
STOCHASTIC CALCULUS - MA 598

PROBLEMS - LIST 1

1. Probability preliminaries

Problem 1. A restaurant can serve 75 meals. In practice, it has been established that 20 % of
customers with a reservation do not show up.

1.1. The restaurant owner has accepted 90 reservations. What is the probability that more than
65 persons will come?

1.2. What is the maximal number of reservations which can be accepted if we wish to serve all
customers with probability ≥ 0.9?

Problem 2. Let γa,b be the function:

γa,b(x) =
1

Γ(a)ba
xa−1e−x/b1{x>0},

where a, b > 0 and Γ(x) =
∫∞
0
e−ttx−1dt.

2.1. Show that γa,b is a density.

2.2. Let X a random variable with density γa,b. Check, for λ > 0:

E[e−λX ] =
1

(1 + λb)a
, E[X] = ab, V arX = ab2.

2.3. Let X (resp. X ′) a random variable with density γa,b (resp. γa′,b). We assume X and X ′

independent. Show that X +X ′ admits the density γa+a′,b.

2.4. Application: Let X1, X2, ..., Xn, n i.i.d random variables, with law N (0, 1). Show that X2
1 +

X2
2 + ...+X2

n is Gamma distributed.

Problem 3. Let X1 and X2 two independent random variables, Poisson distributed with param-
eter λ. Let Y = X1 +X2. Compute

P(X1 = i|Y ).

Problem 4. Let (X, Y ) be a couple of random variables with joint density

f(x, y) = 4y(x− y) exp(−(x+ y))10≤y≤x.

4.1. Compute E[X|Y ].

4.2. Compute P(X < 1|Y ).

Problem 5. The classical definition for λ-system is often given in the following way: we say that
L is a λ-system if:

(1) Ω ∈ L.
(2) If A,B ∈ L and B ⊂ A, then A \B ∈ L.
(3) If (An)n≥1 is an increasing sequence of elements of L, then ∪n≥1An ∈ L.
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Show that this definition is equivalent to the one seen in class.

Problem 6. Let X = {Xt; t ∈ R+} be a stochastic process such that for all n ≥ 2 and 0 =
t0 < t1 < · · · < tn, the random variables (δXtjtj+1

)0≤j≤n−1 are independent. Show that for all
0 ≤ s < t <∞, we also have δXst independent of FXs .

Problem 7. For t > 0, let Ct be the collection of cylindrical sets of C([0, t];R). Specifically, A ∈ Ct
if there exists n ≥ 1, 0 ≤ t1 < · · · < tn ≤ t and B1, . . . , Bn ∈ B(R) such that:

A =
{
f ∈ C([0, t];R); ftj ∈ Bj, for j = 1, . . . , n

}
.

Show that σ(Ct) = B(C([0, t];R)).

2. Gaussian vectors

Problem 8. Let A be the matrix defined by1 1 1
1 5 −1
1 −1 2


8.1. Show that there exist a centered Gaussian vector G with covariance matrix A. The coordi-
nates of G are denoted by X, Y and Z.

8.2. Is G a random variable with density? Compute the characteristic function of G.

8.3. Characterize the law of U = X + Y + Z.

8.4. Show that (X − Y,X + Z) is a Gaussian vector.

8.5. Determine the set of random variables ξ = aX + bY + cZ, independent of U .

Problem 9. Let X, Y ∼ N (0, 1) be two independent random variables. For all a ∈ (−1, 1), show
that:

E [exp (aXY )] = E
[
exp

(a
2
X2
)]

E
[
exp

(
−a

2
Y 2
)]
.

Problem 10. Let X and Y two independent standard Gaussian random variables N (0, 1). We
set U = X2 + Y 2 and V = X√

U
. Show that U and V are independent, and compute their law.

Problem 11. The aim of this problem is to give an example of application for the multidimen-
sional central limit theorem. Let (Yi; i ≥ 1) be a sequence of i.i.d real valued random variable.

We will denote by F common cumulative distribution function and F̂n the empirical cumulative
distribution function for the n-sample (Y1, . . . , Yn):

F̂n(x) =
1

n

n∑
i=1

1{Yi≤x}, x ∈ R.

