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Global objective

Aim: Introduce conditional probability, whose interest is twofold
1 Quantify the effect of a prior information on probabilities
2 If no prior information is available, then independence

↪→ simplification in probability computations
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Example of conditioning

Dice tossing: We consider the following situation
We throw 2 dice
We look for P(sum of 2 faces is 9)

Without prior information:

P (sum of 2 faces is 9) = 1
9

Changes with additional information:
If we know that first face is = 4, then
↪→ how does it affect P (sum of 2 faces is 9)?
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Example of conditioning
Probability with additional information: If first face is = 4, then

Only 6 possible results:

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)

Among them, only (4, 5) gives sum = 9
Probability of having sum = 9 becomes

p = 1
6

Conclusion:

We need to formalize this type of computation
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General definition

Let
P a probability on a sample space S
E , F two events, such that P(F ) > 0

Then
P (E | F ) = P(E F )

P(F )

Definition 1.

Samy T. Conditional probability Probability Theory 8 / 84



Example: examination (1)

Situation:
Student taking a one hour exam

Hypothesis: For x ∈ [0, 1] we have

P (Lx) = x
2 , (1)

where the event Lx is defined by

Lx = {student finishes the exam in less than x hour}

Question: Given that the student is still working after .75h
↪→ Find probability that the full hour is used
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Example: examination (2)
Model: We wish to find

P (Lc
1| Lc

.75)

Computation: We have

P (Lc
1| Lc

.75) = P (Lc
1Lc

.75)
P (Lc

.75)

= P (Lc
1)

P (Lc
.75)

= 1 − P (L1)
1 − P (L.75)

Conclusion: Applying (1) we get

P (Lc
1| Lc

.75) = .8
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Simplification for uniform probabilities

General situation: We assume
S = {s1, . . . , sN} finite.
P({si}) = 1

N for all 1 ≤ i ≤ N

Alert:
This is an important but very particular case of probability space

Conditional probabilities in this case:
Reduced sample space, i.e

Conditional on F , all outcomes in F are equally likely
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Example: family distribution (1)

Situation:
The Popescu family has 10 kids

Questions:
1 If we know that 9 kids are girls

↪→ find the probability that all 10 kids are girls

2 If we know that the first 9 kids are girls
↪→ find the probability that all 10 kids are girls
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Example: family distribution (2)

Model:
S = {G , B}10

Uniform probability: for all s ∈ S,

P({s}) = 1
210 = 1

1024
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Example: family distribution (3)

First conditioning: We take

F1 =
{(G , . . . , G); (G , . . . , G , B); (G , . . . , G , B, G); · · · ; (B, G , . . . , G)}

Reduced sample space:
Each outcome in F1 has probability 1

11

Conditional probability:

P ({(G , . . . , G)}| F1) = 1
11
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Example: family distribution (4)

Second conditioning: We take

F2 = {(G , . . . , G); (G , . . . , G , B)}

Reduced sample space:
Each outcome in F2 has probability 1

2

Conditional probability:

P ({(G , . . . , G)}| F2) = 1
2
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Example: bridge game (1)

Bridge game:
4 players, E, W, N, S
52 cards dealt out equally to players

Conditioning: We condition on the set

F = {N + S have a total of 8 spades}

Question: Conditioned on F ,
Probability that E has 3 of the remaining 5 spades
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Example: bridge game (2)

Model: We take

S = {Divisions of 52 cards in 4 groups}
and we have

Uniform probability on S
|S| =

(
52

13,13,13,13

)
≃ 5.36 1028

Reduced sample space: Conditioned on F ,

S̃ = {Combinations of 13 cards among 26 cards with 5 spades}

and |S̃| = 10, 400, 600
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Example: bridge game (3)

Conditional probability:

P (E has 3 of the remaining 5 spades| F ) =

(
5
3

) (
21
10

)
(

26
13

) ≃ .339
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Intersection and conditioning

Situation:
Urn with 8 Red and 4 White balls
Draw 2 balls without replacement

Question: Let
R1 = 1st ball drawn is red
R2 = 2nd ball drawn is red

Then find P(R1R2)
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Intersection and conditioning (2)

Recall:
Urn with 8 Red and 4 White balls
Draw 2 balls without replacement

Computation: We have

P(R1R2) = P(R1)P(R2| R1)

Thus
P(R1R2) = 8

12
7
11 = 14

33 ≃ .42
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The multiplication rule

Let
P a probability on a sample space S
E1, . . . , En n events

Then

P (E1 · · · En) = P (E1)
n−1∏
k=1

P (Ek+1| E1 · · · Ek) (2)

