Joint cdf in higher dimensions

Definition 8.

- X_1, \ldots, X_n random variables $\longrightarrow \times = (\times_1, \ldots, \times_n)$ $a_1, \ldots, a_n \in \mathbb{R}$

The following joint cdf describes the joint distribution of (X_1, \ldots, X_n) :

$$F(a_1,\ldots,a_n)=\mathbf{P}\left(X_1\leq a_1,\ldots,X_n\leq a_n\right)$$

Samy T.

Joint density in higher dimensions

Definition 9.

Consider the following situation:

• X_1, \ldots, X_n real valued random variables

The random vector (X_1, \ldots, X_n) is said to be jointly continuous iff for "all" subsets $C \subset \mathbb{R}^n$ we have

$$\mathbf{P}\left((X_1,\ldots,X_n)\in C\right)=\int_{(x_1,\ldots,x_n)\in C}f(x_1,\ldots,x_n)\,dx_1\cdots dx_n$$

Samy T. Joint r.v

21 / 85

Outline

- Joint distribution functions
- 2 Independent random variables
- Sums of independent random variables
- 4 Conditional distributions: discrete case
- 5 Conditional distributions: continuous case
- 6 Joint probability distribution of functions of random variables
- Conditional expectation

Recall All B if P(A)B) = P(A)P(B) For r.v's , we will relate the notion X 11 × 10 indep of events

Definition of independence

Definition 10.

Let

• X, Y random variables

X and Y are said to be independent if for "all" $C,D\subset\mathbb{R}$ we have

$$\mathbf{P}(X \in C) \mathbf{P}(X \in D) = \mathbf{P}(X \in C) \mathbf{P}(Y \in D)$$

Characterizations of independence

Proposition 11.

Let X, Y random variables.

Then X and Y are independent in the following cases

• If the joint cdf F satisfies

$$F(a,b) = F_X(a) F_Y(b)$$
, for all $a,b \in \mathbb{R}$

If X, Y are discrete and the joint pmf satisfies

$$p(x,y) = p_X(x) p_Y(y)$$
, for all $(x,y) \in E_1 \times E_2$

3 If X, Y are jointly cont. and the joint density satisfies

$$f(x,y) = f_X(x) f_Y(y)$$
, for all $(x,y) \in \mathbb{R}^2$

Example ctd: tossing 3 coins (1)

Experiment:

Tossing a coin 3 times

Events: We consider

$$A =$$
 "At most one Head" $B =$ "At least one Head and one Tail"

Random variables: Set

$$X_1 = \mathbf{1}_A, \qquad X_2 = \mathbf{1}_B, \qquad X = (X_1, X_2)$$

Question: To we have X, I X2?

Strategy In order to check X, 11 X2, (a) We need to check $P(X_i=i, X_2=j) = P(X_i=i)P(X_2=j)$ ¥ 2,3 € 20,13 -> 4 identities (ii) It might be easier to read

those identifies on the table

Table for the distribution of (x,xe)

X,\X ₂	0	1	ilary X1
0	18	3/8	1/2
ı	78	3/8	1/2
Mary X2	1/4	3/4	

 $\frac{1}{3} = P(X_{i=1}, X_{i=0}) = P(X_{i=1}) P(X_{i=0}) = \frac{1}{2} \frac{1}{2} = \frac{1}{3}$ $\frac{1}{3} = P(X_{i=1}, X_{i=1}) = P(X_{i=1}) P(X_{i=1}) = \frac{1}{2} \frac{1}{3} = \frac{1}{3}$

$$\frac{3}{8} = P(X_{i=1}, X_{i=1}) = P(X_{i=1}) P(X_{i=1}) = \frac{1}{2} < \frac{3}{8} = \frac{3}{9}$$
Conclusion: $X_{i} \perp X_{i} \rightarrow \text{due to } A \perp B$
for $n=3$ to $x = 3$

Example ctd: tossing 3 coins (2)

We have seen:

$X_1 \backslash X_2$	0	1	Marg. X_1
0	1/8	3/8	1/2
1	1/8	3/8	1/2
Marg. X_2	1/4	3/4	1

Checking independence: With the help of the table, one can see that

$$P(X = (i,j)) = P(X_1 = i) P(X_2 = j), \text{ for all } i,j \in \{0,1\}$$

Therefore $X_1 \perp \!\!\! \perp X_2$.

Remark: The relation $X_1 \perp \!\!\! \perp X_2$ is due to the fact that $A \perp \!\!\! \perp B$. \hookrightarrow cf. Conditional probability, Section 4.

> Samy T. Probability Theory

26 / 85

Example: Romeo and Juliet (1)

Situation:

- Romeo and Juliet decide to meet on the main square of Verona
- They arrive at independent times between 12pm and 1pm
- Rule: the first to arrive leaves after 10mn

Question:

Compute the probability that Romeo meets Juliet

Model Set X = arrival time for R Y= arrival time for J Hup 1: X, Y N U ([12pm, 1pm]) > shift to x, Y v u (to,1) Hyp2: XIY => Joint 1(2,4) = 10,7(x) 10,7(y) = 1 [0,1]2 (x,y)