11.1. Let x a fixed real number. Show :

• F̂n(x) converges a.s. to F (x), when n→∞;

•
√
n(F̂n(x)−F (x)) converges in law, when n→∞, to a centered Gaussian random variable

with variance F (x)(1− F (x)).
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11.2. We will generalize this result to a multidimensional setting. Let x1, x2, ..., xd be a sequence
of real numbers such that x1 < x2 < ... < xd, and Xn be the random vector in Rd, with coordinates

X
(1)
n , X

(2)
n , · · · , X(d)

n where:
X(i)
n = 1{Yn≤xi}; 1 ≤ i ≤ d,

for all n ≥ 1. Show that:(√
n(Fn(x1)− F (x1)), . . . ,

√
n(Fn(xd)− F (xd))

)
converges in law, when n → ∞, to a centered Gaussian vector for which we will compute the
covariance matrix.

Problem 12. Let X = (X1, . . . , Xn) be a centered Gaussian vector with covariance matrix Idn.

12.1. Show that random vector (X1−X̄, . . . , Xn−X̄)∗ is independent of X̄, where X̄ = 1
n

∑n
i=1Xi.

12.2. Deduce that the random variables X̄ and W = max1≤i≤nXi−min1≤i≤nXi are independent.
Why is this result (somewhat) surprising?

Problem 13. Let X and Y two real valued i.i.d random variables. We assume that X+Y√
2

has

the same law as X and Y . We also suppose that this common law commune admits a variance,
denoted by σ2.

13.1. Show that X is centered random variable.

13.2. Show that if X1, X2, Y1 and Y2 are independent random variables having the same law as
X, then 1

2
(X1 +X2 + Y1 + Y2) has the same law as X.

13.3. Applying the central limit theorem, show that X is a N (0, σ2) random variable.

Problem 14. Let X, Y ∼ N (0, 1) two independent variables.

14.1. Show that X
Y

is well-defined, and is distributed according to a Cauchy law.

14.2. If t ≥ 0, compute P(|X| ≤ t|Y |).

Problem 15. If (X, Y ) is a centered Gaussian vector in R2 with E[X2] = E[Y 2] = 1 and if
E[XY ] = r with r ∈ (−1, 1), calculer P(XY ≥ 0). Hint: one can prove and use the following
claim: (X, Y ) = (X, sX +

√
1− s2Z) with X,Z ∼ N (0, 1) independent and s ∈ (0, 1) to be

determined. Then we invoke the result shown in Problem 14.

3. Brownian motion

Problem 16. Let B be a standard Brownian motion.

16.1. Compute, for all couple (s, t), the quantities E[Bt|Fs] and E[BsB
2
t ] (we do not assume s ≤ t

here).

16.2. Compute E[B2
tB

2
s ].

16.3. What is the law of Bt +Bs?

16.4. Compute E[1(Bt≤0)] and E[B2
t 1(Bt≤0)].

16.5. Compute E[
∫ t
0

eBsds] and E[eαBt
∫ t
0

eγBsds] for α, γ > 0.
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Problem 17. For any continuous bounded function f : R → R and all 0 ≤ u ≤ t, show that
E[f(Bt)] = E[f(G

√
u+Bt−u)] with a random variable G ∼ N (0, 1) independent of Bt−u.

Problem 18. Let f : R → R be a C2 function whose second derivative has at most exponential
growth. Show that

E[f(x+Bt)] = f(x) +
1

2

∫ t

0

E[f ′′(x+Bs)] ds .

Hint: One can use the following Gaussian integration by parts formula: let N ∼ N (0, 1) and
ψ ∈ C1 with exponential growth. Then E[N ψ(N)] = E[ψ′(N)].

Problem 19. Consider a standard Brownian motion B. For all λ, µ ∈ R, compute

E

[(
µB1 + λ

∫ 1

0

Budu

)2
]
.

Problem 20. Show that the integral
∫ 1

0

∣∣Bs

s

∣∣α ds is finite almost surely if α < 2.

