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What is this talk about?

This talk is about elimination of imaginaries in henselian valued
fields of equicharacteristic zero (joint work Rideau-Kikuchi).

1 Introduction to model theory of valued fields (AKE),

2 Introduction to elimination of imaginaries,

3 How to eliminate imaginaries in henselian valued fields? An
Ax-Kochen/Ershov style strategy.

4 The results.



Valued Fields

Definition
Let K be a field and Γ and ordered abelian group. A map
v : K → Γ ∪ {∞} is said to be a valuation if:

1 v(x) = ∞ if and only if x = 0,

2 v(xy) = v(x) + v(y),

3 v(x + y) ≥ min{v(x), v(y)}.



An example

Consider K = C(t) and Γ = (Z,+,≤, 0). Given p(t) ∈ C[t] we set:

v(p(t)) = number of times p vanishes at 0,

Example:

v(t(t − 2)) = 1

v(t + 1) = 0

v(t2(t + 1)) =?

The extension: v
(p(t)
q(t)

)
= v(p(t))− v(q(t)).

number of times 0 is a zero -number of times 0 is a pole.
Example:
v
(
2
t

)
= v(2)− v(t) = 0− 1 = −1.
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Notation and terminology

Let (K , v) be a valued field. Then:

1 O = {x ∈ K | v(x) ≥ 0} is the valuation ring,

2 M = {x ∈ K | v(x) > 0} its maximal ideal,

3 k = O/M is the residue field,

4 Γ is the value group.
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Notation and terminology: example

Let K = C(t) and v the order of vanishing at 0. Then:

1 O = {x ∈ K | v(x) ≥ 0} is the valuation ring,
In our example O = C[t](t) i .e. quotients of polynomials
whose denominator doesn’t vanish at 0.

2 M = {x ∈ K | v(x) > 0} its maximal ideal,

In our example M = tC[t](t) i .e. {
tp(t)
q(t) | p(t)

q(t) ∈ O}.
3 k = O/M is the residue field,

In our example, is isomorphic to C.
4 Γ is the value group.

In our example (Z,+,≤, 0)



Valued fields

Proposition

Let (K , v) be a valued field then exactly one of the following holds:

• both K and k are of characteristic p (p a prime),

• The main filed K is of characteristic 0 while k is of
characteristic p (example: p-adics).

• both K and k are of characteristic zero, then we say it is of
equicharacteristic zero. (All the valued fields in this talk!)



Henselian valued fields

There is a very nice subclass of valued fields!

Definition
A valued field (K , v) is said to be henselian if there is a unique
extension of the valuation on K alg .

Equivalently, if every non-singular zero of a polynomial over the
residue field can be lifted to the main field.



Model theory of henselian valued field

SPINE PHILOSOPHY: AX-KOCHEN/ERSHOV PRINCIPLE

Theorem (Ax-Kochen/Ershov)

Let (K , k, Γ) and (K ′, k ′, Γ′) be two henselian valued fields of
equicharacteristic zero, then K ≡ K ′ if and only if k ≡fields k

′ and
Γ ≡OAG Γ′.

Principle

The model theory of a henselian valued field of equicharacteristic
zero is controlled by its residue field and its value group.



Fruitful applications of this principle
Description of the definable sets: Elimination of field
quantifiers.

The quotient group RV = K×/(1 +M) one has an exact sequence
associated.

1 → k× → RV → Γ → 0

Pas: An equicharacteristic zero henselian valued field with an
angular component eliminates field quantifiers.

More Examples:
Basarab-Kulhmann (down to the RVn-sorts).



Interpretable sets

Definition
Let D be a definable set and E a definable equivalence relation on
D, the definable quotient D/E is said to be an interpretable set.

Example: The projective space in the structure (k,V ) with the
LVect language, where we have two sorts:

• one for the field k equipped with the language of rings
Lring = {+, ·, 0, 1},

• one for the vector space V with the group structure, i.e.
equipped with LG = {0,+}.

• A map λ : k× V → V interpreted as scalar multiplication.
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Example: Interpretable sets

The projective space is interpretable in (k,V )

How do we interpret the projective space?

One can define the equivalence relation that states that two
vectors lie in the same line that passes through the origin, i.e.

