

・ 何 ト ・ ヨ ト ・ ヨ ト

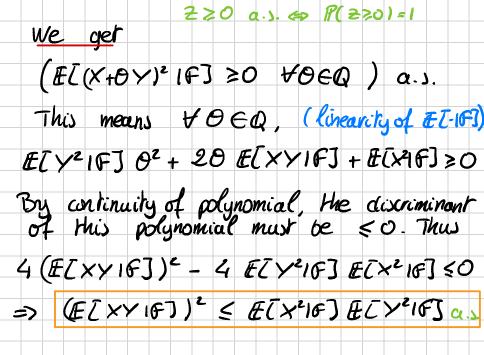
∀OER, (XtOY)² ≥O a.s. Thus

$\left(E\left[(X+OY)^2 | F \right] \ge O \quad a.s \right)$

we would like to say True?

(E[(×+0)²16] ≥0 ∀0ER) a.s.

Refine A₀ = (EL(×+0Y)²IF] ≥0) We know that $P(A_{\Theta}) = 1$ We would like to have 7 un countable 1! P(EI(X+0Y)(F] >0 40) = 1 $\Rightarrow \mathbb{P}(\mathcal{O}_{\mathcal{O}\in\mathbb{R}}A_{\mathcal{O}}) = 1$ What we can write instead is $P(\Lambda A_{\theta}) = 1$



Proof of Cauchy-Schwarz (1)

A family positive random variables: For all $\theta \in \mathbb{R}$, we have

$$\mathbf{E}[(X+\theta Y)^2|\mathcal{F}] \ge 0 \quad \text{a.s.}$$

Thus almost surely we have: for all $\theta \in \mathbb{Q}$,

 $\mathbf{E}[(X+\theta Y)^2|\mathcal{F}] \ge 0,$

< A

Proof of Cauchy-Schwarz (2)

Expansion: For all $\theta \in \mathbb{Q}$

$$\mathbf{E}[Y^2|\mathcal{F}]\theta^2 + 2\mathbf{E}[XY|\mathcal{F}]\theta + \mathbf{E}[X^2|\mathcal{F}] \ge 0.$$

Recall: If a polynomial satisfies $a\theta^2 + b\theta + c \ge 0$ for all $\theta \in \mathbb{Q}$ \hookrightarrow then we have $b^2 - 4ac \le 0$

Application: Almost surely, we have

 $E^{2}[XY|\mathcal{F}] - \mathbf{E}[X^{2}|\mathcal{F}]\mathbf{E}[Y^{2}|\mathcal{F}] \leqslant 0.$

4 1 1 1 4 1 1 1

Jensen's inequality

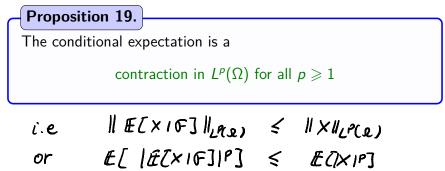
$$\varphi: \mathbb{R} \to \mathbb{R}$$
 and: $\mathcal{I}_{f} \ll \mathcal{E}(Q_{i}), x_{i}, x_{e} \in \mathbb{R}$
 $\propto \varphi(x_{e})_{f} (f \propto) \varphi(x_{e}) \geq \varphi(\alpha x_{e} + (f \propto) x_{e})$

Proposition 18. Let $X \in L^1(\Omega)$, and $\varphi : \mathbb{R} \to \mathbb{R}$ such that $\varphi(X) \in L^1(\Omega)$ and φ convex. Then

 $\varphi(\mathbf{E}[X|\mathcal{F}]) \leqslant \mathbf{E}[\varphi(X)|\mathcal{F}]$ a.s.

