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Parametrizing solutions of differential equations

Consider two complex numbers a and b, and the very basic
differential equations:

▶ y ′ = a

▶ y ′ = by

the solution sets can be parametrized as:

▶ {at + c , c ∈ C}
▶ {cebt , c ∈ C}

Once we have the functions at and ebt , the solution sets are
recovered using a complex number and an affine map.
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Systems of equations
y ′1 = y1

y ′2 = iy2

z ′ = 6

⇒


y1 ∈ {c1et , c1 ∈ C}
y2 ∈ {c2e it , c2 ∈ C}
z ∈ {6t + d , d ∈ C}

Any three solutions are algebraically independent, so we get three
independent parametrizations. Three functions, et , e it and t, are
needed.


y ′1 = 2y1

y ′2 = 4y2

z ′1 = 3

z ′2 = 6

⇒


y1 ∈ {c1e2t , c1 ∈ C}
y2 ∈ {c2e4t , c2 ∈ C} ⇒ y2 =

c2
c21
y21

z1 ∈ {3t + d1, d1 ∈ C}
z2 ∈ {6t + d2, d2 ∈ C} ⇒ z2 = 2z1 + d2 − 2d1

Only two functions, e2t and t, are needed to parametrize the set of
solutions.
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More complicated example

{
y ′ = yz

y+z

z ′ = − yz
y+z

⇒

{
y ∈ { cet

et−d , c ∈ C, d ∈ C∗}
z = c − y = c − cet

et−d

Once we have et , we can recover all other solutions using two
rational functions! But they are not linear anymore.

This is because this system is in (non-linear) bijection with a linear
system:{

y ′ = yz
y+z

z ′ = − yz
y+z

⇒

{
u = y

z

v = y + z
⇒

{
u′ = u

v ′ = 0
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Our goal

Consider some system of differential equations of the general form:
y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)

where fi ∈ C(x1, · · · , xn).

What we saw: it is possible for solutions of such a system to be in
rational bijection with solutions of a linear system. In that case, we
obtain a rational parametrization by ”transferring” the linear one.

What we’ll do: the converse is true! If such a system has a
parametrization using rational functions, then it must be in
rational bijection with a linear system (of a special form).
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How a model theorist thinks about this

We want a convenient structure to work with differential equations.

The bare minimum is a differential field of characteristic zero:
a field equipped with a differential δ that is additive and satisfies
Leibniz’s rule δ(ab) = δ(a)b + aδ(b). We write δ(a) = a′.

The theory of differential fields of characteristic zero has a model
companion, which is the theory DCF0 of differentially closed fields.

Concretely, we have the differential Nullstellensatz:
let K be a differentially closed field of characteristic zero. If some
finite system of differential (in)equations, defined over some
parameters A ⊂ K , has a solution in some differential field
extension K < L, then it has a solution in K .
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DCF0 = possible behavior of meromorphic functions

But does a differentially closed field have anything to do with
actual differential equations?

Theorem (Seidenberg)

Let (K , δ) be any countable differential field. There exists an open
U ⊂ C such that (K , δ) embeds into (Mer(U), ∂

∂z ).

And any field of meromorphic functions embeds into a differentially
closed field.

In the rest of the talk, I will always work in some differentially
closed field U with C < U .

I assume that C = {x ∈ U : x ′ = 0}.
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Systems of equations and their generic points

We will care about systems of the form:
y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)
(S)

where the fi ∈ F (x1, · · · , xn) are rational functions over some
algebraically closed F < U .

A solution (a1, · · · , an) of (S) is generic if it satisfies no non-trivial
polynomial equation over F .
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Internality
The system: 

y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)
(S)

is C-internal if there are fixed generic solutions b1, · · · , bm of (S)
such that for any generic solution a of (S):

a ∈ C(b1, · · · , bm) .

If a ∈ C(b1, · · · , bm)alg instead, we say it is almost C-internal.

Example{
y ′ = yz

y+z

z ′ = − yz
y+z

⇒

{
y ∈ { cet

et−d , c ∈ C, d ∈ C∗}
z = c − y = c − cet

et−d

pick b1 = et
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First integrals reformulation
From now on, F is always an algebraically closed subfield of C.
The system: 

y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)
(S)

induces a rational vector field on affine space An.
If g ∈ F (x1, · · · , xn), its Lie derivative with respect to (S) is

L(g) =
n∑

i=1

∂g

∂xi
fi = g(y1, · · · , yn)′

A rational first integral of the vector field is a g ∈ F (x1, · · · , xn)
such that L(g) = 0.