E (v ,w) if and only if ∃ℓ ∈ k v = ℓw = λ(ℓ,w)



Elimination of imaginaries

We will denote as T a complete first order theory and M its
monster model.

Definition
Let T be a complete first order theory, we say that it uniformly
eliminates imaginaries if for every ∅ definable set D ⊆ Mn and ∅
definable equivalence relation E on D there is an ∅-definable
function f : D → Mm such that xEy ↔ f (x) = f (y).

So essentially definable sets are closed under definable
quotients.
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An intuitive approach of elimination of imaginaries

What if a theory does not have elimination of imaginaries?
What could we do?

There is an analogue of taking the Morleyization to have quantifer
elimination.

Brutal approach: For each D ∅ definable set, and definable
equivalence relation E on D we add a sort SE = D/E and a map
π : D → SE sending each element to its class.
But you might be unhappy about it...

One is aiming to have a tractable description of the
interpretable sets.
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An intuitive approach of elimination of imaginaries

Reasonable approach: Try to find the minimal amount of sorts that
are required to be consider so that we have elimination of
imaginaries but the description of the definable quotients is still
tractable.

Picture:



Towards an Imaginary Ax-Kochen/Ershov Principle

What was known about elimination of imaginaries in henselian
valued fields?

• ACVF (Haskell-Hrushovski-Macpherson) down to the
geometric sorts,

• p-adics and their ultraproducts (E. Hrushovski, B. Martin and
S. Rideau-Kikuchi) down to the geometric sorts,

• real closed valued fields (T. Mellor) down to the geometric
sorts.

Conjecture (Hrushovski, 2000)

Is there an Imaginary Ax-Kochen/ Ershov principle for henselian
valued field encompassing all the previous results?



Model theory of henselian valued field

How to tackle a model theoretic question in henselian valued
fields? In particular: How to eliminate imaginaries in
henselian valued fields?

Following the Ax-Kochen/Ershov style principle, one can set up a
program in three steps for the equicharacteristic zero case:

• First step: assume the residue field as docile as possible and
study which obstruction the value group brings to the picture
[V. 2022];

• Second step: Make the value group as tame as possible and
understand the difficulties coming from the residue field
[Hils,Rideau-Kikuchi 2022];

• Third step: Combine the solutions of the first two steps to
provide a full picture of the interpretable sets (definable
quotients) in henselian valued field. [V., Rideau-Kikuchi 2023].
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Obstructions coming from the value group
Assume the residue field as docile as possible and study which
obstruction the value group brings to the picture.

Context: suppose the residue field is algebraically closed.

Easiest case definably complete: (Q,+, 0,≤) and (Z,+, 0,≤).

More general ordered abelian groups: (Z2,≤lex ,+, 0), which has
definable convex subgroups!
Therefore, new end-segments! Not only (α,∞) or [α,∞)



Obstructions coming from the value group

Key point: the complexity of the value group is reflected by
increasing the class of O-modules.
How do they increase?One dimensional case:

MS = {x ∈ K | v(x) ∈ S}

Higher dimensional case: Given M ⊆ Kn an O-module,
M ∼= ⊕n

i=1Ii where Ii is a fractional ideal of O or a copy of K .
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Obstructions coming from the value group: Canonical
modules and Stabilizers

New O-modules will bring new quotients:

GLn(K )/Stab(I1,...,In) .

Given a sequence of fractional ideals (I1, . . . , In) we can define a
canonical module

C(I1,...,In) := I1e1 + · · ·+ Inen

where {e1, . . . , en} is the standard basis of Kn.

Let GLn(K ) be the group of invertible linear transformations and
define the group,

Stab(I1,...,In) = {A ∈ GLn(K ) | AC(I1,...,In) = C(I1,...,In)}.



The Stabilizer Sorts

If the residue field is algebraically closed, then these
quotients are everything that you need to add!
So we take the collection of all those quotients

Mod =
⋃

n∈N,(I1,...,In)

GLn(K )/ Stab(I1,...,In) .

(this is adding codes for all the definable O-submodules!)

Then the stabilizer sorts are K ∪Mod.



Obstructions coming from the residue field

[Hils, Rideau-Kikuchi] Make the value group as tame as possible
and understand the difficulties coming from the residue field.