4. Gaussian processes

Problem 21. Let (Xn, n ≥ 1) a sequence of centered Gaussian random variables, converging in
law to a random variable X. Show that X is also a centered Gaussian random variable. Deduce
that the process Y = {Yt, t ≥ 0} given by Yt =

∫ t
0
Budu is Gaussian. Compute its expected value

and its covariance function.

Problem 22. We define the Brownian bridge by Zt = Bt − tB1 for 0 ≤ t ≤ 1.

22.1. Show that Z is a Gaussian process independent of B1. Give its law, that is its mean and
its covariance function.

22.2. Show that the process Z̃, with Z̃t = Z1−t, has the same law as Z.

22.3. Show that the process Y , with Yt = (1− t)B t
1−t
, 0 < t < 1, has the same law as Z.

5. Martingales

Problem 23. Among the following processes, what are those who enjoy the martingale property?
Hint: use the Fubini type relation E[

∫ t
0
Budu|Fs] =

∫ t
0
E[Bu|Fs] du.

23.1. Mt = Bt
3 − 3

∫ t
0
Bs ds?

23.2. Zt = Bt
3 − 3tBt?

23.3. Xt = tBt −
∫ t
0
Bs ds?

23.4. Yt = t2Bt − 2
∫ t
0
Bsds?

Problem 24. Let Gt = Ft∨σ(B1). Check that B is not a Gt-martingale. Hint: get a contradiction,
showing that if B is a Gt-martingale, then E[Bt|B1] = E[Bs|B1] for 0 ≤ s, t ≤ 1.

Problem 25. Let Z = {Zt, t ≥ 0} le process defined par Zt = Bt −
∫ t
0
Bs

s
ds.

25.1. Show that Z is a Gaussian process.
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25.2. Compute the expected value and the covariance function of Z. Deduce that Z is a Brownian
motion.

25.3. Show that Z is not a FBt -martingale, where (FBt ) is the natural filtration of B. Hint:
compute E[Zt − Zs|FBs ] for 0 ≤ s < t.

25.4. Deduce that FZ ⊂ FB, but FZ 6= FB.

Problem 26. Let φ be a bounded adapted process on (Ω,F , (Ft)t≥0, P ) and M a (Ft)-martingale.
We set

Yt = Mt −
∫ t

0

φsds, t ∈ [0, T ].

Prove that

Yt = E

[∫ T

t

φsds+ YT | Ft
]
, t ∈ [0, T ]. (1)

In the other direction, if Y satisfies (1) with a bounded adapted process φ, show that M defined
by

Mt = Yt +

∫ t

0

φsds, t ∈ [0, T ],

is a martingale.

Problem 27. Let (Mt)t≥0 be a square integrable Ft-martingale (that is such that Mt ∈ L2 for all
t).

27.1. Show that E[(Mt −Ms)
2|Fs] = E[Mt

2|Fs]−Ms
2 for t > s

27.2. Deduce that E[(Mt −Ms)
2] = E[Mt

2]− E[Ms
2] for t > s

27.3. Consider the function Φ defined by Φ(t) = E[Mt
2]. Check that Φ is increasing.

Problem 28. Show that if M is a Ft-martingale, it is also a martingale with respect to its natural
filtration Gt = σ(Ms, s ≤ t).

Problem 29. Let τ be a positive random variable defined on (Ω,F , (Ft)t≥0, P ) . Show that
Zt = P(τ ≤ t|Ft) is a sub-martingale.

Problem 30. Let X be a centered process with independent increments, such that for all n ∈ N∗
and any 0 < t1 < t2 < . . . < tn, the random variables Xt1 , Xt2 − Xt1 , . . ., Xtn − Xtn−1 are
independent. In addition, we assume that X is integrable, and that (Ft) is the natural filtration
of X. Show that X is a martingale. If we further suppose that X is square integrable, show that
X2
t − E[X2

t ] is also a (Ft)-martingale.

6. Hitting times

In this section, a designates a real number and Ta is the random time defined by Ta = inf{t ≥
0 : Bt = a}.

