ Example If $x: S \rightarrow \{1,2\}$ with $pm 1$ $p(1) = \frac{1}{2}$, $p(2) = \frac{1}{2}$. Then $E[X] = \sum_{r=1}^{6} i \rho(r) = |x_2^1 + 2x_2^1| = \frac{3}{2}$ $E[\sqrt{x^2}] = \frac{2}{\sqrt{x^2}} \, i^2 \, p(i) = i^2 x \frac{1}{2} + i^2 x \frac{1}{2} = \frac{5}{2}$

Example: seasonal product (1)

Situation:

- Product sold seasonally
- Profit *b* for each unit sold
- Loss ℓ for each unit left unsold
- **Product has to be stocked in advance** *Ò*æ *s* units stocked

Random variable:

- $X = #$ units of product ordered
- Pmf *p* for *X*

Question:

Find optimal *s* in order to maximize profits

Example: seasonal product (2)

Some random variables: We set

つへへ

Example: seasonal product (3)

Simplification for $E[Y_s]$: We get

$$
\mathsf{E}\left[Y_s\right] = s\,b + (b+\ell)\sum_{i=0}^s (i-s)\,p(i)
$$

Growth of $s \mapsto E[Y_s]$: We have

$$
\mathsf{E}[Y_{s+1}] - \mathsf{E}[Y_s] = b - (b + \ell) \sum_{i=0}^{s} p(i)
$$

◀ □ ▶ ◀ [□] ▶

G.

 QQ

Example: seasonal product (4)

Growth of $s \mapsto E[Y_s]$ (Ctd): We obtain

$$
\mathbf{E}\left[Y_{s+1}\right] - \mathbf{E}\left[Y_s\right] > 0 \quad \Longleftrightarrow \quad \sum_{i=0}^s p(i) < \frac{b}{b+\ell} \tag{2}
$$

Optimization:

- The lhs of (2) is \nearrow
- The rhs of (2) is constant
- \bullet Thus there exists a s^* such that

$$
E[Y_0]<\cdotsE[Y_{s^*+1}]>\cdots
$$

Conclusion: s^* leads to maximal expected profit

4 D F

Expectation and linear transformations

Let

- *X* discrete random variable
- *p* pmf of *X*
- *a*, $b \in \mathbb{R}$ constants

Then

E $[aX + b] = aE[X] + b$

Proof

Application of relation (1):

$$
\mathsf{E}\left[aX+b\right] = \sum_{i\geq 1} \left(a\,x_i+b\right)\,p(x_i) \\
= a\sum_{i\geq 1} x_i\,p(x_i) + b\sum_{i\geq 1} p(x_i) \\
= a\,\mathsf{E}\left[X\right] + b
$$

K ロ ▶ K 倒 ▶

重

 299

Outline

- Random variables
- Discrete random variables
- ³ Expected value
- ⁴ Expectation of a function of a random variable
- **Variance**
- The Bernoulli and binomial random variables
- ⁷ The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

4 0 F

Runk If we want ^a short description of a r.v x , we can we (i) $E[X] \rightarrow \alpha$ verage value of x (ii) $Var(x))^{\frac{1}{2}} (Var(x))^{\frac{1}{2}}$ > average fluctuations of x

Definition of variance

 Ω

э.

Interpretation

Expected value: For a r.v *X*, **E**[*X*] represents the mean value of *X*.

Variance: For a r.v *X*, **Var**(*X*) represents the dispersion of *X* wrt its mean value.

- A greater **Var**(*X*) means
	- The system represented by X has a lot of randomness
	- This system is unpredictable

Standard deviation: For physical reasons, it is better to introduce

 $\sigma_X := \sqrt{\textsf{Var}(X)}$.

Example: Consider 2 soccer playes.
Objerve the # goals scored by those 2 players during the 5 last games Palmer \rightarrow reliable ran games
Palmer -> reliable
Anthony -> random \bigwedge This is $An thony \rightarrow random$
Palmer 1111 1 stat, stat, not Anthony 5 0 0 0 0 10 2: How to choose between P and A according to our data?

Interpretation (2)

Illustration (from descriptive stats): We wish to compare the performances of 2 soccer players on their last 5 games

Recall: for a set of data $\{x_i; i \leq n\}$, we have Empirical mean: $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$ Empirical variance: $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2$ Standard deviation: $s_n = \sqrt{s_n^2}$ On our data set: $\bar{x}_G = \bar{x}_M = 1$ goal/game *Ò*æ Same goal average However, $s_G = 2$ goals/game while $s_M = 0$ goals/game *Ò*æ M more reliable (less random) than G

Alternative expression for the variance

 200

Example X= Outcome when rolling I dice

Example: rolling a dice

Random variable:

•
$$
X =
$$
 outcome when one rolls 1 dice

Variance computation: We find

$$
E[X] = \frac{7}{2}, \qquad E[X^2] = \frac{91}{6}
$$

$$
Var(X) = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}
$$

Standard deviation:

Therefore

$$
\sigma_{\mathsf{X}} = \sqrt{\frac{35}{12}} \simeq 1.71
$$

4 ロ 4 何

 \rightarrow \equiv \rightarrow

э

 QQ