
Cauchy-Schwarz inequality

Let X , Y → L
2(!). Then

E2[X Y |F ] ↭ E[X 2|F ] E[Y 2|F ] a.s.

Proposition 17.
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so that XYE ('(r) and thus
S

EIXY 1F] well defined



Proof

OEM
, K+OV20 a . s. Thus

(E[(X+0x*1F] 20 a . s )
True ?

We would like tolay

(E[(X +O Y/8320 FOEM) as



Define Ao = /ELE+OX IF) = 01

We know that P(Ao) =
1

We would like to have
uncountable 1 !

P) ELXOY IF] 20 fOl = 1

E Porto) = 1

What we can write instead is

Pato) = 1



220 a . ).> P(zz0) = 1

We get

(E[K+OX1 IF) 20 FOEQ) a . s
.

This means FOEQ
, (linearity of ET-1F])

ETX- 1F] 02 + 20 EIXX1F] + ETF) -0

By continuity of polynomial, the discriminant
of this polynomial must beJo . Thus

4) (E[XX1F])2 - 4 E[X5] E[X21F][0

=> (A[XXIFT)" ETXYE] EIX18] a.



Proof of Cauchy-Schwarz (1)

A family positive random variables:
For all ω → R, we have

E[(X + ωY )2|F ] ↭ 0 a.s.

Thus almost surely we have: for all ω → Q,

E[(X + ωY )2|F ] ↭ 0,
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Proof of Cauchy-Schwarz (2)

Expansion: For all ω → Q

E[Y 2|F ]ω2 + 2E[XY |F ]ω + E[X 2|F ] ↭ 0.

Recall: If a polynomial satisfies aω2 + bω + c ↭ 0 for all ω → Q
ε↑ then we have b

2 ↓ 4ac ↫ 0

Application: Almost surely, we have

E
2[XY |F ] ↓ E[X 2|F ]E[Y 2|F ] ↫ 0.
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Jensen’s inequality

Let X → L
1(!), and ϑ : R ↑ R such that ϑ(X ) → L

1(!) and
ϑ convex. Then

ϑ(E[X |F ]) ↫ E[ϑ(X )|F ] a.s.

Proposition 18.
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-

g : R- 1 convex : If <E (0,
1)

,
<,ER

dy(x) + Ax(y(x) = y(xx +(a(x)

Typical example of convex y :

Y(x1 = KIP
, p = /



Contraction in Lp(!)

The conditional expectation is a

contraction in L
p(!) for all p ↭ 1

Proposition 19.
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11 Ellical = (ELIZIPT (*

le 11 EIXIFJIRS & /IXILPCR)
or ELIEIXIFJIP] < EINIP]



ELIEIXIFJIP] < EINIP]Aim

Proof : By Jensen for y(x) = 1/P

E LIEIXIFJIPY - ESETIXIPIE]]
= E[(XIP]

(ECE[zIF]] = E[E3(



Proof of contraction in Lp

Application of Jensen’s inequality: We have

X → L
p(!) ↑ E[X |F ] → L

p(!)

and

|E[X |F ]|p ↓ E[|X |p|F ] =↑ E {|E[X |F ]|p} ↭ E[|X |p]
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Successive conditionings

Let
Two ω-algebras F1 ↔ F2.
X → L

1(!).
Then

E {E[X |F1]|F2} = E[X |F1] (2)
E {E[X |F2]|F1} = E[X |F1]. (3)

Theorem 20.
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If AEG ,
when At E



Illustration

1X F[x/F] =

E(E[X1G](F]

u
E[XIE]

* This picture is misleading .

F
.
E are not vector spaces



Proof ser z = E [X1f]
I

z= E[X1E2]

(1) We wish to prove ELEXIF]1E)
E[z , 1E] = z ,

= E[X1F]

We have been YEF-EIXIF] = Y

Here z = ElX18] is E-meas.

=> z, is E-meas

=> [[z, 18] = Z,



(2) We wish to see EIZzIF] = Z1

(E) E[XIE]1G] = E[x1FT)

We verify (i) and (ii) for Z:

(i) Z, EF, true line Z= EIX1G]

(ii) Take A , EF .
We have

> z, =E[X/F]
E[z , 1A

,

] = E[X11
,

]
II

#T z2 1A
,

JE ET X1A
.
]

Conclusion : E[z21f] = Z,



Proof

Proof of (2): We set Z → E[X |F1]. Then

Z ↑ F1 ↓ F2.

According to Example 1, we have E[Z |F2] = Z , i.e. (2).

Proof of (3): We set U = E[X |F2].
ω↔ We will show that E[U |F1] = Z , via (i) and (ii) of Definition 6.
(i) Z ↑ F1.
(ii) If A ↑ F1, we have A ↑ F1 ↓ F2, and thus

E[Z1A] = E[X1A] = E[U1A].
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Conditional expectation for products

Let X , Y ↑ L
2(!), such that X ↑ F . Then

E[X Y |F ] = X E[Y |F ].

Theorem 21.

Proof: We use a 4 steps methodology
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Recipe for ET. 1F] :· freeze what you know
· average what you don't know

(1) X = indicator

(2) X = linear combination of indicators

3) X0
,

Xn *X

(4) X with arbitrary sign



Proof (1) X = Ai with BEF.

claim: Z = AB ElXIF] is c.U.

z= E[1Y If]

Indeed (i) ZEF
,

as product of r.v- inf

(ii) Take AEF. Then

E[z1A] = El 1B E[XIf] 1A]

= El ElXIF] 13 = ElY 1A1B]

= El ABY 1A J = ETXY 1A]



conclusion : We have seen

Elz 1AJ = EIXY 1AJ FAEE

Thus Z = AB ETXIF] is also

ETXX1F]

(2) Take B
. .... Bu E F

C. . .., Xn ERR

Claim : EE(C1B) Y IF]

=: B: ElY 1F]



Proof of claim

EE(C : 1B:) Y 1F]

= E[: 1:
/ 1F]

linearity &2
: ET 1B

:
Y 1F]=

i=1

M

credi 1B ElY1F]



Step 3 Take X
,
Y = 0.

Then 5(Xin21] such that
each Xn = zx: 13: and

XnXX 9. ) .

Thus Fu

E[XnY /FT = Xu ElY1f]
Beppo-Levi ↓ ne un-

for ET. 1F]

ETXX 1F] = X ElX/F]



Proof

Step 1: Assume X = 1B, with B → F
We check (i) and (ii) of Definition 6.
(i) We have 1BE[Y |F ] → F .
(ii) For A → F , we have

E {(1BE[Y |F ]) 1A} = E {E[Y |F ] 1A→B}
= E[Y 1A→B]
= E[(1BY ) 1A],

and thus
1B E[Y |F ] = E[1B Y |F ].
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Proof (2)
Step 2: If X is of the form

X =
∑

i↭n

ωi1Bi
,

with ωi → R and Bi → F , then, by linearity we also get

E[XY |F ] = X E[Y |F ].

Step 3: If X , Y ↫ 0
ε↑ There exists a sequence {Xn; n ↫ 1} of simple random variables
such that

Xn ↓ X .

Then applying the monotone convergence we end up with:

E[XY |F ] = X E[Y |F ].
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Proof (3)

Step 4: General case X → L
2

ε↑ Decompose X = X
+ ↔ X

↑ and Y = Y
+ ↔ Y

↑, which gives

E[XY |F ] = XE[Y |F ]

by linearity.
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