Problem 31. Show that Ta is a stopping time. Compute E[e−λTa ] for all λ ≥ 0. Show that
P(Ta <∞) = 1 and that E[Ta] =∞.
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Problem 32. Prove (avoid computations) that for b > a > 0, the random variable Tb − Ta is
independent of Ta. Deduce that the process (Ta)a≥0 has independent and stationary increments.

Problem 33. Let a < 0 < b and T = Ta ∧ Tb. Compute P(Ta < Tb) and E[T ].
Hint: Apply the optional sampling theorem to Bt and B2

t − t.

Problem 34. Compute Zt = P(Ta > 1|Ft) for 0 ≤ t ≤ 1 and a > 0. Recall that supu≤tBu
(d)
= |Bt|.

Problem 35. Let I = − infs≤T1 Bs. Show that I has a density given by fI(x) = 1
(1+x)2

1[0,+∞[(x).

Hint: Use {I ≤ x} = {T1 < T−x}.
Problem 36. Let T1 = inf{t ≥ 0 : Bt = 1}. Use a Brownian scaling in order to show the following
identities in law:

(1) T1
(d)
= 1

S2
1
, with S1 = sup(Bu, u ≤ 1);

(2) Ta
(d)
= a2T1.

7. Wiener integral

Problem 37. In this problem we consider the process X defined by Xt =
∫ t
0
(sin s) dBs.

37.1. Show that, for each t ≥ 0, the random variable Xt is well defined.

37.2. Show that X = (Xt)t≥0 is a Gaussian process. Compute its expected value and its covariance
function.

37.3. Compute E[Xt|Fs] for s, t ≥ 0.

37.4. Show that Xt = (sin t)Bt −
∫ t
0
(cos s)Bs ds for all t ≥ 0.

Problem 38. Let X be the process defined on (0, 1) by: Xt = (1− t)
∫ t
0
dBs

1−s .

38.1. Show that X satisfies:

X0 = 0 and dXt =
Xt

t− 1
dt+ dBt, t ∈ (0, 1).

38.2. Show that X is a Gaussian process. Compute its expected value and its covariance function.

38.3. Show that limt↑1Xt = 0 in L2(Ω).

8. Itô’s formula

Problem 39. Write the following processes as Itô processes, specifying their drift and their
diffusion coefficient.

(1) Xt = Bt
2

(2) Xt = t+ exp(Bt);
(3) Xt = Bt

3 − 3tBt;
(4) Xt = (Bt + t) exp(−Bt − t/2);
(5) Xt = exp(t/2) sin(Bt).

Problem 40. Let X and Y defined by:

Xt = exp

(∫ t

0

a(s)ds

)
, et Yt = Y0 +

∫ t

0

[
b(s) exp

(
−
∫ s

0

a(u)du

)]
dBs,

where a, b : R→ R are bounded functions. We set Zt = XtYt. Show that dZt = a(t)Ztdt+b(t)dBt.
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Problem 41. Let Z be the process given by Zt = tXt Yt, where X and Y are defined by:

dXt = f(t) dt+ σ(t)dBt, and dYt = η(t)dBt.

Compute dZt.

Problem 42. Show that Y = (Yt)t≥0 defined by Yt = sin(Bt) + 1
2

∫ t
0

sin(Bs) ds is a martingale.
Compute its expected value and its variance.

Problem 43. Let us assume that the following system admits a solution (X, Y ):{
Xt = x+

∫ t
0
Ys dBs

Yt = y −
∫ t
0
Xs dBs

, t ≥ 0.

Show that Xt
2 + Yt

2 = (x2 + y2)et for all t ≥ 0.

Problem 44. We define Y and Z in the following way for t ≥ 0:

Yt =

∫ t

0

es dBs, and Zt =

∫ t

0

YsdBs.

Compute E[Zt], E[Z2
t ] and E[ZtZs] for s, t ≥ 0.

Problem 45. Let σ be an adapted continuous process in L2(Ω × R), and let Xt =
∫ t
0
σs dBs −

1
2

∫ t
0
σ2
s ds. We set Yt = exp(Xt) and Zt = Y −1t .

