Rmk In general X, Y decorrelated => X 11 Y

ie if X Y are centered

E(XY]=O 🛪 × UY

However if (X, Y) is a Gauss vector

X, Y decorrelated => X ILY

Another way to state this property: (X,Y) has a covariance matrix which is diagonal T Gauss => X T X $cor(x, Y) = \begin{pmatrix} V(x) & E\bar{c} \times Y \\ E\bar{c} \times Y \end{pmatrix} \quad V(Y).$

Y= EX

Then ELXY] = ELEX2]

 $= E[E] E[X^2] = 0$

But XXY-> check P(XEA, YEB) = P(XEA) P(YEB)

Back to our example: we have een that E[(X-xY)Y] = O (decorrelation) In addition (X-xY,Y) is a Grauss. rector Thus (X-aY) IL Y \Rightarrow $(X - \alpha Y) \perp \psi(Y)$ E[(x-xY) y(Y)]= O Kyp: y(Y) EL => aY = EZXIY] =>

RmK

If X, Y are centered, XIY, then

E[XY] = E[X] E[Y] = O

Proof

Step 1: We look for α such that

$$Z = X - \alpha Y \quad \Longrightarrow \quad Z \perp\!\!\!\perp Y.$$

Recall: If (Z, Y) is a Gaussian vector $\hookrightarrow Z \perp \perp Y$ iff $\operatorname{cov}(Z, Y) = 0$

Application: $cov(Z, Y) = \mathbf{E}[Z Y]$. Thus

$$\operatorname{cov}(Z, Y) = \operatorname{\mathsf{E}}[(X - \alpha Y) Y] = \operatorname{\mathsf{E}}[X Y] - \alpha V(Y),$$

et

$$\operatorname{cov}(Z, Y) = 0$$
 iff $\alpha = \frac{\mathsf{E}[XY]}{V(Y)}$.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Proof (2)

Step 2: We invoke (i) in the definition of π . \hookrightarrow Let $V \in L^2(\sigma(Y))$. Then

$$Y \perp\!\!\!\perp (X - \alpha Y) \implies V \perp\!\!\!\perp (X - \alpha Y)$$

and

$$\mathbf{E}[(X - \alpha Y) V] = \mathbf{E}[X - \alpha Y] \mathbf{E}[V] = 0.$$

Thus

$$\alpha Y = \pi_{\sigma(Y)}(X) = \mathbf{E}[X|Y].$$

э

A B b A B b

< □ > < 同 >

Outline

Definitio

- Baby conditional distributions: discrete case
- Baby conditional distributions: continuous case
- Definition with measure theory
- 2 Examples
- 3 Existence and uniqueness
- 4 Conditional expectation: properties
- 5 Conditional expectation as a projection

6 Conditional regular laws

- Probability laws and expectations
- Definition of the CRL

Aim of this section

Recall: We have seen that if

• $X \sim \mathcal{P}(\lambda_1), Y \sim \mathcal{P}(\lambda_2)$ • $X \perp Y$ • $p=rac{\lambda_1}{\lambda_1+\lambda_2}$,

then

$$\mathcal{L}(X|X+Y=n)=\mathrm{Bin}(n,p)$$

Question: How to translate this \hookrightarrow to the non-baby conditional expectation language?

э

RML In the Poisson case $\mathcal{L}(X | X + Y = n) = Bin(n, p)$ tranlation d(XIS) = Bin (S(w), p) 2 Problems (i) We have computed EL q(x) IS] -> Find a way to go from E to L (ii) what is a random probability measure?

Outline

Definitio

- Baby conditional distributions: discrete case
- Baby conditional distributions: continuous case
- Definition with measure theory
- 2 Examples
- 3 Existence and uniqueness
- 4 Conditional expectation: properties
- 5 Conditional expectation as a projection
- 6 Conditional regular laws
 - Probability laws and expectations
 - Definition of the CRL

Characterizing r.v by expected values

Notation:

 $C_b(\mathbb{R}) \equiv$ set of continuous and bounded functions on \mathbb{R} .

Theorem 25.

Let X be a r.v. We assume that

 $\mathbf{E}[\varphi(X)] = \int_{\mathbb{R}} \varphi(x) f(x) dx$, for all functions $\varphi \in C_b(\mathbb{R})$.

Then X is continuous, with density f.

Application: change of variable Shandard method: $P(Y \leq y) = P(h(x) \leq y)$ \rightarrow we get the cdf of $Y(F_Y)$ f then $f_Y = F'_Y$

Problem: Let

• X random variable with density f.

• Set
$$Y = h(X)$$
 with $h : \mathbb{R} \to \mathbb{R}$.

We wish to find the density of Y.

