MA/STAT 416 Fall 2024 Probability Theory

Midterm

- You can use a calculator.
- A 2 pages long handwritten cheat sheet is allowed. It should only contain formulae and theorems (no example, no solved problem).
- You have 60 minutes.
- Show your work.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- GOOD LUCK!

Name:

Purdue ID:

Problem 1. We throw a pair of dice until the sum of faces shows either 5 or 7.1.1. Specify the state space S related to this experiment.

1.2. Let S_j be the random variable defined by $S_j =$ "Sum of the 2 faces for the *j*-th roll". Find the pmf of S_j .

1.3. We call A the event "5 occurs before 7". We also call A_n the event "5 occurs before 7, and this happens exactly on the *n*-th roll". Express A_n in terms of the random variables S_j for $j \leq n$.

1.4. Compute $\mathbf{P}(A)$ by using the relation $A = \bigcup_{n=1}^{\infty} A_n$. Justify your answers thanks to the previous questions.

1.5. We now define 3 events:

 $F_5 = \{S_1 = 5\}, \qquad F_7 = \{S_1 = 7\}, \qquad F_{\neq} = \{S_1 \notin \{5, 7\}\}$ Compute $\mathbf{P}(A)$ by conditioning on F_5, F_7 and F_{\neq} .

Problem 2. In order to detect whether a suspect is lying, the police sometimes uses polygraphs. Let $A = \{\text{polygraph indicates lying}\}$ and $B = \{\text{the suspect is lying}\}$. If the suspect is lying, there is a 88% chance of detecting it; if the suspect is telling the truth, 86% of time the polygraph will confirm it. We assume that 1% of the time the suspects lie.

2.1. If the result of the polygraph shows that the suspect is lying, what is the chance that this person is really lying?

Problem 3. Two teams play a series of games that ends when one of them has won 3 games. Suppose that each game played is, independently, won by team A with probability $p \in (0, 1)$. We call N the number of games played.

3.1. What is the state space for the random variable N?

3.2. Compute the pmf for the random variable N.

3.3. Compute $\mathbf{E}[N]$. Note: One can express the result as a function of x = p(1-p).

3.4. Find the value of $p \in (0, 1)$ such that $p \mapsto \mathbf{E}[N]$ is maximal.