45.1. Give an explicit expression for the dynamics of Y , that is dYt.

45.2. Show that Y is a local martingale on [0, T ] for all T > 0. If σ = 1, show that Y is a
martingale on [0, T ] for all T > 0. Compute E[Yt] in this case.

45.3. Compute dZt.

Problem 46. Let a, b, c, z be real valued constants, and let Z be the process defined by:

Zt = e(a−c
2/2)t+cBt

(
z + b

∫ t

0

e−(a−c
2/2)s−cBsds

)
, t ≥ 0.

Give a simple expression for dZt.

Problem 47. Let (Xt)t≥0 be a process satisfying Xt = x +
∫ t
0
asds +

∫ t
0
σsdBs for t ≥ 0. In the

previous formula, x is a real number, a is a continuous process satisfying
∫ t
0
|as|ds < ∞ for all

t ≥ 0, and σ is an adapted continuous process verifying
∫ t
0
E[σ2

s ]ds <∞ for all t ≥ 0. We wish to
show that if X ≡ 0, then x = 0, a ≡ 0 and σ ≡ 0.

47.1. Apply Itô’s formula to Yt = exp(−X2
t ).

47.2. Prove the claim.

Problem 48. Let X be an Itô process. A function s is called scale function for X if s(X) is a
local martingale. Determine the scale functions of the following processes:

(1) Bt + νt;
(2) Xt = exp(Bt + νt);

(3) Xt = x+
∫ t
0
b(Xs)ds+

∫ t
0
σ(Xs)dBs.

Problem 49. Let f : R→ R be a C1b function.
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49.1. Construct a function ψ : [0, 1] × R → R (expressed as an expected value) such that, for
t ∈ [0, 1], we have E[f(B1)|Ft] = ψ(t, Bt).

49.2. Write Itô’s formula for ψ and simplify as much as possible.

49.3. Show that, for all t ∈ [0, 1] we have:

E[f(B1)|Ft] = E[f(B1)] +

∫ t

0

E[f ′(B1)|Fs]dBs.

Problem 50. Let S be the solution of: dSt = rStdt + Stσ(t, St)dBt, t ∈ [0, T ], where r is a
constant and where σ : R+ × R→ R is a function C1,1 with bounded derivatives.

50.1. Show that E[Φ(ST )|Ft] is a martingale (as a function of t) for any bounded measurable
function Φ.

In the sequel, we admit that E[Φ(ST )|Ft] = E[Φ(ST )|St] for all t ∈ [0, T ] (Markov property for S).

50.2. Let ϕ(t, x) be the function defined by ϕ(t, St) = E[Φ(ST )|St] (the existence of ϕ is admitted).
Write dZt with Zt = ϕ(t, St).

50.3. Invoking the fact that ϕ(t, St) is a martingale, and admitting that ϕ is C1,2, show that for
all t > 0 and all x > 0 we have:

∂ϕ

∂t
(t, x) + rx

∂ϕ

∂x
(t, x) +

1

2
σ2(t, x)x2

∂2ϕ

∂x2
(t, x) = 0.

What is the value of ϕ(T, x)?

Problem 51. Let B be a d-dimensional Brownian motion. We consider an open bounded subsetG
of Rd, and τ = inf{t ≥ 0; Bt 6∈ G}. We denote by K the diameter of G, i.e K = sup{|x−y|; x, y ∈
G}.
51.1. Show that there exists ε = εK ∈ (0, 1) such that Px(τ ≥ 1) ≥ ε for all x ∈ G.

51.2. Deduce that there exists ρ = ρK ∈ (0, 1) such that Px(τ > k) ≤ ρk for all k ≥ 1 and x ∈ G.

51.3. Deduce that Ex[τ
p] <∞ for all p ≥ 1. In particular, show that τ <∞ Px-almost surely for

all x ∈ G.

