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Right inverse (1)

Let F : R → [0, 1] continuous cdf
We define the right inverse F →1 as

F →1 : (0, 1) → R, y ↑→ inf {a ↓ R; F (a) ↔ y}

Definition 27.
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Right inverse (2)

Remarks on right inverse:
(i) If F is strictly increasing, F →1 is the inverse of F
ω→ i.e. F ↗ F →1 = F →1 ↗ F = Id
(ii) Graphical method to construct F →1:

1 Symmetry wrt diagonal
2 Then erase vertical parts

Example: F (x) = (x ↘ 1)1[1,2)(x) + 1[2,↑)(x)
ω→ F →1(y) = (1 + y)1(0,1)(y)
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Right inverse (3)

More remarks:
(iii) Interpretation:

In above example, F → cdf of U([1, 2])
Domain of interest: x ↑ [1, 2]
In this domain, we do have F →1(F (x)) = x

(iv) Generalization:
If µ(dx) = f (x) dx with Supp(f ) = [a, b], then

F is strictly increasing on [a, b]
F : (a, b) ↓ (0, 1) is invertible
One can ignore the set (a, b)c in order to compute F →1
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Inverse method for simulation

Let
µ a continuous probability measure on R
F (x) = µ((↔↗, x ]) with right inverse F →1

U ↘ U([0, 1])
Then

X = F →1(U) is distributed according to µ

Proposition 28.
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Proof Set X= F" (U) . Then

P(X (x) = P)F
+ (V) (x)

?

= P(u = F(x))

= IP) 0 -UX f(x)

=F du

= f(x)

Thus X M



P)F + (u) - x)P)u- F(x))
One can prove a stronger result :

LUCTOn ; F"(U) ExY = A,

= LUE [0,
1; (2) F(x)] = As

notA , CA2 : "
F" (u) -x => inf(a; F(a) zu] -x

E 7 a
, <x C.

V. F(a
, ) zu

=> F(x) = F(ai) =u => F(124



LUCTOn ; F"(U) ExY = A,

= LUE [0,
R; 4) F(x)] = As

AzC A:

u F(x) = F(x) = 4

=> infla ; Flaku) 1x

=> F"(u) <x

Conclusion : F"(u)(x)U = f(x)
We can also prove F"(ul> E) U > F(x)



Proof of Proposition 28 (1)

Strategy: We will prove that

P(X → x) = P(F →1(U) → x)
(↑)= P(U → F (x))= F (x)
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Details for (↑)

We wish to show that for x ↓ R,
{
u ↓ (0, 1); F →1(u) → x

}
= {u ↓ (0, 1); u → F (x)}

Inclusion ↔:

F →1(u) → x ↗ inf {a; F (a) ↘ u} → x
↗ There exists a1 → x such that F (a1) ↘ u
↗ F (x) ↘ F (a1) ↘ u

Inclusion ≃:
u → F (x) ↗ F (x) ↘ u

↗ inf {a; F (a) ↘ u} → x
↗ F →1(u) → x
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Example : M= u ([a,63)

Al= da1[a,
G(x)

=>On [a.6) , F(kE=fr dr
=> On [a

,
6]

F(xl= y()x
-a = Y
b-a

E = a+ (b-a)y = F
+

(y)

=> If UnU([0, 17) and

*= a+ ( -a(u = X-4(a,67)



Example 2 Exponential (b) , density

f(x) = d e
-150

,
0)(x)

If E To, 01 ,

F(xi=!"Je -brdu = 1 -e
-c

F(x) = yE) 1 - e
-Jx

= y

Ese
-b

= 1 -yE)x=y(n(ty)
=> If UNU50,

17)
,
and X= -](n(t-u)

we have XnE(J)



Examples

Example 1:
Let µ = U([a, b]). Then on [a, b]

F (x) = x → a
b → a , and F →1(y) = a + (b → a)y

One can check that X = a + (b → a)U ↑ U([a, b])
Example 2:
Let µ = E(ω). Then on R+

F (x) =
∫ x

0
ωe→ωu du = 1 → e→ωx , and F →1(y) = → ln(1 → y)

ω

One can check that X = → ln(1→U)
ω ↑ E(ω)
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Comments on inverse method

Pros:
Unique call to rand
Excellent simulation method . . . when it works!

