Outline

- ¹ Joint distribution functions
- Independent random variables
- ³ Sums of independent random variables
	- Conditional distributions: discrete case
- ⁵ Conditional distributions: continuous case
- Joint probability distribution of functions of random variables
- Conditional expectation

4 0 F

Density of a sum

Proof

Characterization by expectations: Let $\varphi \in \mathcal{C}(\mathbb{R})$. Then

$$
\mathsf{E}\left[\varphi(Z)\right] = \int_{\mathbb{R}^2} \varphi(x+y) f_X(x) f_Y(y) \, dx dy
$$

Change of variable: $x + y = a$ and $y = b$, thus $J = 1$

Expression for $\mathbf{E}[\varphi(Z)]$:

$$
\mathsf{E}\left[\varphi(Z)\right] = \int_{\mathbb{R}} \varphi(a) \left(\int_{\mathbb{R}} f_X(a-b) \, f_Y(b) \, db\right) da
$$

K ロ ▶ K 何 ▶

÷.

 QQ

Triangular distribution

4 **D F**

 $Aim: X, Y \sim U(0,1), XY, Z=X+Y$ we wish to compute fz . According $\frac{m}{\sqrt{e}}$: X , Y \sim $U(0,1)$, $X \perp Y$, Y
 $\frac{w}{10}$ $\frac{w}{10}$, $\frac{1}{10}$ $\frac{1}{10}$, $\frac{1}{10}$ $, \sigma$ (y) f_{α} (a) = $\int_{\mathbb{R}} f_{\alpha}$ (a-y) $\int_{\mathbb{R}} (y) dy$ Tf $Y \sim U(10,17)$, we have $f(x) = 1$ con (y) \Rightarrow $\int_{t}^{t} (a) = \int_{0}^{t} \int_{x}^{t} (a-y) dy$

Proof

Application of Proposition 13:

$$
f_Z(a) = \int_0^1 f_X(a-y) \, dy = \int_{[0,1] \cap [a-1,a]} dy = |[0,1] \cap [a-1,a]|
$$

Case 1: $a \in [0, 1]$: Then $[0, 1] \cap [a - 1, a] = [0, a]$ and

$$
f_Z(a)=a
$$

Case 2: $a \in (1, 2]$: Then $[0, 1] \cap [a - 1, a] = [a - 1, 1]$ and $f_7(a) = 2 - a$

 Ω

KID KA KA SA KE KI E

Sums of Gamma random variables

Remark: This result includes

- Sums of exponential random variables
- Sums of chi-square random variables

Sums of Gaussian random variables

Example: basketball (1)

Situation:

- A basketball team will play a 44-game season
- \bullet 26 games are against class A teams, with probability of win $=$.4
- 18 games are against class B teams, with probability of win = *.*7
- Results of the different games are independent.

Question: Approximate the probability that

- **1** The team wins 25 games or more
- **2** The team wins more games against class A teams than it does against class B teams

Sikuahisa : NA (2) We are playing ²⁶ games against we are playing 26 games agains
Fype A reams, P(win) = 4 = pa Set X_4 = total # wins against type A reams \Rightarrow X_A \sim Bin (26, .4) Approximation Poison ? De Moirre ? $X_4 \propto \mathcal{N}(26x.4; 26x.4x.6)$ $X_{A} \times W(10.4; 6.24)$

Example: basketball (2)

Model: We set

- $X_A = #$ games the team wins against class A
- $X_B = #$ games the team wins against class B

Then $X_A \perp\!\!\!\perp X_B$ and

$$
X_A \sim Bin(26,0.4), \quad X_B \sim Bin(18,0.7)
$$

Approximation for X_A, X_B : According to DeMoivre-Laplace,

 $X_A \approx \mathcal{N}(10.4; 6.24)$, $X_B \approx \mathcal{N}(12.60; 3.78)$

KED KARD KED KED E VOOR

Example: basketball (3) λ pproximation for $X_A + X_B$: Since $X_A/\!\!\!\perp\!\!\!\perp X_B$, $X_A + X_B \approx \mathcal{N}(23; 10.02)$ $\mu_{A} + \mu_{B} = 10.4 + 12.6$ $\mu_{A} + \mu_{B} = 10.4 + 12$
A $\perp \perp X_{B,7}$ $\sigma_{A}^{2} + \sigma_{B}^{2}$
23; 10.02) = 6.24t 3.78 Total wins =

←ロ ▶ ィ母 ▶ ィヨ ▶ ィヨ ▶

 Ω

Example: basketball (4)

Approximation for $X_A - X_B$: Since $X_A \perp \!\!\! \perp X_B$,

 $X_A - X_B \approx \mathcal{N}(-2.2; 10.02)$

Question 2: We have

$$
P(X_A - X_B > 0) = P(X_A - X_B \ge .5)
$$

= $P\left(\frac{X_A - X_B + 2.2}{\sqrt{10.02}} \ge \frac{.5 + 2.2}{\sqrt{10.02}}\right)$
 $\approx 1 - P(Z < .8530)$
 $\approx .1968$

 Ω

KID KA KA SA KE KI E