51.4. Let ϕ ∈ C2(Ḡ) be a harmonic function, i.e such that ∆ϕ = 0 sur G. Prove that Ex[ϕ(Bτ )] =
ϕ(x).

51.5. We now seek some harmonic functions ϕ : Rd → R having the form ϕ(x) = f(|x|2) with
f : R→ R.

(1) Prove that f is solution of the differential equation f ′′(y) = − d
2y
f ′(y) for y > 0.

(2) Deduce the following form for radial harmonic functions:

ϕ(x) =


x si d = 1

ln(|x|) si d = 2

|x|2−d si d ≥ 3

Problem 52. We now consider a particular case of Problem 51, that we fix the dimension d = 1.

52.1. Let a < x < b and τ = inf{t ≥ 0; Bt 6∈ (a, b)}. Show that

Px (Bτ = a) =
b− x
b− a

, Px (Bτ = b) =
x− a
b− a

.
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52.2. For x ∈ R we set Tx = inf{t ≥ 0; Bt = x}. Prove that Px(Ty <∞) = 1 for all x, y ∈ R.

52.3. Let now s > 0 and x, y ∈ R. Show that Px(Bt = y for a t ≥ s) = 1.

52.4. Let Ty be the random set given by the points such that Bt = y. Applying Markov’s property,
show that Px(Ty unbounded) = 1.

Problem 53. The situation of Problem 51 is now particularized to dimension d = 2. For r > 0
we set Sr = inf{t ≥ 0; |Bt| = r}.

53.1. Let x ∈ R2 such that 0 < r < |x| < R. Prove that

Px (Sr < SR) =
ln(R)− ln(|x|)
ln(R)− ln(r)

.

53.2. Invoking the same kind of arguments as in Problem 52, show that B is recurrent, that is
for any couple x, y ∈ R2 and r > 0 we have Px(TB(y,r) <∞) = 1.

53.3. Whenever x 6= 0, show that Px(T0 <∞) = 0, i.e the 2-dimensional Brownian motion does
not hit points. Hint: for a fixed R > 0 we have

(T0 < SR) ⊂
⋂
n≥1

(
S1/n < SR

)
.

Problem 54. Consider now the case of a Brownian motion in dimension d ≥ 3. For r > 0 we set
Sr = inf{t ≥ 0; |Bt| = r}.

54.1. Let x ∈ Rd such that |x| > r > 0. Prove that Px(Sr <∞) = (r/|x|)d−2.

54.2. Let An = {|Bt| > n1/2 for all t ≥ Sn}. Show that Px(lim supnAn) = 1 for all x ∈ Rd.

54.3. Show that Px-almost surely we have limt→∞ |Bt| =∞, for all x ∈ Rd.

9. Geometrical Brownian motion

Problem 55. Let S satisfying the following stochastic differential equation:

dSt = St(b dt+ σ dBt), S0 = 1, (2)

where b and σ are constants. Let S̃t = e−btSt.

55.1. Show that (S̃t)t≥0 is a martingale. Deduce the value of E[St] and E[St|Fs] for any couple
(t, s).

55.2. Give an expression for the drift term and the diffusion coefficient of 1
S

.

55.3. Show that St = exp[(b− 1
2
σ2)t+ σBt] satisfies (2), and that

ST = St exp[(b− 1

2
σ2)(T − t) + σ(BT −Bt)]

for all T ≥ t.

55.4. Let L be a process verifying dLt = −Ltθt dBt where θt is an adapted continuous process in
L2(Ω× R). We set Yt = StLt. Compute dYt.
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55.5. Let ζt be defined by
dζt = −ζt(r dt+ θt dBt)

Show that ζt = Lte
−rt. Compute d(ζ−1)t and then d(S ζ)t. How can we choose θ in such a way

that ζS is a martingale?

Problem 56. Let f be a bounded measurable function and S = (St)t≥0 be a process verifying
the equation

dSt = St(r − ft)dt+ σdBt, S0 = x ∈ R.
The following questions are independent.

56.1. Show that e−rtSt +
∫ t
0
fs e

−rsSs ds is a local martingale.