Application: change of variable (2)

$$Y = h(x)$$

x has density f

Recipe: One proceeds as follows • For $\varphi \in C_b(\mathbb{R})$, write

$$\mathsf{E}[\varphi(Y)] = \mathsf{E}[\varphi(h(X))] = \int_{\mathbb{R}} \varphi(\underbrace{h(x)}_{= \mathcal{Y}}) f(x) \, dx.$$

2 Change variables y = h(x) in the integral. After some elementary computations we get

$$\mathsf{E}[\varphi(Y)] = \int_{\mathbb{R}} \varphi(y) \, g(y) \, dy.$$

This characterizes Y, which admits a density g

Example: normal r.v and linear transformations

Proposition 26.

Let

•
$$X \sim \mathcal{N}(0,1)$$

•
$$\mu \in \mathbb{R}$$
 and $\sigma > 0$

• Set
$$Y = \sigma X + \mu$$

Then

 $Y \sim \mathcal{N}(\mu, \sigma^2)$

~	_
500014	
. Januv	

- (日)

Proof XNW(0,1), Y= JX+M. Take y E G(R). Then $E[\varphi(Y)] = E[\varphi(\sigma X + \mu)]$ $= \int_{\Pi} \psi(\sigma x + \mu) \frac{e^{-x^{2}}}{e^{2}} dx$ VZT $x = \frac{y - \mu}{y} dx = \frac{dy}{y}$ CV: Y= TX+11 => = Jn (y) e 202 dy $\forall \varphi \in G(\mathbb{R})$ \Rightarrow density of Y: e 202 $\frac{\mathcal{C} - \frac{\mathcal{U} - \mathcal{U}}{2\sigma^2}}{(2\pi\sigma^2)^2} = \frac{\mathcal{V}}{\mathcal{V}}(\mathcal{U}, \sigma^2)$

Proof

Recipe, item 1: for $\varphi \in C_b(\mathbb{R})$, write

$$\mathbf{E}[\varphi(Y)] = \mathbf{E}[\varphi(\sigma X + \mu)] = \int_{\mathbb{R}} \varphi(\sigma x + \mu) \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx.$$

Recipe, item 2: Change of variable: $y = \sigma x + \mu$:

$$\mathsf{E}[\varphi(Y)] = \int_{\mathbb{R}} \varphi(y) g(y) dx, \quad \text{with} \quad g(y) = \frac{e^{-(y-\mu)^2/(2\sigma^2)}}{\sqrt{2\pi\sigma^2}}.$$

Recipe, item 3: *Y* is continuous with density *g*, therefore $Y \sim \mathcal{N}(\mu, \sigma^2)$.

< < >>

Characterizing r.v by expected values (ctd)

Theorem 27. Let $X : \Omega \to \mathbb{R}$ be a r.v. Then $\{\mathbf{E}[\varphi(X)]; \varphi \in C_b(\mathbb{R})\}$ characterizes the law of X

94 / 104

Outline

Definitio

- Baby conditional distributions: discrete case
- Baby conditional distributions: continuous case
- Definition with measure theory
- 2 Examples
- 3 Existence and uniqueness
- 4 Conditional expectation: properties
- 5 Conditional expectation as a projection

6 Conditional regular laws

- Probability laws and expectations
- Definition of the CRL

95 / 104

CRL

Definition 28.

Let

- (Ω, \mathcal{F}, P) a probability space
- (S,S) a measurable space of the form $\mathbb{R}^d, \mathbb{Z}^d$
- $X: (\Omega, \mathcal{F})
 ightarrow (S, \mathcal{S})$ a random variable in $L^1(\Omega)$
- \mathcal{G} a σ -algebra such that $\mathcal{G} \subset \mathcal{F}$.

We say that $\mu: \Omega \times S \to [0,1]$ is a Conditional regular law of X given G if

(i) For all $f \in C_b(S)$, the map $\omega \mapsto \mu(\omega, f)$ is a random variable, equal to $\mathbf{E}[f(X)|\mathcal{G}]$ a.s.

(ii) ω -a.s. $f \mapsto \mu(\omega, f)$ is a probability measure on (S, S).

Discrete example

Poisson law case: Let

• $X \sim \mathcal{P}(\lambda)$ and $Y \sim \mathcal{P}(\mu)$ • $X \parallel Y$

We set S = X + Y.

Then

CRL of X given S is Bin(S, p), with $p = \frac{\lambda}{\lambda + \mu}$

3

Proof: We know that

 $\mathcal{L}(X | S = n) = Bin(n, p)$

We have also seen (for yEG(R))

(lain 1: (i) in the definition is satisfied, ie for a fixed le,

E[q(x)15] is a r.v.

This is a r.v (measurable)

Proof for the discrete example

Proof: we have seen that for $n \leq m$

$$\mathbf{P}(X=n|S=m)=\binom{m}{n}p^n(1-p)^{m-n}$$
 with $p=rac{\lambda}{\lambda+\mu}$.

Then we consider

• State space
$$\,=\,\mathbb{N}$$
, $\mathcal{G}=\sigma(\mathcal{S})$

and we verify that these conditional probabilities define a CRL.

98 / 104