Cons:
Explicit computation of F , F →1 not always possible
Typical example: N (0, 1)

Examples of application:
Exponential, Weibull, Cauchy
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Skorohod’s representation theorem

Consider
{Xn; n ↓ 1} sequence such that Xn

(d)→↔ X

Then one can construct
1 A probability space (!, F , P)
2 Random variables Yn : ! ↔ R satisfying Yn

(d)= Xn

3 Y : ! ↔ R satisfying Y (d)= X
such that the following holds true:

Yn
a.s→↔ Y

Proposition 29.
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Lebesque measure
Proof We rake

1

& = [0,
1

,
F = B(0,1) ,

P = J

↳ canonical space for U,
1)

Recall : Each Xn has a colf Fr
X has a colf F

Define
,
Eto,R

Yn(w) = Fn"(c) ~ Xu

~ (d) = F
"

(w) ~ X



claim : If w is a point of continuity
of Ft ,

then

him Yn(w) = lim El
= F " (w) = Y(w)

it step of proof . Take we lo,i

Y(w)-E 2 F"(w) =Y(w)
11

-> x c.r· < pointof
continuity of F

F
+
(w) > x = w > F(x) = f(x)\w

=> Enx) < w for n large< En"(w)



SummaryForn large enough

Y(wl-2 <(< Fi(w) = Yn(w)

=> limit Y(w) = Y(w) -3 20
R

=> limit Yn(w) = Y(w)

F is= F has at most a countable # of
pants of discontinuity



Summary 2 We have proved

liminf Yn(w) = Y(W)

One can also prove that if wiw

limsup Yn(w) -
> Y (w)

Thus
, for all w w

Y(w) - liminfYn(w) < limsupYn(w) < Y(w)

If w is a pointof cout. for F" , reger

himYn(w) = Y(w)



If w is a pointof cout. for F"
, reger

himYn(w) = Y(w)

Define D= \wER ; F " is discontinuous
at wy

F is non => D at most countable

=> J(D) = 0 = P(D) =0

= as w is a paint of continuity
for F

-1

=>Xn Y af.



Proof of Proposition 29 (1)

Definition of (!, F , P): We take

! = [0, 1], F = Borel ω-algebra, P = ε

Definition of Yn and Y : We take

Yn(ϑ) = F →1
n (ϑ), Y (ϑ) = F →1(ϑ)

Distributions of Yn and Y : According to Proposition 28,

Yn → Fn, Y → F

Samy T. Convergence of r.v Probability Theory 109 / 118



Proof of Proposition 29 (2)

Claim 1: If ϑ is a point of continuity of F →1, we have

limn↑↓
Yn(ϑ) = limn↑↓

F →1
n (ϑ) = F →1(ϑ) = Y (ϑ) (1)

Proof of claim 1: Consider
ϑ ↑ [0, 1]
x point of continuity of F such that Y (ϑ) ↓ ϖ < x < Y (ϑ)

We have

F →1(ϑ) > x =↔ F (x) < ϑ

=↔ Fn(x) < ϑ, for large n
=↔ x < F →1

n (ϑ), for large n
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Proof of Proposition 29 (3)

Proof of claim 1 - ctd: We have seen, for n large enough,

Y (ϑ) ↓ ϖ < x < F →1
n (ϑ)

(
=↔ F →1

n (ϑ) > Y (ϑ) ↓ ϖ
)

Partial conclusion: We get

lim infn↑↓
Yn(ϑ) > Y (ϑ) ↓ ϖ, for all ϖ > 0

=↔ lim infn↑↓
Yn(ϑ) ↗ Y (ϑ)
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Proof of Proposition 29 (4)

Proof of claim 1 - ctd: We have proved

lim infn↑↓
Yn(ϑ) ↗ Y (ϑ)

Along the same lines, for ϑ↔ > ϑ one has

lim sup
n↑↓

Yn(ϑ) ↘ Y (ϑ↔)

Conclusion: Claim 1 is true, that is
ϱ≃ If ϑ is a point of continuity of F →1, we have

limn↑↓
Yn(ϑ) = Y (ϑ) (2)
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Proof of Proposition 29 (5)

Almost sure convergence: Let

D =
{
points of discontinuity of F →1

}

Since F →1 non decreasing,

P(D) = ε(D) = 0

Hence
Yn

a.s↓≃ Y
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Characterization of convergence in distribution

Consider
{Xn; n ↗ 1} sequence of random variables

Then the statements 1-2-3 are equivalent:
1 Xn

(d)↓≃ X
2 For any f ↑ Cb(R), we have

limn↑↓
E [f (Xn)] = E [f (X )]

3 For every u ↑ R we have

limn↑↓
E

[
eıuXn

]
= E

[
eıuX

]

Proposition 30.
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Proof of En -> F => ETfAn)]-> Elf(x]
- fEC(IR)

By Skorohod
,
let YnvXn

,
Yex

S.
U.

Yay

Since of continuous , we have

f(x) * f(X)

SinceI is bounded
, by bounded

convergence

lim EECYn1] = EA(X)]


