Outline

- Random variables
- Discrete random variables
- **Expected value**
- Expectation of a function of a random variable
- **Variance**
- The Bernoulli and binomial random variables
- ⁷ The Poisson random variable
- Other discrete random variables
- Expected value of sums of random variables
- Properties of the cumulative distribution function

4 0 F

 Ω

Poisson random variable (1)

Notation:

$$
P(\lambda)
$$
 for $\lambda \triangle R_+$ $\lambda > 0$

State space:

$$
E = \mathbb{N} \cup \{0\}
$$
 (ist example of

$$
E = \mathbb{N} \cup \{0\}
$$
 infinite state space)

K ロ ▶ K 何 ▶

Pmf:

$$
\mathbf{P}(X=k)=e^{-\lambda}\frac{\lambda^k}{k!},\quad k\geq 0
$$

Expected value and variance:

$$
E[X] = \lambda, \qquad \text{Var}(X) = \lambda
$$

ALC

G.

 QQ

Poisson random variable (2)

Use (examples):

- $\bullet \#$ customers getting into a shop from 2pm to 5pm
- $\bullet \#$ buses stopping at a bus stop in a period of 35mn
- $\bullet \#$ jobs reaching a server from 12am to 6am

> Queuing theory M/M/I

Empirical rule:

If $n \to \infty$, $p \to 0$ and $np \to \lambda$, we approximate Bin(n, p) by $P(\lambda)$. This is usually applied for

$$
\Rightarrow \infty, p \to 0 \text{ and } np \to \lambda, \text{ we approximate}
$$

is is usually applied for

$$
p \le 0.1 \text{ and } np \le 5
$$

$$
\Rightarrow \text{Bin} \left(n, \frac{1}{n} \right) \xrightarrow{n \to \infty} \text{D(A)}^M
$$

Poisson random variable (3) $R(2)$

Figure: Pmf of $P(2)$. *x*-axis: *k*. *y*-axis: $P(X = k)$

Samy T. **Random variables Probability Theory** 65 / 113

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

4 同 ト

 \leftarrow \Box

э

Poisson random variable (4) Bisson = Fish P(5)

Figure: Pmf of $P(5)$. *x*-axis: *k*. *y*-axis: $P(X = k)$

 \leftarrow \Box

∍

Siméon Poisson

Some facts about Poisson:

- Lifespan: 1781-1840, in \simeq Paris
- **•** Engineer, Physicist and Mathematician
- **•** Breakthroughs in electromagnetism
- Contributions in partial diff. eq celestial mechanics, Fourier series
- Marginal contributions in probability $Bin(n, \frac{\lambda}{n}) \rightarrow PA$

A quote by Poisson:

Life is good for only two things: doing mathematics and teaching it!!

 200

Example: drawing defective items (1)

Experiment:

- Item produced by a certain machine will be defective \hookrightarrow with probability .1
- Sample of 10 items drawn

Question:

Probability that the sample contains at most 1 defective item

 Ω

· Success : we pick a defective item

$*$ # $riaC$: we pick 10 items

 $> p = 0.1$

$X = #$ defective items

 \Rightarrow X v Bin (10, 0.1)

have Xv Bin (10, 0.1) $W e$ we wish to compute $S = \mathbb{R}(x=0) + \mathbb{R}(x=1)$ $\binom{10}{0}$ $\binom{0.1}{0}$ $\binom{0.9}{1}$ + $\binom{10}{1}$ $\binom{0.1}{1}$ $\binom{0.9}{1}$ \pm Id 1.7361

Example: drawing defective items (2)

Random variable: Let

$$
X=\# \hspace{1mm} \text{of defective items}
$$

Then

 $X \sim Bin(n, p)$, with $n = 10, p = .1$

Exact probability: We have to compute

$$
P(X \le 1) = P(X = 0) + P(X = 1)
$$

= (0.9)¹⁰ + 10 × 0.1 × (0.9)⁹
= .7361

∢ □ ▶ ⊣ 倒 ▶

医单子的 G. Example: drawing defective items (3)

Approximation: We use

 $\text{Bin}(10, .1) \simeq \mathcal{P}(1)$

Approximate probability: We have to compute

$$
P(X \le 1) = P(X = 0) + P(X = 1)
$$

\n
$$
\approx e^{-1}(1 + 1)
$$

\n= .7358

4 ロ 4 何

 \rightarrow \equiv \rightarrow

э

 QQ