@ Introduction



Global objective

Aim: Introduce

@ Sample space

@ Events of an experiment

@ Probability of an event

@ Show how probabilities can be computed in certain situations
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Outline

© Sample space and events
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Sample space

Situation: We run an experiment for which
@ Specific outcome is unknown

@ Set S of possible outcomes is known

Terminology:

In the context above S is called sample space
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Examples of sample spaces

Tossing two dice: We have

S = {1,2,3,4,5,6}
= {(17./)1 Ia.j: 17273747576}

Lifetime of a transistor: We have

S=R;={xeR;0<x < o0}

Probabiity Theory 7/ 69



Events

—~ Definition 1. N

Consider
@ Experiment with sample space S
@ A subset E of S

Then

E is called event
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Example of event (1)

Tossing two dice: We have

S = {1,2,3,4,5,6)

Event: We define

E = (Sum of dice is equal to 7)
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Example of event (2)
Description of E as a subset:

E = {(1,6):(2,5); (3,4): (4,3); (5,2); (6, 1)} C S

or 9 = = 9ace



Second example of event (1)

Lifetime of a transistor: We have

S=R;={xeR 0<x < o0}

Event: We define

E = (Transistor does not last longer than 5 hours)
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Second example of event (2)

Description of E as a subset:

E=][0,5]CS

=} = - = A



Operations on events
Complement: E€ is the set of elements of S not in E

Two dice example:

E€ = "Sum of two dice different from 7"

Union, Intersection: For the two dice example, if

B = "Sum of two dice is divisible by 3"
C = "Sum of two dice is divisible by 4"

Then

B U C = "Sum of two dice is divisible by 3 or 4"
BN C = BC = "Sum of two dice is divisible by 3 and 4"
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Exsmple_of _complewed fo- & dee
E= "um of dwe =6"
Then | E9= “ sum of dice # 6"
=4 (g); C5€4),..68 , crg# 6l
= S\ {(,5); (24), (%3, €2)°6,)]

< S




Exampl. of U for & due

B= " xum dicxbl by 3°
C=-" % v« G"7

Then [Buc]-= “um di & 3 or 4"

= {(Cp) ) 2FE Q60 M Brj€]%4,639125)




Example of 0 for & dee

B= " xm dicxbl by 3°
C=-Y % w« G7

Then [BNC]= “um div & 3and4”
= 0650, i€e4),.,60 st trg =12
1(6,6)]
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llustration (1)

Union and intersection:

(a) Shaded region: E U F. (b) Shaded region: EF.
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lllustration (2)

Complement:

(c) Shaded region: E€.
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Samy T.

llustration (3)

Subset:

Figure: E C F

o




Laws for elementary operations

Commutative law:

EUF=FUE, EF = FE

Associative law:

(EUF)UG=EU(FUG), E(FG) = (EF)G

Distributive laws:

(EUF)G = EGU,&EG
(EF) UG = (EUG)(FUG)
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[[lustration

Distributive law:

E F E F
% % G % % G
(a) Shaded region: EG. (b) Shaded region: FG.

E F

G
(c) Shaded region: (E U F)G.

Figure: (EU F)G = EGU FG
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De Morgan'’s laws

r—[Proposition 2.] ‘
Let tor n-2
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Proof (1)

Proof of (U, E;)¢ C NP Ef:
Assume x € (U_,E;)¢ Then

x¢gU! EE = foralli<n x¢&E
= foralli<n, xekEf
— x € N_,Ef
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Proof (2)

Proof of N, Ef C (UL, E;)":
Assume x € Ni_, EF Then

foralli<n xe€ Ef — foralli<n x¢E
1
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