Proposition 2.
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Proof

Expression for the rhs of (2):

P (E1)
P (E1E2)
P (E1)

P (E1E2E3)
P (E1E2)

· · · P (E1 · · · En−1En)
P (E1 · · · En−1)

Conclusion:
By telescopic simplification
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Example: deck of cards (1)

Situation:
Ordinary deck of 52 cards
Division into 4 piles of 13 cards

Question: If
E = {each pile has one ace} ,

compute P(E )
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Example: deck of cards (2)

Model: Set

E1 = {the ace of S is in any one of the piles}
E2 = {the ace of S and the ace of H are in different piles}
E3 = {the aces of S, H & D are all in different piles}
E4 = {all 4 aces are in different piles}

We wish to compute
P (E1E2E3E4)
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Example: deck of cards (3)

Applying the multiplication rule: write

P (E1E2E3E4) = P (E1) P (E2| E1) P (E3| E1E2) P (E4| E1E2E3)

Computation of P(E1): Trivially

P (E1) = 1

Computation of P(E2| E1): Given E1,
Reduced space is
{51 labels given to all cards except for ace S}
P(E2| E1) = 51−12

51 = 39
51
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Example: deck of cards (4)

Other conditioned probabilities:

P (E3| E1E2) = 50 − 24
50 = 26

50 ,

P (E4| E1E2E3) = 49 − 36
49 = 13

49

Conclusion: We get

P(E ) = P (E1) P (E2| E1) P (E3| E1E2) P (E4| E1E2E3)

= 39 · 26 · 13
51 · 50 · 49 ≃ .105
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Thomas Bayes

Some facts about Bayes:
England, 1701-1760
Presbyterian minister
Philosopher and statistician
Wrote 2 books in entire life
Bayes formula unpublished

Samy T. Conditional probability Probability Theory 28 / 84



Decomposition of P(E )

Let
P a probability on a sample space S
E , F two events with 0 < P(F ) < 1

Then
P (E ) = P (E | F ) P(F ) + P (E | F c) P(F c)

Proposition 3.
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Bayes’ formula

Let
P a probability on a sample space S
E , F two events with 0 < P(F ) < 1

Then

P (F | E ) = P (E | F ) P(F )
P (E | F ) P(F ) + P (E | F c) P(F c)

Proposition 4.
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Iconic Bayes (offices of HP Autonomy)
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Example: insurance company (1)

Situation:
Two classes of people:
those who are accident prone and those who are not.
Accident prone: probability .4 of accident in a one-year period
Not accident prone: probab .2 of accident in a one-year period
30% of population is accident prone

Question:
Probability that a new policyholder will have an accident within a
year of purchasing a policy?
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Example: insurance company (2)

Model: Define
A1 = Policy holder has an accident in 1 year
A = Accident prone

Then
S = {(A1, A); (Ac

1, A); (A1, Ac); (Ac
1, Ac)}

Probability: given indirectly by conditioning

Aim:
Compute P(A1)
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Example: insurance company (3)

Given data:

P(A1| A) = .4, P(A1| Ac) = .2, P(A) = .3

Application of Proposition 3:

P (A1) = P (A1| A) P(A) + P (A1| Ac) P(Ac)

We get
P (A1) = 0.4 × 0.3 + 0.2 × 0.7 = 26%
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Example: swine flu (1)

Situation:
We assume that 20% of a pork population has swine flu.
A test made by a lab gives the following results:

Among 50 tested porks with flu, 2 are not detected
Among 30 tested porks without flu, 1 is declared sick

Question:
Probability that a pork is healthy while his test is positive?
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Example: swine flu (2)

Model: We set F = "Flu", T = "Positive test"
We have

P(F ) = 1
5 , P(T c | F ) = 1

25 , P(T | F c) = 1
30

Aim:
Compute P(F c | T )
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Example: swine flu (3)

Application of Proposition 4:

P(F c | T ) = P(T | F c) P(F c)
P(T | F c) P(F c) + P(T | F ) P(F )

= P(T | F c) P(F c)
P(T | F c) P(F c) + [1 − P(T c | F )] P(F )

= 0.12

Conclusion:
12% chance of killing swines without proper justification
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Henri Poincaré

Some facts about Poincaré:
Born in Nancy, 1854-1912
Cousin of Raymond Poincaré
↪→ French president during WW1
Mathematician and engineer
Numerous contributions in

▶ Celestial mechanics
▶ Relativity
▶ Gravitational waves
▶ Topology
▶ Differential equations
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An example by Poincaré (1)

Situation:
We are on a train
Someone gets on the train and proposes to play a card game
The unknown person wins

Question:
Probability that this person has cheated?
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An example by Poincaré (2)

