Outline

Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

98 / 118

< □ > < □ > < □ > < □ > < □ > < □ >

Right inverse (1)

Definition 27.

Let $F: \mathbb{R} \to [0,1]$ continuous cdf We define the right inverse F^{-1} as

$$\mathcal{F}^{-1}:(0,1) o\mathbb{R},\quad y\mapsto \inf\left\{a\in\mathbb{R};\ \mathcal{F}(a)\geq y
ight\}$$

A B A A B A

< (T) >

Right inverse (2)

Remarks on right inverse:

(i) If F is strictly increasing, F^{-1} is the inverse of F \hookrightarrow i.e. $F \circ F^{-1} = F^{-1} \circ F = Id$

(ii) Graphical method to construct F^{-1} :

- Symmetry wrt diagonal
- 2 Then erase vertical parts

Example:
$$F(x) = (x - 1)\mathbf{1}_{[1,2)}(x) + \mathbf{1}_{[2,\infty)}(x)$$

 $\hookrightarrow F^{-1}(y) = (1 + y)\mathbf{1}_{(0,1)}(y)$

э.

Right inverse (3)

More remarks:

(iii) Interpretation:

- In above example, $F \equiv \text{cdf of } \mathcal{U}([1,2])$
- Domain of interest: $x \in [1, 2]$
- In this domain, we do have $F^{-1}(F(x)) = x$

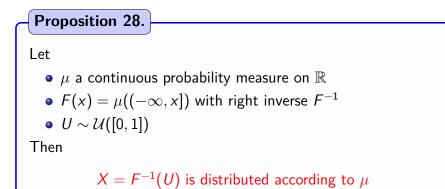
(iv) Generalization:

If $\mu(dx) = f(x) dx$ with $\operatorname{Supp}(f) = [a, b]$, then

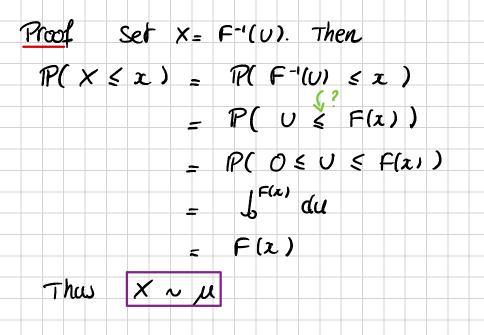
- F is strictly increasing on [a, b]
- $F:(a,b) \rightarrow (0,1)$ is invertible
- One can ignore the set $(a, b)^c$ in order to compute F^{-1}

(x; 1(x)>01

Inverse method for simulation



102 / 118



$\mathbb{P}(F^{-1}(U) \leq z) \leq \mathbb{P}(U \leq F(z))$ One can prove a stronger result: $\{u \in IQiD; F^{-1}(u) \leq z\} = A_i$ = $\zeta u \in \mathcal{O}(\mathcal{D}); u \in F(z)$ = A_2 <u>∧</u> F(a) $A_1 \subset A_2$: $F'(u) \in x \implies inf(a; F(a) \ge u) \le x$ => 3 a, <2 st. F(a,) >U \Rightarrow F(z) \geq F(a,) \geq U \Rightarrow F(z) \geq U

 $4 u \in t_{0}$; $F^{-1}(u) \leq z \leq A_{1}$ = $\lambda u \in to_i$; $u \in F(x) \in A_2$ $A_2 \subset A_1$: $u \leq F(x) \Rightarrow F(x) \geq u$

$\Rightarrow in \{ \{ a \} \in F(a) \geq u \} \leq x$ $\Rightarrow F'(u) \leq z$

Conclusion: F'(U) < z => U S F(z) We can also prove F'(U) > z => U > F(z) Proof of Proposition 28 (1)

Strategy: We will prove that

$$\begin{aligned} \mathbf{P}(X \leq x) &= \mathbf{P}(F^{-1}(U) \leq x) \\ &\stackrel{(*)}{=} \mathbf{P}(U \leq F(x)) = F(x) \end{aligned}$$

2

イロト イヨト イヨト イヨト

Details for (*)

We wish to show that for $x \in \mathbb{R}$,

$$\left\{ u \in (0,1); \ F^{-1}(u) \le x \right\} = \left\{ u \in (0,1); \ u \le F(x) \right\}$$

Inclusion \subset :

$$F^{-1}(u) \le x \implies \inf \{a; F(a) \ge u\} \le x$$

$$\implies \text{ There exists } a_1 \le x \text{ such that } F(a_1) \ge u$$

$$\implies F(x) \ge F(a_1) \ge u$$

Inclusion \supset :

$$u \le F(x) \Rightarrow F(x) \ge u$$

 $\Rightarrow \inf \{a; F(a) \ge u\} \le x$
 $\Rightarrow F^{-1}(u) \le x$

A B A A B A

Image: A matrix

э

Example: $\mu = \mathcal{U}([a, 6])$

 $f(x) = \frac{1}{p-q} \mathbf{1}_{[q,6]}(x)$

 $\frac{x-a}{b-a} = \int f(r) dr$ => On [a,6], F(x)=

=> On [a,6]

