
Romeo& Juliet example

X= arrival time for R ~U(t0,1)

V= arrival time for JvU(T0,1)
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Rule : R & J will wait at most th
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We have A = 1- 1B
,
1 - 1Bc = 1-21Bi

=> A = 1 - 2 x 5x5x2 = 1 -(5)
=> P(R& J meer) = 1 - (2 = 30. 5%



Example: Romeo and Juliet (2)

Model:
X = Arrival time for Romeo
Y = Arrival time for Juliet
Renormalize everything on [0, 1]
Hypothesis: X ‹‹ Y and X , Y ≥ U([0, 1])

Joint density: The joint density for (X , Y ) is

f (x , y) = 1[0,1]2(x , y) = 1[0,1](x) 1[0,1](y)
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Example: Romeo and Juliet (3)

Aim: Compute
P

3
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1
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Complementary: Geometrically one can see that
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Conclusion:
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Characterizations of independence

Let X , Y random variables.
Then X and Y are independent in the following cases

1 If X , Y are discrete and there exist h, g such that

p(x , y) = h(x) g(y), for all (x , y) œ E1 ◊ E2

2 If X , Y are jointly cont. and there exist h, g such that

f (x , y) = h(x) g(y), for all (x , y) œ R2

Proposition 12.
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Example of independence (1)

Example 1: If (X , Y ) have joint density

6e≠(2x+3y) 1(0,Œ)2(x , y),

then X ‹‹ Y .
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Exponential example .

We have

f(y) = Ge
- (2x + 33)

110012(x,y)

= Ge
-41(a)(x) + e

-

331(a(y)
u(x) g(y)

Prop12
=> XHV



Example of independence (2)

Recall joint density:

6e≠(2x+3y) 1(0,Œ)2(x , y)

Decomposition of the density:

f (x , y) = h(x) g(y),

with
h(x) = 6e≠2x 1(0,Œ)(x), g(y) = e≠3y 1(0,Œ)(y)

Conclusion:
X ‹‹ Y
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Example of non independence (1)

Example 2: If (X , Y ) have joint density

24xy 1(0,Œ)2(x , y)1(0<x+y<1),

then X , Y are not independent
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Example of non 1 We have

f(x,y) = 24xy110012 (34y)12x+y (>3

= 24x1(0
,0) (k) = y 1 cop , (y)

h(x)
x 1(x+y -> 1)

g(y)

=> no product decomposition

* Nor enough to prove XV



Recall def We have XIX if

P(XEA
,
YEB) = P(XEA) P(YEB)

for all sel A.B .
Here we will

find A
,
B S.U.

PP(XEA
, VEB) + P(XEA) P(XEB)

This is enough to prove X*

Example of A .
B :

A = 50,] ,
B = 50z]



Aim : prove

P(0(X(t
,
0(Y(z)

+ P)0-X(z)P(0-XX])



y flx,y) = 24xy 110,012 (14y) 1x+y=1)

2 -124 (20, %20, <+y (1)

z Y
simplification
P)(,X) [0,EJ)

= Joiz A lxy) < dy
= Li 24xy che dy = 24

.

Ech by cy



Summary

IP ( *, X) E [0,ET2)

= 2416x1* y dy
= 24 d
=



Compare tie= 26sy 100,012 (14) 1y+)
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Conclusion
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Example of non independence (2)

Recall density:

f (x , y) = 24xy 1(0,Œ)2(x , y)1(0<x+y<1),

Non product structure:
X , Y satisfy the relation: X + Y < 1.

Checking non independence: We have
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