Model: We set
p = probability to win without cheating
q = probability that the unknown person has cheated
W = "The unknown person wins"
C = "The unknown person has cheated"

Hypothesis on probabilities: We assume

P(W | C c) = p, P(W | C) = 1, P(C) = q

Aim:
Compute P(C | W )
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An example by Poincaré (3)

Application of Proposition 4:

P(C | W ) = P(W | C) P(C)
P(W | C) P(C) + P(W | C c) P(C c)

= q
q + p(1 − q)

Remarks:
(1) We have P(C | W ) ≥ q = P(C).
↪→ the unknown’s win increases his probability to cheat
(2) We have

lim
p→0

P(C | W ) = 1
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Odds

Let
P a probability on a sample space S
A an event

We define the odds of A by

P(A)
P(Ac) = P(A)

1 − P(A)

Definition 5.
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Odds and conditioning

Situation: We have
An hypothesis H , true with probability P(H)
A new evidence E

Formula: The odds of H after evidence E are given by

P(H | E )
P(Hc | E ) = P(H)

P(Hc)
P(E | H)
P(E | Hc)

Proposition 6.

Samy T. Conditional probability Probability Theory 43 / 84



Proof

Inversion of conditioning: We have

P(H | E ) = P(E | H) P(H)
P(E )

P(Hc | E ) = P(E | Hc) P(Hc)
P(E )

Conclusion:
P(H | E )
P(Hc | E ) = P(H)

P(Hc)
P(E | H)
P(E | Hc)
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Example: coin tossing (1)

Situation:
Urn contains two type A coins and one type B coin.
When a type A coin is flipped,
it comes up heads with probability 1

4
When a type B coin is flipped,
it comes up heads with probability 3

4
A coin is randomly chosen from the urn and flipped

Question:
Given that the flip landed on heads
↪→ What is the probability that it was a type A coin?
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Example: coin tossing (2)

Model: We set
A = type A coin flipped
B = type B coin flipped
H = Head obtained

Data:
P(A) = 2

3 , P(H | A) = 1
4 , P(H | B) = 3

4

Aim:
Compute P(A| H)
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Example: coin tossing (3)

Application of Proposition 6:

P(A| H)
P(B| H) = P(A)

P(B)
P(H | A)
P(H | B)

Numerical result: We get

P(A| H)
P(B| H) = 2/3

1/3
1/4
3/4 = 2

3

Therefore
P(A| H) = 2

5
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Generalization of Proposition 3

Let
P a probability on a sample space S
F1, . . . , Fn partition of S, i.e

▶ Fi mutually exclusive
▶ ∪n

i=1Fi = S
E another event

Then we have

P (E ) =
n∑

i=1
P (E | Fi) P (Fi)

Proposition 7.
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Generalization of Proposition 4

Let
P a probability on a sample space S
F1, . . . , Fn partition of S, i.e

▶ Fi mutually exclusive
▶ ∪n

i=1Fi = S
E another event

Then we have

P (Fj | E ) = P (E | Fj) P (Fj)∑n
i=1 P (E | Fi) P (Fi)

Proposition 8.
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Example: card game (1)

Situation:
3 cards identical in form (say Jack)
Coloring of the cards on both faces:

▶ 1 card RR
▶ 1 card BB
▶ 1 card RB

1 card is randomly selected, with upper side R

Question:
What is the probability that the other side is B?
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Example: card game (2)

Model: We define the events
RR: chosen card is all red
BB: chosen card is all black
RB: chosen card is red and black
R: upturned side of chosen card is red

Aim:
Compute P(RB| R)
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Example: card game (3)

Application of Proposition 8:

P (RB| R)

= P (R| RB) P(RB)
P (R| RR) P(RR) + P (R| RB) P(RB) + P (R| BB) P(BB)

Numerical values:

P (RB| R) =
1
2 × 1

3
1 × 1

3 + 1
2 × 1

3 + 0 × 1
3

= 1
3
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Example: disposable flashlights
Situation:

Bin containing 3 different types of disposable flashlights
Proba that a type 1 flashlight will give over 100 hours of use is .7
Corresponding probabilities for types 2 & 3: .4 and .3
20% of the flashlights are type 1, 30% are type 2,
and 50% are type 3

Questions:
1 What is the probability that a randomly chosen flashlight will

give more than 100 hours of use?
2 Given that a flashlight lasted over 100 hours, what is the

conditional probability that it was a type j flashlight, for
j = 1, 2, 3?
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Example: disposable flashlights (2)

Model: We define the events
A: flashlight chosen gives more than 100h of use
Fj : type j is chosen