 $F(x) = y = \frac{x-a}{b-a} = y$ \iff x = a + (b - a)y = F'(y)

=> If U~ U([0,1]) and

X= a+ (b-a) => X~ U([a,67)

Example 2 Exponential (1), density $f(x) = \lambda e^{-\lambda z} 1_{[0,\infty)}(x)$ $If x \in [0,\infty)$, $F(x) = \int_{a}^{x} \lambda e^{-\lambda r} dr = 1 - e^{-\lambda z}$ $F(x) = y \in 1 - e^{-\lambda x} = y$ $e^{-4x} = 1 - y = x = -\frac{1}{4} ln(1 - y)$ \Rightarrow If $U \sim U(TO, I)$, and $X = -\frac{1}{2} ln(1-U)$ we have XNE(1)

Examples

Example 1: Let $\mu = \mathcal{U}([a, b])$. Then on [a, b]

$$F(x)=rac{x-a}{b-a}, \quad ext{and} \quad F^{-1}(y)=a+(b-a)y$$

One can check that $X = a + (b - a)U \sim \mathcal{U}([a, b])$

Example 2: Let $\mu = \mathcal{E}(\lambda)$. Then on \mathbb{R}_+

$$F(x) = \int_0^x \lambda e^{-\lambda u} du = 1 - e^{-\lambda x}$$
, and $F^{-1}(y) = -\frac{\ln(1-y)}{\lambda}$

One can check that $X = -\frac{\ln(1-U)}{\lambda} \sim \mathcal{E}(\lambda)$

< □ > < @ >

3

Comments on inverse method

Pros:

- Unique call to rand
- Excellent simulation method ... when it works!

Cons:

- Explicit computation of F, F^{-1} not always possible
- Typical example: $\mathcal{N}(0,1)$

Examples of application:

Exponential, Weibull, Cauchy

Outline

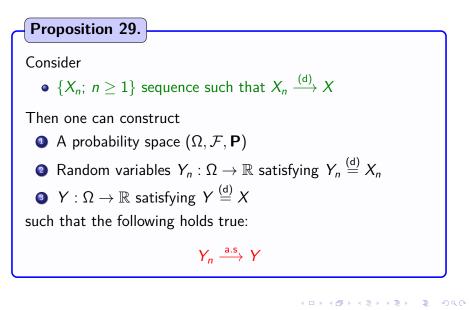
Introduction

- 1.1 Basic probability structures
- 1.2 Buffon's needle
- 1.3 Convergence of functions

2 Modes of convergence

- 2.1 Reviewing the modes of convergence
- 2.2 Results for P and L^p convergences
- 2.3 Results for almost sure convergence
- 2.4 Cases of inverse relations for modes of convergence
- 2.5 Inverse method for simulation
- 2.6 Results for convergence in distribution

Skorohod's representation theorem



Lebesque measure

Proof we take

$\mathcal{L} = [O_1]$, $\mathcal{F} = \mathcal{B}(TO_1)$, $\mathcal{P} = \lambda$

> canonical space for U(TO,17)

Recall: Each Xn has a colf Fn X has a colf F

$Y_n(\omega) = F_n^{-1}(\omega) \sim X_n$

 $Y(\omega) = F'(\omega) \sim X$

Claim: If w is a point of continuity of F-1, then $\lim_{n\to\infty} Y_n(\omega) = \lim_{n\to\infty} F_n^{-1}(\omega)$ $= F^{-1}(\omega) = Y(\omega)$ ist step of proof. Take w E TO, i) $\mathcal{M}\omega$ = \mathcal{L} = $\mathcal{M}\omega$ = $\mathcal{M}\omega$ > x st. x paint of continuity of F $F^{-1}(\omega) > \chi \Rightarrow \omega > F(\chi) \Rightarrow F(\chi) < \omega$ => $F_n(x) < \omega$ for n large => $z < F_n^{-1}(\omega)$

Summary For n large enough

 $\mathcal{M}\omega$ - $\mathcal{E} < \mathcal{L} < F_n'(\omega) = \mathcal{Y}_n(\omega)$

 $\Rightarrow \qquad \text{liminf } Y_n(\omega) \geqslant Y(\omega) - \varepsilon \quad \forall \quad \varepsilon > 0$

