
2nd variation on classical rv

· In a Bernoullitrial with
replacement , if X= # success

when X ~ Bin (n , p)

· Question : what happens if
we have no replacement ?

> HypG



Hypergeometric random variable (1)

Use: Consider the experiment
Urn containing N balls
m white balls, N ≠ m black balls
Sample of size n is drawn without replacement
Set X = # white balls drawn

Then
X ≥ HypG(n, N , m)
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with replacement
XuBin (n

, A)

A



Hypergeometric random variable (2)
Notation:

X ≥ HypG(n, N , m), for N œ Nú, m, n Æ N , p œ (0, 1)

State space:

{0, . . . , n}

Pmf:

P(X = k) =

1
m
k

21
N≠m
n≠k

2

1
N
n

2 , 0 Æ k Æ n

Expected value and variance: Set p = m
N . Then

E[X ] = np, Var(X ) = np(1 ≠ p)
A

N ≠ n

N ≠ 1

B
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X

#ways to choose # ways to pick n-k B
a W among mw among N-m

# ways to picka balls
among N balk



Hypergeometric and binomial

Let
X ≥ HypG(n, N , m),
Recall that p = m

N

Hypothesis:
n π m, N , i π m, N

Then
P(X = i) ƒ

A
n

i

B

p
i(1 ≠ p)n≠i

Proposition 14.
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HypG(n,N,m/ Bin(n,
if N, m are large



Proof
Expression for P(X = i):

P(X = i) =

1
m
i

21
N≠m
n≠i

2

1
N
n

2

= m!
(m ≠ i)!i !

(N ≠ m)!
(N ≠ m ≠ n + i)!(n ≠ i)!

(N ≠ n)!n!
N!

=
A

n

i

B i≠1Ÿ

j=0

m ≠ j

N ≠ j

n≠i≠1Ÿ

k=0

N ≠ m ≠ k

N ≠ i ≠ k

Approximation: If i , j , k π m, N above, we get

P(X = i) ƒ
A

n

i

B

p
i(1 ≠ p)n≠i
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Example: electric components (1)

Situation: We have
Lots of electric components of size 10
We inspect 3 components per lot
Òæ Acceptance if all 3 components are non defective
30% of lots have 4 defective components
70% of lots have 1 defective component

Question:
What is the proportion of rejected lots?
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acepted



Modeling Define

A = "lot accepted
"

70% of lots

↳= "We pick a lot with I defective "

La =" 4 defective
"

we wish to compute
30% of lots

P(A)BayePLAIC) P(L. ) + PAILa)IP(L)
P(A)= 0.7 = P(A)(, ) + 0.3 PLAILG)



P(A)= 0.7 = P(A)(, ) + 0.3 PLAILG)

Claim HypG(n, N,m,
#W ball

# rrialsI
P(A)() = P(X = 0) rotl* of balls

where X= #defective picked
*ge Hyp(3, 10, 4)

=> X, ~ HypG3 , 10 , I
PLAILP) =( = k) = () (i)

= (d) (0)(3) ()

10 (3)



Conclusion

P(A)=. T x (b)(3) + 3x (b)(3)

(3) (g)
P(A) = 54%



Example: electric components (2)

Events: We define
A = Acceptance of a lot
L1 = Lot with 1 defective component drawn
L4 = Lot with 4 defective components drawn

Conditioning: We have

P(A) = P(A| L1) P(L1) + P(A| L4) P(L4)

and
P(L1) = .7, P(L4) = .3,
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Example: electric components (3)

Hypergeometric random variable: We check that

P(A| L1) = P(X1 = 0), where X1 ≥ HypG(3, 10, 1)

Thus

P(A| L1) =

1
1
0

21
9
3

2

1
10
3

2

Conclusion:

P(A) =

1
1
0

21
9
3

2

1
10
3

2 ◊ 0.7 +

1
4
0

21
6
3

2

1
10
3

2 ◊ 0.3 = 54%
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Outline
1 Random variables
2 Discrete random variables
3 Expected value
4 Expectation of a function of a random variable
5 Variance
6 The Bernoulli and binomial random variables
7 The Poisson random variable
8 Other discrete random variables
9 Expected value of sums of random variables
10 Properties of the cumulative distribution function
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Expectation of sums

Let
P a probability on a sample space S

X1, . . . , Xn : S æ R n random variables

Hypothesis: S is countable, i.e

S = {si ; i Ø 1}

Then
E

C nÿ

i=1
Xi

D

=
nÿ

i=1
E [Xi ]

Proposition 15.
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Rimb If Xu Bin(n, p) we can

decompose X as

X= Xi, where

Xi = (1 if success at the trial

o otherwise

Morever easy way to compute
E[X] if X Bin

Xi v B(p) S
= P

=> E[X] = ELIX]= ETX]
= RP