Aim 1:
Compute P(A)
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Example: disposable flashlights (3)

Application of Proposition 7:

P (A) =
3∑

j=1
P (A| Fj) P (Fj)

Numerical values:

P (A) = 0.7 × 0.2 + 0.4 × 0.3 + 0.3 × 0.5 = .41
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Example: disposable flashlights (4)

Aim 2:
Compute P(F1| A)

Application of Proposition 8:

P (F1| A) = P (A| F1) P (F1)
P(A)

Numerical value:

P (F1| A) = 0.7 × 0.2
0.41 = 14

41 ≃ 34%
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Definition of independence

Let
P a probability on a sample space S
E , F two events

Then E and F are independent if

P (E F ) = P(E ) P(F )

Notation:

E and F independent denoted by E ⊥⊥ F

Definition 9.
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Some remarks

Interpretation: If E ⊥⊥ F , then

P (E | F ) = P(E ),

that is the knowledge of F does not affect P(E )

Warning: Independent ̸= mutually exclusive!
Specifically

A, B mutually exclusive ⇒ P(A B) = 0
A, B independent ⇒ P(A B) = P(A) P(B)

Therefore A et B both independent and mutually exclusive
↪→ we have either P(A) = 0 or P(B) = 0
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Example: dice tossing (1)

Experiment: We throw two dice

Sample space:
S = {1, . . . , 6}2

P({(s1, s2)}) = 1
36 for all (s1, s2) ∈ S

Events: We consider

A = "1st outcome is 1", B = "2nd outcome is 4"

Question:
Do we have A ⊥⊥ B?
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Example: dice tossing (2)
Description of A and B:

A = {1} × {1, . . . , 6}, and B = {1, . . . , 6} × {4}.

Probabilities for A and B: We have

P(A) = |A|
36 = 1

6 , P(B) = |B|
36 = 1

6

Description of A B: We have A B = {(1, 4)}. Thus

P(A B) = 1
36 = P(A) P(B)

Conclusion: A and B are independent

Samy T. Conditional probability Probability Theory 61 / 84



Example: tossing n coins (1)

Experiment:
Tossing a coin n times

Events: We consider

A = "At most one Head"
B = "At least one Head and one Tail"

Question:
Are there values of n such that A ⊥⊥ B?
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Example: tossing n coins (2)

Model: We take
S = {h, t}n

P({s}) = 1
2n for all s ∈ S

Description of A and B:

A = {(t, . . . , t), (h, t, . . . , t), (t, h, t, . . . , t), (t, . . . , t, h)}
B = {(h, . . . , h), (t, . . . , t)}c
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Example: tossing n coins (3)

Computing probabilities for A and B: We have

P(A) = |A|
2n = n + 1

2n

P(B) = 1 − P(Bc) = 1 − 1
2n−1

Description of A B and

A B = A\{(t, . . . , t)} ⇒ P(A B) = n
2n
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Example: tossing n coins (4)

Checking independence: We have A ⊥⊥ B iff

n + 1
2n

(
1 − 1

2n−1

)
= n

2n ⇐⇒ n − 2n−1 + 1 = 0

Conclusion: One can check that

x 7→ x − 2x−1 + 1

vanishes for x = 3 only on R+. Thus

We have A ⊥⊥ B iff n = 3
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Independence and complements

Let
P a probability on a sample space S
E , F two events
We assume that E ⊥⊥ F

Then
E ⊥⊥ F c , E c ⊥⊥ F , E c ⊥⊥ F c

Proposition 10.
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Proof

Decomposition of P(E ): Write

P(E ) = P (E F ) + P (E F c)
= P (E ) P (F ) + P (E F c)

Expression for P(E F c): From the previous expression we have

P(E F c) = P(E ) − P (E ) P (F )
= P(E ) (1 − P (F ))
= P(E )P (F c)

Conclusion:
E ⊥⊥ F c
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Counterexample: independence of 3 events (1)
Warning:
In certain situations we have A, B, C pairwise independent, however

P(A ∩ B ∩ C) ̸= P(A) P(B) P(C)

Example: tossing two dice
S = {1, . . . , 6}2

P({(s1, s2)}) = 1
36 for all (s1, s2) ∈ S

Events: Define

A = "even number for the 1st outcome"
B = "odd number for the 2nd outcome"
C = "same parity for the two outcomes"
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Counterexample: independence of 3 events (2)
Description of A, B, C :

A = {2, 4, 6} × {1, . . . , 6}
B = {1, . . . , 6} × {1, 3, 5}
C = ({2, 4, 6} × {2, 4, 6}) ∪ ({1, 3, 5} × {1, 3, 5})

