
Probability : On a sample space s ,

P(E) is defined for every
event ECs and

· OSP(E) 11

·
P(s) = 1

,
P(Q) = 0

· If E, nEz = 9
,
when

IP(E, UEzl = P(E
, ) + PLEe)

-> generalizations to
Ell . . ., En



Two properties
P(EY = 1 - P(E)

P) E, UEz) = P(E,
1 + PLEz)-PCE, NE)

(inclusion-exclusion formula for
n =2)



Inclusion - exclusion for n = 3

PLE
, UELUEz)

= P(E, ) + P(E) + P(Es) V= 1

- (PPCE,MEL) + IPCE, 1Ez) + IP(EclEs)]r=2

+ P(E, ME lEs) V= 3



Proof for n = 3

Apply Proposition 7:

P (E1 fi E2 fi E3) = P (E1 fi E2) + P (E3) ≠ P ((E1 fi E2)E3)
= P (E1 fi E2) + P (E3) ≠ P (E1E3 fi E2E3)

Apply Proposition 7 to E1 fi E2 and E1E3 fi E2E3:

P (E1 fi E2 fi E3) =
ÿ

1Æi1Æ3
P (Ei1) ≠

ÿ

1Æi1<i2Æ3
P (Ei1Ei2) + P (E1E2E3)

Case of general n: By induction
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Bounds for P(fin
i=1Ei)

Let
P a probability on a sample space S
n events E1, . . . , En

Then

P
A n€

i=1
Ei

B

Æ
ÿ

1ÆiÆn
P (Ei)

P
A n€

i=1
Ei

B

Ø
ÿ

1ÆiÆn
P (Ei) ≠

ÿ

1Æi1<i2Æn
P (Ei1Ei2)

Proposition 9.
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Bounds for P(fin
i=1Ei) – Ctd

Let
P a probability on a sample space S
n events E1, . . . , En

Then

P
A n€

i=1
Ei

B

Æ
ÿ

1ÆiÆn
P (Ei) ≠

ÿ

1Æi1<i2Æn
P (Ei1Ei2) +

ÿ

1Æi1<i2<i3Æn
P (Ei1Ei2Ei3)

Proposition 10.
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Proof

Notation: Set
Bi = E c

1 · · · E c
i≠1

Identity:
P (fin

i=1Ei) = P(E1) +
nÿ

i=2
P (BiEi)

Second identity: Since Bi = (fij<iEj)c ,

P (BiEi) = P (Ei) ≠ P (fij<iEjEi)

Partial conclusion:

P (fin
i=1Ei) =

ÿ

1ÆiÆn
P(Ei) ≠

ÿ

1ÆiÆn
P (fij<iEjEi)
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Proof (2)

Recall:
P (fin

i=1Ei) =
ÿ

1ÆiÆn
P(Ei) ≠

ÿ

1ÆiÆn
P (fij<iEjEi) (1)

Direct consequence of (1):

P (fin
i=1Ei) Æ

ÿ

1ÆiÆn
P(Ei) (2)

Application of (2) to P(fij<iEjEi):

P (fij<iEjEi) Æ
ÿ

j<i
P (EjEi)

Plugging into (1) we get

P (fin
i=1Ei) Ø

ÿ

1ÆiÆn
P(Ei) ≠

ÿ

j<i
P (EjEi)
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Outline

1 Introduction

2 Sample space and events

3 Axioms of probability

4 Some simple propositions

5 Sample spaces having equally likely outcomes

6 Probability as a continuous set function

Samy T. Axioms Probability Theory 43 / 71



Model

Hypothesis for this section: We assume
S = {s1, . . . , sN} finite.
P({si}) = 1

N for all 1 Æ i Æ N

Alert:

This is an important but
very particular case of probability space
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Example : Toss I dice

S= (1, . .

., 6) > ISI= 6

Hyp Dice is fair. Thus

P((13) = ((23) =... = P((63)

= !
= is



Example 2 : Toss 4 dice

S = 41 ,
. .

., 634 ,
151= 64 = 1296

Hyp Dice are fair. Thus

P)(1,
1
,

1
,
13) = P((1, 1

,
1
, 2))

=... = P((6
,
6
,
6
,
6)) =

1

1296



Example of uniform probability

Experiment: tossing 4 fair dice

Corresponding probability We take
S = {1, . . . , 6}4

Probability defined by

P({(1, 1, 1, 1)}) = P({(1, 1, 1, 2)}) = · · · = P({(6, 6, 6, 6)})

= 1
64 = 1

1296

Samy T. Axioms Probability Theory 45 / 71



Computing probabilities

Hypothesis: We assume
S = {s1, . . . , sN} finite.
P({si}) = 1

N for all 1 Æ i Æ N

In this situation, let E µ S be an event. Then

P(E ) = Card(E )
N = |E |

N = # outcomes in E
# outcomes in S

Proposition 11.
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Example 1 : Tossing I dice with

P(((3) = .. = 1((63) = t
E= "even ourcome" = 42, 4, 63

Since the probability is uniform,

PCE/Erop" /El = 3 =ISI



Example: tossing one dice

Model: tossing one dice, that is

S = {1, . . . , 6}, P({si}) = 1
6

Computing a simple probability: Let E = "even outcome". Then

P(E ) = |E |
N = 3

6 = 1
2

Main problem: compute |E | in more complex situations
Òæ Counting
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Example: drawing balls (1)

Situation: We have
A bowl with 6 White and 5 Black balls
We draw 3 balls

Problem: Compute

P(E ), with E = ”Draw 1 W and 2 B”
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Experiment : 6W ,
SB

,
we draw 3 balls

5. "all combinations of sizes of GW ,
5B"

W B

Balls : 11
.

. .,
6

,
7, ..., 11.

.
Thus

5 &(2 , i2 , iz) Ehl , . . . , 1133 ; litic ,
i2 is

,

is+ i, ]

Note : here (1
,
2
,
6) + 12, 1

,
61,

the order matters

E = "2 B
,
I W"

-
order matters

= BBW U BWB U WBB



Description of BBW
&

BBW = ((( ,
(2, is) E(), ..

, 1133 ; Li,it
7) 2111

,
7 Sie f 11

,
1 diz <6 ]

Hyp : Outcomes are equally likely.
Thus FGi

,
ic , is ES

((4
,
22

, (3))) = is -

I

I
=

11 . 10 . 9
= ago



We get
Propl/

P(BBW) =

IBBW/
-

5x4 + 6

IS/ 990

= P(BWB) = P(WBB)

Thus
> disjoint sets

P(E) = P(BBW)+1P(BWB)+ P(WBB)

=
3x 5 + 4x6 = 36. 4 %

990



Rmk : Here we had a model
for which the order mattered.

We have another possible model,
for which the order does not
matter

< combination numbers



Example: drawing balls (2)

Model 1: We take
S = {Ordered triples of balls, tagged from 1 to 11}
P = Uniform probability on S

Computing |S|: We have

|S| = 11 · 10 · 9 = 990

Decomposition of E : We have

E = WBB fi BWB fi BBW
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Example: drawing balls (3)

Counting E :

|E | = |WBB| + |BWB| + |BBW| = 3 ◊ (6 ◊ 5 ◊ 4) = 360

Probability of E : We get

P(E ) = |E |
|S| = 360

990 = 4
11 = 36.4%
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