Fact

(S) is almost C-internal if and only if there exists F < K such that
(S) has n algebraically independent first integrals defined over K .
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The question

So almost C-internal ⇔ maximal number of algebraically
independent first integrals, over a differential field extension

Question

Is there a criteria for internality not involving picking a field
extension?

Theorem (Rosenlicht, 74)

The system
y ′ = f (y)

is almost C-internal if and only if there is g ∈ F (x) and λ ∈ F
such that either :

▶ L(g) = ∂g
∂x f = 1

▶ L(g) = ∂g
∂x f = λg .
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Our result

Theorem (Eagles-J.)

The system 
y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)

is almost C-internal if and only if there are
g1, · · · , gn ∈ F (x1, · · · , xn), algebraically independent over F , and
such that for all i , either:

▶ L(gi ) = λigi for some λi ∈ F , or

▶ L(gi ) = 1.

Remarks:

▶ at most one gi such that L(gi ) = 1

▶ if λi = 0, we recover a first integral.
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Galois groups

Internal systems are structured by the following classical theorem:

Theorem

If the system (S) is C-internal, then it is acted upon faithfully by
the C-points of an algebraic group.
We call it its Galois group, denoted Aut(S).

Key properties:
▶ if Aut(S) acts transitively, we say (S) is weakly C-orthogonal.

▶ this is equivalent to having no rational first integral

▶ if Aut(S)) acts freely (i.e. without fixed point), we say (S) is
fundamental.
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Weakly orthogonal and fundamental

Fact (Kolchin, translation by Jaoui-Moosa)

If (S) is C-internal, weakly C-orthogonal and fundamental, then
there are:

▶ an algebraic group G defined over F ∩ C,
▶ g ∈ F (x1, · · · , xn)n

such that g induces a bijection between generic points of (S) and
generic point of a full logarithmic differential equation on G over F .

What we can do:

(A) reduce to weakly C-orthogonal and fundamental systems

(B) control what G can appear as a binding group

(C) write concrete equations for the solution to a full logarithmic
differential equation

(D) use g to obtain an explicit condition for internality
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(B) Linear Galois groups are commutative

We will only need the two most basic algebraic groups:

▶ Ga(C) = (C,+),

▶ Gm(C) = (C \ {0}, ·).

Fact

Let F be a field of complex numbers and (S) be internal, weakly
C-orthogonal. If Aut(S) is linear, then it is isomorphic to
Gm(C)k × Ga(C)l , where k ∈ N and l ∈ {0, 1}.

The action of the Galois group is always faithful, and a faithful
transitive action of an abelian group is always free.

⇒ (S) must be fundamental!
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(B) The Galois group is linear

Consider: 
y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)
(S)

where fi ∈ F (x1, · · · , xn).
We see that:

▶ the action of Aut(S) is definably isomorphic to some birational
action of an algebraic group G (C) on the affine space An(C)

▶ some structure of algebraic groups ⇒ the Galois group is linear
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(C) Logarithmic differential equations
To summarize:
▶ F subfield of the complex numbers
▶ (S) C-internal, weakly C orthogonal

⇒ (S) has a linear Galois group
⇒ (S) has Galois group G k

m × G l
a, k ∈ N, l ∈ {0, 1}

⇒ some g1, · · · , gn ∈ F (x1, · · · , xn) inducing a bijection to the
generic type of a full logarithmic differential equation on
(Gm)

k × (Ga)
l

Such an equation can be expressed by:
z ′1 = λ1z1
...

z ′k = λkzk

z ′k+1 = 1 or = λk+1zk+1

and fullness is equivalent to the λi being Q-linearly independent.