Context: they assume the value group divisible or a Z-group and
try to answer the following question:

How is the complexity of the residue field reflected in
elimination of imaginaries in the henselian valued field?

Given a O-lattice s ⊆ Kn the quotient module s/Ms is a k-vector
space!

Once we name a basis, it is definably isomorphic to kn, so it is
natural that it inherits the complexity of the residue field!, but
without that basis, imaginaries of s/Ms cannot be identified
with imaginaries of k.
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The (generalized) k-linear imaginaries

Combing efforts!

Context: Let M ⊆ Kn be an O-module.

1 V = M/MM is a k-vector space.

2 So we want to consider the two sorted structure (k,M/MM).

The language LVect: We have two sorts:

• one for the field k equipped with the language of rings
Lring = {+, ·, 0, 1},

• one for the vector space V with the group structure, i.e.
equipped with LG = {0,+}.

• A map λ : k× V → V interpreted as scalar multiplication.



The k-linear imaginaries

1 We consider the LVect-theory of dimension ℓ vector spaces
over a field.

2 For each X definable quotient of the vector space sort V in
LVect. For each M ⊆ Kn a O-module:

X (k,M/MM) := the interpretation of X

in the structure (k,M/MM).

We define Tn,X = ⊔M∈ModX
(k,M/MM).



The k-linear imaginaries

Recall: Tn,X = ⊔M∈ModX
(k,M/MM) where X (k,M/MM) is the

interpretation of X in (k,M/MM).

Definition (The (generalized)- k linear imaginaries)

kleq := ⊔n,XTn,X .



The results

Theorem (Rideau-Kikuchi, V. )

Let M be a henselian valued field of equicharacteristic zero with
angular components. Assume that the value group satisfies
property D. Then M (weakly) eliminates imaginaries in
K ∪Mod ∪ kleq ∪ Γeq.



The results

Theorem (Rideau-Kikuchi, V.)

Let M be a henselian valued field of equicharacteristic zero.
Assume that:

• the value group satisfies Property D,
• one of the following conditions holds:

(a) for every n ∈ Z≥2 one has [Γ : nΓ] < ∞ and the pre-image in
RV of any coset of nΓ contains a point which is algebraic over
∅;

(b) or, the multiplicative group k× is divisible.

Then M has (weak) elimination of imaginaries in
K ∪Mod ∪ kleq ∪ Γeq.



A little about the proof

Theorem (Hrushovski)

Let T be a first order theory with home sort K (meaning that
Meq = dcleq(K )). Let G be some collection of sorts. Suppose
that:

• DENSITY OF DEFINABLE TYPES: For every non-empty
definable set X ⊆ K there is an acleq(⌜X⌝)-definable type in
X ,

• CODING OF DEFINABLE TYPES: Every definable type in
Kn has a code in G (possibly infinite). This is, if p is any
(global) definable type in Kn, then the set ⌜p⌝ of codes of the
definitions of p is interdefinable with some (possibly infinite)
tuple from G,

Then T weakly eliminates imaginaries down to G.



The general strategy

Key point: density of definable types won’t work if the
residue field is very wild.
There are 3 steps in the proof:

1 Step 1: We show density of definable types in a reduct.

2 Step 2: We show that if a type in the reduct is A-invariant
then any of its completions is RV ∪ LinA invariant.

3 Step 3: We apply step 1, 2 and the fact that RV ∪ LinA to
show that any imaginary is in the definable closure of
RV ∪ kleq.

4 Step 4: We break imaginaries of RV down to kleq and Γeq.



The first step

Context
Let K be a henselian valued field of equicharacteristic zero and
K1 = Kur be its maximal unramified extension.

We work in two languages:

1 L1: For K1 = Kur

The usual 2-sorted language (K , Γ) with Γ Morleyized.

2 L: For the structure K
the 3-sorted language (K ,RV , Γ) with Γ Morleyized.



the first step

Theorem (Rideau-Kikuchi,V.)

Let A = acleq(A) ⊆ K eq then for any L(A)-definable subset
X ⊆ Kn there is a type p(x) ∈ S1

n (K ) such that:

1 p(x) ∪ X is consistent.