56.2. Show that

St = xert−
∫ t
0 fu du + σ

∫ t

0

er(t−s)−
∫ t
s fu dudBs

is a possible expression for S. In the sequel, we work with this formula for S.

56.3. Compute the expected value and the variance of St for t ≥ 0.

56.4. Let T,K > 0. Compute E[(ST −K)+] whenever f is constant.

10. Stochastic differential equations

Problem 57. Consider the stochastic differential equation

X0 = x, dXt = bXtdt+ dBt, t ≥ 0,

with x, b ∈ R.

57.1. We set Yt = e−btXt. What is the stochastic differential equation verified by Yt? Express Yt
under the form Yt = x+

∫ t
0
f(s)dBs, where f is a function which will be given explicitly.

57.2. Compute E[Yt] and Var(Yt).

57.3. Justify the fact that
∫ t
0
Ysds is a Gaussian process. Compute E[e

∫ t
0 Ysds].

57.4. For t > s, compute E[Yt|Fs] and Var (Yt|Fs) and E[Xt|Fs] and Var (Xt|Fs).

Problem 58. in this problem, we consider the following stochastic differential equation:

X0 = x, dXt = (a+ αXt)dt+ (b+ βXt)dBt, t ≥ 0, (3)

where a, α, b, β are 4 real constants, and where x ∈ R is the initial condition.

58.1. We first deal with the general case of equation (3).

(1) Show that (3) admits a unique solution.
(2) We set m(t) = E[Xt] and M(t) = E[X2

t ).
(a) Show that m(t) is the unique solution of the following ordinary differential equation:

y′ − αy = a et y(0) = x. (4)

(b) Write Itô’s formula for X2
t , where Xt is solution to (3).

(c) Deduce that M(t) is the unique solution of the following ordinary differential equation:

y′ − (2α + β2) y = 2(a+ bβ)m+ b2 et y(0) = x2 (5)

where m is the solution of (4).
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(d) Solve (4), then (5).

58.2. Particular case #1: we consider the case a = b = 0.

(1) Let (Yt)t≥0 be the unique solution of equation (3) when a = b = 0 such that Y0 = 1. Show
that

Yt = exp

{
(α− 1

2
β2)t+ βBt

}
.

(2) Show that if α ≥ 0, then Y is a sub-martingale with respect to the filtration (Ft). Under
which condition on α, do we have the martingale property for Y ?

(3) Let (Zt)t≥0 be the process defined by

Zt = x+ (a− bβ)

∫ t

0

Y −1s ds+ b

∫ t

0

Y −1s dBs .

Show that the solution Xt of (3) can be written as Xt = YtZt.

58.3. Particular case #2: we consider the case a = β = 0:

X0 = x, dXt = αXt dt+ b dBt, t ≥ 0. (6)

(1) Show that the unique solution of (6) can be written as

Xt = eαt
(
x+ b

∫ t

0

e−αs dBs

)
.

(2) Show that X is a Gaussian process, compute its expected value and its variance.

(3) Justifify the fact that
∫ t
0
Xsds is a Gaussian process. Compute E

(
exp

∫ t
0
Xsds

)
.

(4) Compute E[Xt|Fs] and Var (Xt|Fs) for t > s.
(5) Let φ : R → R be a function in the class C2. Write Itô’s formula for Zt = φ(Xt). deduce

that if φ(x) =
∫ x
0

exp(−α y2
b2

) dy, then Zt = b
∫ t
0

exp(−αX
2
s

b2
) dBs. Is Z = (Zt) a square

integrable martingale?
(6) Let λ be a fixed number.

(a) Compute Φ(t, λ) = E[eλX
2
t ].

(b) For a fixed time t > 0, study the martingale s ∈ [0, t] 7→ E[eλX
2
t |Fs].

(c) Show that Φ is solution of a partial differential equation.
(d) Show that

Ψ(t, x) = x2a(t) + b(t), with a′(t) = −a(t)(2α + b2a(t)) and b′(t) = −b2a(t) .

