
Rmk In general
E

* ↓ decorrelated * XIX

i.e if XY are centered

E[X] =0 * X1V

However if E,%) is a Gauss . Vector

*Y decorrelated => XIY



Another way to state this property :

#,Y) has a covariance matrix
which is diagonal If #,v) Crauss

rector
=> XIV

V(X) E[XX]
cor(X

,
) =

E[X] VCX



Example of IX, X) with

EX VT =0
,
Our XX

Take

XN(0
,
1) ELX Ple= Ill=

Y= EX
He

Then E[XY] : ELEX]

= ETE] ETX] = 0

But X#V- check
PLEA

, VEB)

# P(XEA) IP(YEB)



Back to our example : We have
seen that

E[X-(V) V = 0 (decorrelation )

In addition (X-xY
,
Y) is

a Gauss . Vector

Thus (X-aY) 1V

=> (x-xY) + 4(x)

=> E[( -<Y) 4 (X17 : 0 Hyp: (Y/E<

=> xV = EIX1V]



Rmk

If X,Y are centered
,
XIY

,
then

EIXY] ! EIX] EIV = O



Proof
Step 1: We look for ω such that

Z = X → ωY =↑ Z ↓↓ Y .

Recall: If (Z , Y ) is a Gaussian vector
ε↔ Z ↓↓ Y i! cov(Z , Y ) = 0

Application: cov(Z , Y ) = E[Z Y ]. Thus

cov(Z , Y ) = E[(X → ωY ) Y ] = E[X Y ] → ωV (Y ),

et
cov(Z , Y ) = 0 i! ω = E[XY ]

V (Y ) .
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Proof (2)

Step 2: We invoke (i) in the definition of ϑ.
ε↔ Let V ↗ L

2(ϖ(Y )). Then

Y ↓↓ (X → ωY ) =↑ V ↓↓ (X → ωY )

and
E[(X → ωY ) V ] = E[X → ωY ] E[V ] = 0.

Thus
ωY = ϑω(Y )(X ) = E[X | Y ].
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Aim of this section

Recall: We have seen that if
X ↘ P(ϱ1), Y ↘ P(ϱ2)
X ↓↓ Y

p = ε1
ε1+ε2

,

then

L (X | X + Y = n) = Bin(n, p)

Question:
How to translate this
ε↔ to the non-baby conditional expectation language?
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Rmk In the Poisson case
S

2) (X(x+y =n)= Bin(n
,p)

rantation 2(X1S) = Bin (S(w)
, pl

2 Problems

(i) We have computed E[y(x) 15]

- Find a way to go from EtoL

(ii) What is a random probability
measure ?
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Characterizing r.v by expected values

Notation:
Cb(R) → set of continuous and bounded functions on R.

Let X be a r.v. We assume that

E[ω(X )] =
∫

R
ω(x) f (x) dx , for all functions ω ↑ Cb(R).

Then X is continuous, with density f .

Theorem 25.
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Here
,
we characterize 2(X) through

GE[y(717 ; yEC(R)]



Application: change of variable

Problem: Let
X random variable with density f .
Set Y = h(X ) with h : R ↓ R.

We wish to find the density of Y .
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Standard method: M(Y(y) = P(h(x)(y)
-> we get the colf of X (FX)

1 then Ar = FY



Application: change of variable (2)

Recipe: One proceeds as follows
1 For ω ↑ Cb(R), write

E[ω(Y )] = E[ω(h(X ))] =
∫

R
ω(h(x)) f (x) dx .

2 Change variables y = h(x) in the integral.
After some elementary computations we get

E[ω(Y )] =
∫

R
ω(y) g(y) dy .

3 This characterizes Y , which admits a density g
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Y= h(x)
X has density f

- Y



Example: normal r.v and linear transformations

Let
X ↔ N (0, 1)
µ ↑ R and ε > 0
Set Y = εX + µ

Then
Y ↔ N (µ, ε2)

Proposition 26.
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Proof X-Wall
,
V= +x+M.

Take ye (6(1) .

Then

E[y(X)] = E[y(rx+u)]

=Iny(rx +u) ech
⑰

CV: y = +x +M = x=M(x= %
-Y-12

= Inyly) e err dy Yut((i)
Eth

=> density of X: e
,
o



Proof

Recipe, item 1: for ω → Cb(R), write

E[ω(Y )] = E[ω(εX + µ)] =
∫

R
ω(εx + µ) e

→x
2/2

↑
2ϑ

dx .

Recipe, item 2: Change of variable: y = εx + µ:

E[ω(Y )] =
∫

R
ω(y) g(y) dx , with g(y) = e

→(y→µ)2/(2ω2)
↑

2ϑε2
.

Recipe, item 3:
Y is continuous with density g , therefore Y ↓ N (µ, ε2).
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Characterizing r.v by expected values (ctd)

Let X : ! ↔ R be a r.v. Then

{E[ω(X )]; ω → Cb(R)} characterizes the law of X

Theorem 27.
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[E[ eiux] ; HERR]
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CRL

Let
(!, F , P) a probability space
(S, S) a measurable space of the form Rd ,Zd

X : (!, F) ↔ (S, S) a random variable in L
1(!)

G a ε-algebra such that G ↗ F .
We say that µ : ! ↘ S ↔ [0, 1] is a Conditional regular law of
X given G if
(i) For all f → Cb(S), the map ϖ ≃↔ µ(ϖ, f ) is a random

variable, equal to E[f (X )| G] a.s.
(ii) ϖ-a.s. f ≃↔ µ(ϖ, f ) is a probability measure on (S, S).

Definition 28.
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Discrete example

Poisson law case: Let
X ⊋ P(ϱ) and Y ⊋ P(µ)
X ⇐⇐ Y

We set S = X + Y .
Then

CRL of X given S is Bin(S, p), with p = ε
ε+µ
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Proof : We know that

2(X1S = n) = Bin(n, p)

We have also seen (for yEG(IR)

E[y(x)1S] g = r(s)

= (i) pR(-p)5
k

Claim 1 : (i) in the definition is
satisfied , it for a fixed u,

E[y(11S] is a r.V .



Si > i measurableJustification
wr S(w)

E[y(x)1S]

= (i) pR(-p)5
k

= (2) PRA-p /192k)
-

polynomial exp indicator

in S function function

~ This is a nv (measurable (



Justification of (ii) . If we fix w,
we have what

S= X+V-P(d, +bz)
S(w) EIN

and (2(X1S)] (w)

is Bin (Slws
,
p)

This is a probability distribution
Conclusion : we can writecafely
2(X(S) = Bin(5

, p)



Proof for the discrete example

Proof: we have seen that for n ↭ m

P(X = n|S = m) =
(

m

n

)

p
n (1 → p)m→n with p = ω

ω + µ
.

Then we consider
State space = N, G = ε(S)

and we verify that these conditional probabilities define a CRL.
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