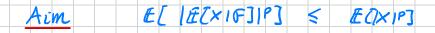
Typical example of convex
$$\varphi$$
:
 $\varphi(z) = |z|^p, p \ge 1$

Contraction in $L^p(\Omega)$ $\|2\|_{L^{(2)}} = (E[121P])^{(2)}$



or

< □ > < □ > < □ > < □ > < □ > < □ >



Prost, By Jenen for g[21=121P

E { [E[× IF]] } < E { E [IXIPIF] }

= E[IXIP]

 $E \langle E[2|F] \rangle = E[2])$

Proof of contraction in L^p

Application of Jensen's inequality: We have

$$X\in L^p(\Omega)\Rightarrow {\sf E}[X|{\mathcal F}]\in L^p(\Omega)$$

and

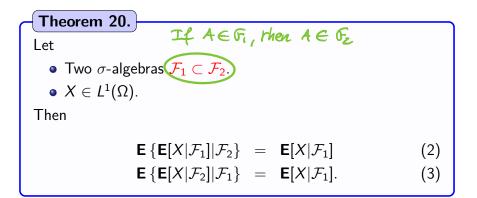
 $|\mathbf{E}[X|\mathcal{F}]|^{\rho} \leq \mathbf{E}[|X|^{\rho}|\mathcal{F}] \implies \mathbf{E}\{|\mathbf{E}[X|\mathcal{F}]|^{\rho}\} \leqslant \mathbf{E}[|X|^{\rho}]$

э

3 × < 3 ×

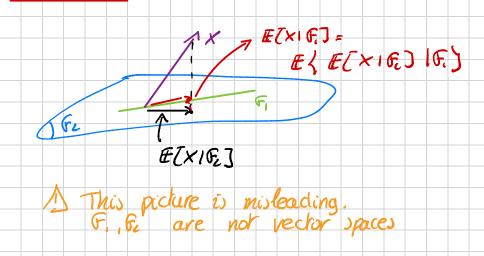
< A

Successive conditionings



< □ > < □ > < □ > < □ > < □ > < □ >

Illustration



Proof Set Z. = E[XIF] ZI = E[XIF]

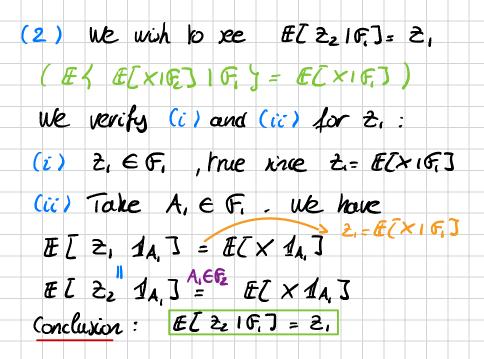
(1) We with to prove $E \left\{ E(x, F, J) \in J \right\}$ $E \left[Z, I \in J \right] = Z_{1} = E \left[x, F, J \right]$

We have ren YEF => E[YIF] = Y

Here $z_1 = E[x | G_1]$ is $G_1 - meas$.

=> Z, is Fz-meas.

=> E[Z, (G] = Z,



Proof

Proof of (2): We set $Z \equiv \mathbf{E}[X|\mathcal{F}_1]$. Then

$$Z \in \mathcal{F}_1 \subset \mathcal{F}_2.$$

According to Example 1, we have $\mathbf{E}[Z|\mathcal{F}_2] = Z$, i.e. (2).

Proof of (3): We set $U = \mathbf{E}[X|\mathcal{F}_2]$. \hookrightarrow We will show that $\mathbf{E}[U|\mathcal{F}_1] = Z$, via (i) and (ii) of Definition 6. (i) $Z \in \mathcal{F}_1$. (ii) If $A \in \mathcal{F}_1$, we have $A \in \mathcal{F}_1 \subset \mathcal{F}_2$, and thus $\mathbf{E}[Z\mathbf{1}_A] = \mathbf{E}[X\mathbf{1}_A] = \mathbf{E}[U\mathbf{1}_A].$

Conditional expectation for products <u>Recipe for E[·1F]</u>: freeze what you know · average what you don't know

Theorem 21. Let $X, Y \in L^2(\Omega)$, such that $X \in \mathcal{F}$. Then $\mathbf{E}[X Y | \mathcal{F}] = X \mathbf{E}[Y | \mathcal{F}].$

Proof: We use a 4 steps methodology (1) X = indicator (2) X = linear combination of indicators (3) X=0, Xn ZX (4) X with arbitrary sign

Proof (1) X = 13 with BEF.