Pairwise independence: we find

A ⊥⊥ B, A ⊥⊥ C and B ⊥⊥ C

Independence of the 3 events: We have A ∩ B ∩ C = ∅. Thus

0 = P(A ∩ B ∩ C) ̸= P(A) P(B) P(C) = 1
8
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Independence of 3 events

Let
P a probability on a sample space S
3 events A1, A2, A3

We say that A1, A2, A3 are independent if

P (A1A2) = P(A1) P(A2), P (A1A3) = P(A1) P(A3)
P (A2A3) = P(A2) P(A3)

and
P(A1A2A3) = P(A1) P(A2) P(A3)

Definition 11.
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Independence of n events

Let
P a probability on a sample space S
n events A1, A2, . . . , An

We say that A1, A2, . . . , An are independent if
for all 2 ≤ r ≤ n and j1 < · · · < jr we have

P(Aj1Aj2 · · · Ajr ) = P(Aj1) P(Aj2) · · · P(Ajr )

Definition 12.
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Independence of an ∞ number of events

Let
P a probability on a sample space S
A sequence of events {Ai ; i ≥ 1}

We say that the Ai ’s are independent if
for all 2 ≤ r < ∞ and j1 < · · · < jr we have

P(Aj1Aj2 · · · Ajr ) = P(Aj1) P(Aj2) · · · P(Ajr )

Definition 13.
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Example: parallel system (1)

Situation:
Parallel system with n components
All components are independent
Probability that i-th component works: pi

Question:
Probability that the system functions
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Example: parallel system (2)

Model: We take
S = {0, 1}n

Probability P on S defined by

P({(s1, . . . , sn)}) =
n∏

i=1
psi

i (1 − pi)1−si

Events:

A = "System functions" , Ai = "i-th component functions"

Facts about Ai ’s:
The events Ai are independent and P(Ai) = pi
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Example: parallel system (3)

Computations for P(Ac):

P(Ac) = P (∩n
i=1Ac

i )

=
n∏

i=1
P (Ac

i )

=
n∏

i=1
(1 − pi)

Conclusion:
P(A) = 1 −

n∏
i=1

(1 − pi)
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Example: rolling dice (1)

Experiment:
Roll a pair of dice
Outcome: sum of faces

Event: We define
E = "5 appears before 7"

Question:
Compute P(E )
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Example: rolling dice (2)

Family of events: For n ≥ 1 set

En = no 5 or 7 on first n − 1 trials, then 5 on n-th trial

Relation between En and E : We have

E = 5 appears before 7 = ∪n≥1En
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Example: rolling dice (3)

Computation for P(En): by independence

P (En) =
(

1 − 10
36

)n−1 4
36 =

(13
18

)n−1 1
9

Computation for P(E ):

P(E ) =
∞∑

n=1
P (En) = 1

9
1

1 − 13
18

Thus
P(E ) = 2

5
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Same example with conditioning (1)

New events: We set
E = "5 appears before 7"
F5 = "1st trial gives 5"
F7 = "1st trial gives 7"
H = "1st trial gives an outcome ̸= 5,7"
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Same example with conditioning (2)

Conditional probabilities:

P (E | F5) = 1, P (E | F7) = 0, P (E | H) = P (E )

Justification: E ⊥⊥ H since

E H = H ∩ {Event which depends on i-th trials with i ≥ 2}
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Same example with conditioning (3)

Applying Proposition 7:

P (E ) = P (E | F5) P (F5) + P (E | F7) P (F7) + P (E | H) P (H) (3)

Computation: We get

P (E ) = 1
9 + 13

18 P (E ) ,

and thus
P(E ) = 2

5
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Problem of the points

Experiment:
Independent trials
For each trial, success with probability p

Question:
What is the probability that n successes occur before m failures?
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Pascal’s solution
Notation: set

An,m = "n successes occur before m failures", Pn,m = P (An,m)

Conditioning on 1st trial: Like in (3) we get

Pn,m = pPn−1,m + (1 − p)Pn,m−1 (4)

Initial conditions:

Pn,0 = pn, P0,m = (1 − p)m (5)

Strategy:
Solve difference equation (4) with initial condition (5)

Samy T. Conditional probability Probability Theory 83 / 84



Fermat’s solution

Expression for An,m: Write

An,m = "at least n successes in m + n − 1 trials"

Thus An,m = ∪m+n−1
k=n Ek,m,n with

Ek,m,n = "exactly k successes in m + n − 1 trials"

Expression for Pn,m: We get

Pn,m =
m+n−1∑

k=n

(
m + n − 1

k

)
pk (1 − p)m+n−1−k
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