 \Rightarrow liminf $Y_n(\omega) \ge Y(\omega)$

F is 7 => F has at most a cauntable # of points of discontinuity

Summary 2 We have proved

$\liminf Y_n(\omega) \ge Y(\omega)$

One can also prove that if w'>w

$\lim x p Y_n(\omega) \in Y(\omega')$

Thus, for all $\omega' > \omega$

$Y(\omega) \leq \liminf Y_n(\omega) \leq \limsup Y_n(\omega) \leq X(\omega')$

If w is a pair of cont. for F', veger

 $\lim_{\infty} Y_n(\omega) = Y(\omega)$

If w is a pair of out for F-1, veger

 $\lim_{\omega \to \infty} Y_n(\omega) = Y(\omega)$

$\frac{\text{Define}}{\text{at}} D = \{ \omega \in \mathcal{Q} ; F^{-1} \text{ is discontinuous} \\ at \omega \}$

F' is non > => D at most countable

$\Rightarrow \lambda(D) = 0 \Rightarrow P(D) = 0$

=> a.s w is a paint of continuity for F⁻¹

 \Rightarrow $\forall_n \rightarrow \forall a$.

Proof of Proposition 29 (1)

Definition of $(\Omega, \mathcal{F}, \mathbf{P})$: We take

 $\Omega = [0, 1], \quad \mathcal{F} = \text{Borel } \sigma \text{-algebra}, \quad \mathbf{P} = \lambda$

Definition of Y_n and Y: We take

$$Y_n(\omega) = F_n^{-1}(\omega), \qquad Y(\omega) = F^{-1}(\omega)$$

Distributions of Y_n and Y: According to Proposition 28,

 $Y_n \sim F_n, \qquad Y \sim F$

Proof of Proposition 29 (2)

Claim 1: If ω is a point of continuity of F^{-1} , we have

$$\lim_{n \to \infty} Y_n(\omega) = \lim_{n \to \infty} F_n^{-1}(\omega) = F^{-1}(\omega) = Y(\omega)$$
(1)

Proof of claim 1: Consider

• $\omega \in [0,1]$

• x point of continuity of F such that $Y(\omega) - \varepsilon < x < Y(\omega)$ We have

$$F^{-1}(\omega) > x \implies F(x) < \omega$$

$$\implies F_n(x) < \omega, \text{ for large } n$$

$$\implies x < F_n^{-1}(\omega), \text{ for large } n$$

Image: A matrix

э

Proof of Proposition 29 (3)

Proof of claim 1 - ctd: We have seen, for n large enough,

$$Y(\omega) - arepsilon < x < F_n^{-1}(\omega) \quad \left(\Longrightarrow \quad F_n^{-1}(\omega) > Y(\omega) - arepsilon
ight)$$

Partial conclusion: We get

$$\liminf_{n \to \infty} Y_n(\omega) > Y(\omega) - \varepsilon, \quad \text{for all } \varepsilon > 0$$
$$\implies \liminf_{n \to \infty} Y_n(\omega) \ge Y(\omega)$$

Image: Image:

< ∃⇒

111 / 118

Proof of Proposition 29 (4)

Proof of claim 1 - ctd: We have proved

 $\liminf_{n\to\infty} Y_n(\omega) \geq Y(\omega)$

Along the same lines, for $\omega' > \omega$ one has

$$\limsup_{n\to\infty} Y_n(\omega) \leq Y(\omega')$$

Conclusion: Claim 1 is true, that is \hookrightarrow If ω is a point of continuity of F^{-1} , we have

$$\lim_{n \to \infty} Y_n(\omega) = Y(\omega) \tag{2}$$

Proof of Proposition 29 (5)

Almost sure convergence: Let

$$D = \left\{ \text{points of discontinuity of } F^{-1} \right\}$$

Since F^{-1} non decreasing,

$$\mathbf{P}(D) = \lambda(D) = 0$$

Hence

$$Y_n \xrightarrow{a.s} Y$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Characterization of convergence in distribution

Proposition 30.

Consider

• $\{X_n; n \ge 1\}$ sequence of random variables

Then the statements 1-2-3 are equivalent:

• $X_n \xrightarrow{(d)} X$ continuous + bounded • For any $f \in C_b(\mathbb{R})$, we have (weak convergence) $\lim_{n \to \infty} \mathbf{E}[f(X_n)] = \mathbf{E}[f(X)]$

3 For every $u \in \mathbb{R}$ we have

$$\lim_{n\to\infty} \mathbf{E}\left[e^{\imath u X_n}\right] = \mathbf{E}\left[e^{\imath u X}\right]$$

< □ > < @ >

 $\frac{\operatorname{Proof} of \quad F_n \to F \to \operatorname{Elf}(x_n) \to \operatorname{Elf}(x)}{\forall \quad 4 \in C_b(\mathbb{R})}$ By Skorshod, let Yn N Xn, YNX $\gamma_{\alpha} \xrightarrow{\alpha.s.} \gamma$ Since & continuous, we have $f(Y_{n}) \xrightarrow{a \to -} f(Y)$ Since L is baunded, by baunded $\lim E \mathbb{P}(Y_n)] = E \mathbb{P}(Y)]$