Example of combination (1)

Situation:
@ We have a group of 5 women and 7 men

@ We wish to form a committee with 2 women and 3 men

Problem:

@ Find the number of possibilities
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Example of combination (2)

Number of possibilities:
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Example of combination (3)

Situation 2:
@ We have a group of 5 women and 7 men
@ We wish to form a committee with 2 women and 3 men

@ 2 men refuse to serve together

Problem:

@ Find the number of possibilities
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Example of combination (4)

New number of possibilities:
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Binomial theorem

~ Theorem 3.

Let
@ x1,% €R
en>1

Then
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Combinatorial proof
First expansion:

n
(ait+x)"= > xx X,
(il,...,fn)e{l,Z}"

Definition of a family of sets:
Ak ={(f1,....0n) € {1,2}"; there are k j's such that j; = 1}.
New expansion: we have (convention: |Ax| = Card(Ay))

n
Ga+x)" = > Adxx™"
k=0

n n -

k=0
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Application of the binomial theorem

Proposition 4.]
’_[Let J 7 Gardoalidy of A

o A aset With n

@ P, = collection of all subsets of A

Then

|Ps| = 2"
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Proof

Decomposition of |P,|: Write

[Pl = D |Subsets of A with k elements|

50

Application of the binomial theorem:

Pol = (1+1)"
— on
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Outline

© Multinomial coefficients
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Multinomial coefficients

Divisions of n objects into r groups with size ny, ..., n,: We have
@ n objects and r groups

e We want n; objects in group j and >7_; nj =n
Notation: Set

n ) B n!
ny,...,ny ;:1 (njl)
Counting: We have

# Divisions of n objects into r groups with size ny,...,n,
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Proof of counting

Number of choices for the ith group:

i—1
n— Zj:1 n;
n;

Number of divisions: We have

# Divisions of n objects into r groups with size ny,...,n,

i—1
— 2uj=10j
n;

("
i=1
n
n,...,n,
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Example of multinomial coefficient (1)

Situation: Police department with 10 officers and
@ 5 have to patrol the streets
@ 2 are permanently working at the station
@ 3 are on reserve at the station

Problem:
How many divisions do we get?
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Answer:

Example of multinomial coefficient (2)

10!
51213!
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Tournament example

Situation: Tournament with n = 2™ players
— How many outcomes?

Particular case:
Take m =3, thus n =38

Number of rounds: 3
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Tournament example (2)
Counting number of outcomes for the first round:

# pairings with order g ordering

—— = Possible outcomes
8 1 ’2’4‘ 8l
2,2,2,2 4l 4l

Counting number of outcomes for second and third round:

41 21
z and ﬂ
Conclusion:
8! 4! 21
P — | _ .
401 8! = 40, 320 possible outcomes

Samy T. Combinatorial analysis Probability Theory 38/39