Dimension ⇒ either (Gm)
n−1 × Ga or (Gm)

n, i.e. k + 1 = n 17 / 34



(D) What the gi ’s give


y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)

g1,··· ,gn−−−−−→


z ′1 = λ1z1
...

z ′n−1 = λn−1zn−1

z ′n = 1 or = λnzn

So we obtain:

L(gi ) = gi (y1, · · · , yn)′ = λigi if i < n

L(gn) = gn(y1, · · · , yn)′ = 1 or λngn

Q-linear independence of the λi ⇒ algebraic independence of the gi
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Main theorem in the weakly orthogonal case

Theorem (Eagles-J.)

Let F be an algebraically closed field of complex numbers and
some f1, · · · fn ∈ F (x1, · · · , xn). The system

y ′1 = f1(y1, · · · , yn)
...

y ′n = fk(y1, · · · , yn)

is almost C-internal and weakly C-orthogonal if and only if there
are g1, · · · , gn ∈ F (x1, · · · , xn), algebraically independent over F ,
and such that for all i , either:

▶ L(gi ) = λigi for some non-zero λi ∈ F , or

▶ L(gi ) = 1.
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What about the non-weakly C-orthogonal case?

Example

The generic type of: {
y ′ = yz

y+z

z ′ = − yz
y+z

is internal, and not weakly C-orthogonal:
(y + z)′ = 0, so y + z ∈ C, which must be fixed by the binding
group ⇒ the binding group does not act transitively.

Non-weak C-orthogonality was witnessed by a rational first integral
(y , z) → y + z to C.
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In general
Consider a system: 

y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)
(S)

Then there are first integrals π1, · · · , πk such that for any generic
solution a1, · · · , an the system

y ′1 = f1(y1, · · · , yn)
...

y ′n = fn(y1, · · · , yn)
π1(y1, · · · , yn) = π1(a1, · · · , an)
...

πk(y1, · · · , yn) = πk(a1, · · · , an)

(Sπ(a))

is weakly C-orthogonal.
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(A) Reducing to weakly C-orthogonal: proof idea

Let F < C be algebraically closed, and assume system (S) is
C-internal. Fix some generic solution a.
The system Sπ(a) is weakly C-internal and C-internal.

▶ Aut(S) is linear
Galois theory−−−−−−−→ Aut(Sπ(a)) is also linear

▶ Sπ(a) is over over complex parameters. We can (modulo
technicalities) apply our previous theorem to get gi with Lie
derivatives satisfying the desired equations

▶ add the rational first integrals given by the πi
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(A) Reducing to weakly C-orthogonal: proof idea

Let F < C be algebraically closed, and assume system (S) is
C-internal. Fix some generic solution a.
The system Sπ(a) is weakly C-internal and C-internal.

▶ Aut(S) is linear
Galois theory−−−−−−−→ Aut(Sπ(a)) is also linear

▶ Sπ(a) is over constant parameters. We can (modulo
technicalities) apply our previous theorem to get gi with Lie
derivatives satisfying the desired equations

▶ add the rational first integrals given by the πi
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The technicalities

Using our previous results, we obtain some
h ∈ F (π(a))(x1, · · · , xn) such that L(h) = λh or 1.

We want everything to be over F !

We have that h = h̃(x1, · · · , xn, π(a)) for some
h̃ ∈ F (x1, · · · , xn,w1, · · · ,wk)
so we pick:
g(x1, · · · , xn) = h̃(x1, · · · , xn, π(x1, · · · , xn)) ∈ F (x1, · · · , xn).

To show λ ∈ F :

λ ̸∈ F ⇒ g maps to the generic points of the system{
λ′ = 0

z ′ = λz

which is not almost C-internal. But it has to be if (S) is,
contradiction.

24 / 34



Main theorem

Theorem (Eagles-J.)

Let F be an algebraically closed field of complex numbers and
some f1, · · · fn ∈ F (x1, · · · , xn). The system

y ′1 = f1(y1, · · · , yn)
...

y ′n = fk(y1, · · · , yn)

is almost C-internal and weakly C-orthogonal if and only if there
are g1, · · · , gn ∈ F (x1, · · · , xn), algebraically independent over F ,
and such that for all i , either:

▶ L(gi ) = λigi for some non-zero λi ∈ F , or

▶ L(gi ) = 1.
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Orthogonality to C

almost C-internal = maximal number of algebraically independent
rational first integral after base change

orthogonal to C = no rational first integral, even after base change

Theorem (Eagles-J.)

