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Weak law of large numbers

Consider
A sequence {Xi ; i ≥ 1} of i.i.d random variables
Write E[Xi ] = µ

Set
X̄n = 1

n

n∑
i=1

Xi

Then for any ε > 0 we have

lim
n→∞

P
(
|X̄n − µ| > ε

)
= 0

Theorem 1.
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DeMoivre-Laplace theorem (repeated)

Let
n ≥ 1, p ∈ (0, 1)
Xn ∼ Bin(n, p)
a < b

Then

lim
n→∞

P
(

a <
Xn − np

(np(1 − p))1/2 < b
)

= Φ(b) − Φ(a)

Theorem 2.
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Another way to write De Moivre’s theorem

Consider
A sequence {Yi ; i ≥ 1} of indep. B(p) random variables
We have E[Yi ] = p and Var(Yi) = p(1 − p) ≡ σ2

Set
Ȳn = 1

n

n∑
i=1

Yi

Then for any ε > 0 we have

lim
n→∞

P
(

a <
√

n
(

Ȳn − p
σ

)
< b

)
= Φ(b) − Φ(a)

Theorem 3.
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Central limit theorem

Consider
A sequence {Xi ; i ≥ 1} of i.i.d random variables
Write E[Xi ] = µ and Var(Xi) = σ2

Set
X̄n = 1

n

n∑
i=1

Xi

Then for any ε > 0 we have

lim
n→∞

P
(

a <
√

n
(

X̄n − µ

σ

)
< b

)
= Φ(b) − Φ(a)

Theorem 4.
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Problem 8.5 (1)

Situation: We have
Fifty numbers rounded off to the nearest integer and then
summed
The individual round-off errors are uniformly distributed over
(−0.5, 0.5)

Question:
Approximate the probability that the resultant sum differs from the
exact sum by more than 3.
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Problem 8.5 (2)

Model: Set

Xi ≡ i-th error

We wish to find
P
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ > 3
)

Law of Xi : We have
Xi ’s i.i.d
Xi ∼ U([−0.5, 0.5)
E[Xi ] = 0 , and Var(Xi) = σ2 = 1

12
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Problem 8.5 (3)

Application of CLT: Write

P
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ > 3
)

= P
(∣∣∣√n X̄n

∣∣∣ >
3√
50

)

= P
(∣∣∣∣∣√n X̄n

σ

∣∣∣∣∣ >
3
√

12√
50

)
CLT≃ P (|Z | > 1.47)
= .14
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Problem 8.14 (1)

Situation: We consider
A certain component, which is critical to the operation of an
electrical system and must be replaced immediately upon failure
For the critical component

Mean = 100 h, and Standard deviation = 30h

Question:
How many of these components must be in stock so that the
probability that the system is in continual operation for the next 2000
hours is at least .95?
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Problem 8.14 (2)

Model: Set

Xi ≡ lifespan of i-th component

We wish to find n minimal such that

P
( n∑

i=1
Xi > 2000

)
> .95

Law of Xi : We have
Xi ’s i.i.d
E[Xi ] ≡ µ = 100, and

√
Var(Xi) ≡ σ = 30
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Problem 8.14 (3)

Application of CLT: Write

P
( n∑

i=1
Xi > 2000

)
= P

(
X̄n >

2000
n

)

= P
√

n

(
X̄n − µ

)
σ

>
√

n

(
2000

n − 100
)

30


CLT≃ P

Z >
√

n

(
200
n − 10

)
3
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Problem 8.14 (4)
Reading the Gaussian table: Since

P (Z > −1.64) ≃ .95,

we are looking for a n minimal such that

√
n

(
200
n − 10

)
3 ≤ −1.64 (1)

Corresponding 2nd order equation: Setting
√

n = 1
x , we get

200x2 + 4.92x − 10 ≤ 0

This yields
n ≥ 23
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