(lain: Z = 13 E[YIF] is s.t.

Z= E[1BYIF]

Indeed (i) ZEF, as product of r.v. in F

(ii) Take AEF. Then

E[Z 1A] = E[1B E[YIF] 1A]

= EL ELYIFJ 1ANB] = ELY 1ANB]

 $= E I \mathbf{1}_{\mathbf{B}} \mathbf{Y} \mathbf{1}_{\mathbf{A}} \mathbf{J} = E [\mathbf{X} \mathbf{Y} \mathbf{1}_{\mathbf{A}}]$

Conclusion: We have seen

E[2 1A] = E[XY 1A] VACE Thus Z = 1B ELYIFT is also ELXYIEJ (2) Take B_{i_1, \dots, i_n} $B_n \in F$ $\alpha_{i_1, \dots, i_n} \in \mathbb{R}$ Claim: $EE(2 a_i 1 a_i) \vee IFJ$ $= \left(\sum_{i=1}^{n} \alpha_i \ \mathbf{1}_{B_i} \right) E[\gamma_1 G]$

Prast of claim $EC(2a; 18:) \times 163$ $= E\left[\sum_{i=1}^{n} (\alpha_i \ \mathbf{1}_{\mathbf{2}_i} \ \mathbf{Y}) \ \mathbf{1} \mathbf{F}\right]$ linearity $\sum_{i=1}^{n} \alpha_i \ E\left[\mathbf{1}_{\mathbf{2}_i} \ \mathbf{Y} \ \mathbf{1} \mathbf{F}\right]$ $(\hat{z} \alpha; \mathbf{1}_{B_i}) \in [\forall i \in]$

Step 3 Take X, Y > O. Then $\exists \{X_n : n \ge 1\}$ such that each $X_n = \sum \alpha : 1_B$; and Xn 7 X a.s. Thus Yn E[Xn YIF] = Xn E[YIF] Beppo-levi for EC IFJ ECXYIFJ |*n->-*⊃ X ELYIG] =

Proof

Step 1: Assume $X = \mathbf{1}_B$, with $B \in \mathcal{F}$ We check (i) and (ii) of Definition 6. (i) We have $\mathbf{1}_B \mathbf{E}[Y|\mathcal{F}] \in \mathcal{F}$. (ii) For $A \in \mathcal{F}$, we have

and thus

$$\mathbf{1}_B \, \mathbf{\mathsf{E}}[Y|\mathcal{F}] = \mathbf{\mathsf{E}}[\mathbf{1}_B \, Y|\mathcal{F}].$$

э

74 / 93

A B b A B b

Proof (2) Step 2: If X is of the form

$$X=\sum_{i\leqslant n}\alpha_i\mathbf{1}_{B_i},$$

with $\alpha_i \in \mathbb{R}$ and $B_i \in \mathcal{F}$, then, by linearity we also get $\mathbf{E}[XY|\mathcal{F}] = X \mathbf{E}[Y|\mathcal{F}].$

Step 3: If $X, Y \ge 0$ \hookrightarrow There exists a sequence $\{X_n; n \ge 1\}$ of simple random variables such that

 $X_n \nearrow X$.

Then applying the monotone convergence we end up with:

$$\mathbf{E}[XY|\mathcal{F}] = X \, \mathbf{E}[Y|\mathcal{F}].$$

75 / 93

< 口 > < 同 > < 三 > < 三 > 、

Proof (3)

Step 4: General case $X \in L^2$

 \hookrightarrow Decompose $X = X^+ - X^-$ and $Y = Y^+ - Y^-$, which gives

 $\mathbf{E}[XY|\mathcal{F}] = X\mathbf{E}[Y|\mathcal{F}]$

by linearity.

- 20

イロト 不得 トイヨト イヨト