Let F be an algebraically closed field of complex numbers and
some f1, · · · fn ∈ F (x1, · · · , xn). The system

y ′1 = f1(y1, · · · , yn)
...

y ′n = fk(y1, · · · , yn)

is orthogonal to C if and only if there no g such that either
L(g) = λg for some λ ∈ F , or L(g) = 1.
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Some consequences of orthogonality

We can construct new functions using the following operations:

▶ algebraic operations +,×,−,−1,

▶ composition,

▶ integration,

▶ solving linear differential equations.

Starting with polynomials and closing under there operations, we
obtain Umemura’s classical functions.
They include Liouvillian functions, constructed from elementary
functions using the first three operations.

Fact

If (S) is orthogonal to C, then its generic solutions are not
classical.
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An application: the classic Lotka-Volterra system

The Lotka-Volterra system models predator-prey populations:

▶ x represents the prey population,

▶ y represents the predator population,

and is given by, for a, b, c , d positive real numbers:{
x ′ = ax − bxy

y ′ = −cy + dxy

We instead pick a, b, c , d ∈ C \ {0}.
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Graphs of (real) solutions{
x ′ = ax − bxy prey

y ′ = −cy + dxy predator

Credit: Ian Alexander (parameters, PNG version) Krishnavedala
(vectorisation), from wikipedia.
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Mostly not Liouvillian

Theorem (Eagles-J.)

Unless a = c , the generic solution of the Lotka-Volterra system:{
x ′ = ax + bxy

y ′ = cy + dxy

is orthogonal to the constants, and thus not Liouvillian. If a = c it
is elementary (proved by Varma [3]).

Enough to show that the partial differential equations:

c
∂g

∂x0

(a
c
x0 + x0x1

)
+c

∂g

∂x1
(x1 + x0x1) =


0

1

λg (λ ∈ Q(a, b, c , d)alg)

have no rational solutions.
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No rational solutions

Let F = Q(a, b, c, d)alg.

The 0 and 1 cases are easy. The λg case is more complicated.

We consider the field of Laurent series:

K (x0)((x1)) =

{ ∞∑
i=k

aix
i
1 : k ∈ Z, ai ∈ F (x0)

}
We have a differential field embedding:

(F (x0, x1),
∂

∂x0
,

∂

∂x1
) → (F (x0)((x1)),

∂

∂x0
,

∂

∂x1
)

From our partial differential equation, we get linear differential
equations (in the variable x0) that the ai must satisfy. There is an
algorithm to find those. We obtain a

c ∈ N.
We do the same for K (x1)((x0)) and obtain c

a ∈ N!
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Further work

▶ add polynomial equations between the yj . Issue: The binding
group need not be linear anymore. But the Chevalley
decomposition should help.

▶ work over non constant parameters, for example over C(t).
▶ an obstacle: any algebraic group can appear as a binding

group by Kolchin’s solution to the inverse Galois problem.
▶ hope in low dimension. The case n = 1 has essentially been

solved by Jaoui-Moosa [2]. If n = 2, we are interested in
connected algebraic groups acting rationally on P2, which were
classified by Enriques [1].

▶ can model theory say anything about parametrizations by
non-rational functions? For example solutions of
y ′′y − (y ′)2 = 0 are {cedx : c, d ∈ C}. The generic type is not
almost C-internal, essentially because x → ex is not definable
in DCF0.
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Thank you!

Theorem (Eagles-J.)

Let F be an algebraically closed field of complex numbers and
some f1, · · · fn ∈ F (x1, · · · , xn). The system

y ′1 = f1(y1, · · · , yn)
...

y ′n = fk(y1, · · · , yn)

is almost C-internal (resp. C-orthogonal) if and only if there are
g1, · · · , gn ∈ F (x1, · · · , xn) (resp. no such g), algebraically
independent over F such that for all i :

▶ L(gi ) = λigi for some λi ∈ F , or

▶ L(gi ) = 1.
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Rémi Jaoui and Rahim Moosa.
Abelian reduction in differential-algebraic and bimeromorphic
geometry.
To appear in Annales de l’Institut Fourier, 2022.

VS Varma.
Exact solutions for a special prey-predator or competing
species system.
Bulletin of Mathematical Biology, 39:619–622, 1977.

34 / 34