58.4. Particular case #3: we consider the case a = α = 0:

X0 = x et dXt = (b+ βXt)dBt, t ≥ 0 (7)

where x 6= − b
β
. Let h be the function defined by

h(y) =
1

β
ln

∣∣∣∣b+ βy

b+ βx

∣∣∣∣
for y 6= − b

β

(1) We set Yt = h(Xt). What is the equation satisfied by Yt?
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(2) Deduce that the solution of equation (7) can be written as:

Xt =

(
x+

b

β

)
exp

(
−β

2

2
t+ βBt

)
− b

β
.

58.5. Particular case #4: we consider the case a = 1 and b = 0. We set Yt = e−αtXt.

(1) What is the differential equation satisfied by Y ?
(2) Compute E[Xt] and Var (Xt).

Problem 59. Let f, F, g,G : R+ → R be bounded continuous functions. We denote by X the
solution of

X0 = x and dXt = [f(t) + F (t)Xt]dt+ [g(t) +G(t)Xt]dBt, t ≥ 0,

and we set Y for the solution of

Y0 = 1 and dYt = F (t)Ytdt+G(t)YtdBt, t ≥ 0.

59.1. Give an explicit expression for Y .

59.2. Let Z be defined by:

Zt = x+

∫ t

0

Y −1s [f(s)−G(s)g(s)]ds+

∫ t

0

Y −1s g(s)dBs .

Show that X = Y Z.

59.3. Let m(t) = E[Xt] and Mt = E[X2
t ]. Show that m is the unique solution of the ordinary

differential equation y′(t)− F (t)y(t) = f(t), with initial condition y(0) = x. Deduce that

m(t) = exp(F̃ (t))

[
x+

∫ t

0

exp
(
−F̃ (s)f(s)

)
ds

]
,

where F̃ (t) =
∫ t
0
F (s)ds. Show that M is the unique solution of

Y ′(t)− [2F (t) +G2(t)]y(t) = 2[f(t) + g(t)G(t)]m(t) + g2(t) with y(0) = x2.

Problem 60. Let St be the solution of dSt = St (r dt+ σ dBt), for some fixed parameters r, σ.

60.1. Let K be a constant, and M be the process defined by:

Mt = E

[(
1

T

∫ T

0

Su du−K
)

+

∣∣∣∣Ft] .
Prove that M is a martingale.

60.2. Show that, setting ζt = S−1t (K − 1
T

∫ t
0
Su du), we have

Mt = StE

[(
1

T

∫ T

t

Su
St
du− ζt

)
+

∣∣∣∣Ft] .
60.3. Let Φ be the function given by:

Φ(t, x) = E

[(
1

T

∫ T

t

Su
St
du− x

)
+

]
.

Show that we also have

Φ(t, x) = E

[(
1

T

∫ T

t

Su
St
du− x

)
+

∣∣∣∣Ft] ,
and that Mt = StΦ(t, ζt).
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60.4. Write Itô’s formula for M . Deduce a partial differential equation satisfied by Φ.

Problem 61. Let α be a constant and

dXt = α2X2
t (1−Xt)dt+ αXt(1−Xt)dBt, (8)

the initial condition being given by X0 = x with x ∈ (0, 1). We admit that X takes values in the
interval (0, 1) and we set Yt = Xt

1−Xt
.

61.1. What is the stochastic differential equation satisfied by Y ?

61.2. Deduce that Xt = x exp(αBt−α2t/2)
x exp(αBt−α2t/2)+1−x .

Problem 62. In this problem, we consider 2 equations whose solutions are Gaussian processes.

62.1. Let N ∼ N (0, 1) be a random variable independent of B. Check that the solution of

dXt = dBt +
N −Xt

1− t
dt

is given by Xt = tN + (1 − t)
∫ t
0
dBs

1−s . Deduce that X is a Gaussian process, and compute its
expected value and its covariance.

62.2. Let W be a Brownian motion independent of B. Check that the solution of

dXt = dBt +
Wt −Xt

1− t
dt

is given by Xt = (1 − t)
∫ t
0

Ws

(1−s)2 ds + (1 − t)
∫ t
0
dBs

1−s . Deduce that X is a Gaussian process, and

compute its expected value and its covariance.