2 It is L1(G(A) ∪ Γeq(A))-definable.
(Its canonical base can be coded in G ∪ Γeq)



Sketch of the argument

The one-dimensional case: Let X ⊆ K L(A)-definable.
1 Step 1: We first find a generalized ball U that is

L1(A)-definable and such that the generic type
ηU(x) ∈ S1(K ) is consistent with X .

2 Step 2: We complete it to a full definable type in L1(A).

Key point: If c ⊨ ηU(x) then for any a, a′ ∈ U(K ) one has
v(c − a) = v(c − a′) = γ.
Closed: unique extension.
Open: Property D allows us to complete the type.



Sketch of the argument: how to do step 1?
1 Let B be the set of closed and open balls. We define the

pre-order

b1 ⊴ b2 if and only if b1 ∩ X ⊆ b2 ∩ X .

2 This is a pre-order with associated equivalence relation ≡.
The order T is a tree (remove the class of balls that don’t
intersect X ).

3 For each class E we associate a generalized ball bE =
⋂

b∈E b.



Sketch of the argument: how to do step 1?

1 For each class E if ηbE (x) is not consistent with X , by
compactness E has finitely many predecessors for ⊴, each of
them in acleq(⌜E⌝,A).

2 Either the statement holds or the tree has an initial discrete
finitely branching tree of L1(A)-definable classes.

3 By 1-h-minimality. If the second case holds we can find bE
such that bE ∩ X = bE . Take its generic type!



Step 2: Invariant extensions

How to go from an L1 definable type to a complete type?

Let:
LinA =

⊔
s∈dcl1(A)

M/MM.

Theorem (Rideau-Kikuchi, V.)

Let M ≺ N ⊨ Hen0,0 sufficiently saturated and homogeneous. Let
A = acleq(A) ⊆ M. Let a ∈ K (N) and assume that tp1(a/M) is
Aut(M/A)-invariant.

Then tp(a/M) is Aut(M/ARV (M)LinA(M))-invariant.

Possible complain: RV ∪ LinA is big!



Despite being big is a stably embedded set

Proposition

Let M be sufficiently saturated and homogeneous and D be a
multi-sorted structure that is stably embedded. Let e ∈ M, then if
e is fixed by every σ ∈ Aut(M/D(M)) then e ∈ dcl(D(M)).

In our context: D = RV ∪ LinA.



Weakly coding

Theorem (Rideau-Kikuchi, V.)

Let M ⊨ Hen0,0 and whose value group satisfies Property D. Let
e ∈ Meq and A = acleq(e). Then:

e ∈ dcleq(G′(A) ∪ (RV ∪ LinG′(A))
eq(A)).

G′(A) = G(A) ∪ Γeq(A).



Weakly coding

• Let M ⊨ T sufficiently saturated and homogeneous, e ∈ Meq

and A = acleq(e).

• There is L-definable map g and tuple a ∈ K (M) such that
g(a) = e. Let X = g−1(e).

• Apply step 1!
We can find p ∈ S1

x (M) such that:
• p ∪ X is consistent.
• p is L1(G′(A))-definable.

• Take a ⊨ p ∪ X then tp1(a/M) is L1(G′(A))-definable.



Weakly coding

• Apply step 2:
We had found a ⊨ p ∪ X then tp1(a/M) is
L1(G′(A))-definable.
Then The full type tp(a/M)- is
Aut(M/G′(A)RV (M)LinG′(A)(M)) invariant!

• Since e = g(a) for any
σ ∈ Aut(M/G′(A)RV (M)LinG′(A)(M)), σ(e) = e.

• By Fact applied to D = RV ∪ LinG′(A) (is stably embedded!)

e ∈ dcleq(G′(A)RV (M)LinG′(A)(M))



The conclusion

• Since e ∈ dcleq(G′(A)RV (M)LinG′(A)(M)).

• There is h an L(G′(A))-definable function a tuple
c ∈ RV (M)m × LinkG′(A)(M) such that h(c) = e.

• Take Z = h−1(e). This is an G′(A)-definable set and
Z ⊆ RV ∪ LinG′(A).

• Thus ⌜Z⌝ ∈ (RV ∪ LinG′(A))
eq(A).

• Then
e ∈ dcleq(G′(A)⌜Z⌝) ⊆ dcleq(G′(A) ∪ (RV ∪ LinG′(A))

eq(A)).



Thank you!

Many thanks for your attention!


