A NOTE ON THE IMAGE OF CONTINUOUS HOMOMORPHISMS OF LOCALLY PROFINITE GROUPS

KWANGHO CHOIY

Proposition 1. Let G be a topological group having a basis of neighbourhoods of the identity 1 consisting of open subgroups. Then for any continuous homomorphism ρ : $G \longrightarrow GL_d(\mathbb{C})$, ker ρ (=the kernel of ρ) is open.

Proof. Since ker ρ is a subgroup of G, it suffices to show that ker ρ contains an open subgroup. From the Lemma 2("No Small Subgroup") below, there exists a neighbourhood B of the identity $e \in GL_d(\mathbb{C})$ such that the only subgroup of $GL_d(\mathbb{C})$ contained in B, is $\{e\}$. The pre-image $\rho^{-1}(B)$ is an open set in G containing 1 and then by the hypothesis on G, we get an open subgroup $U \subset \rho^{-1}(B)$. Since $\rho(U)$ is a subgroup of $GL_d(\mathbb{C})$ contained in the open subset B, it follows that $\rho(U) = e$. Hence, we have an open subgroup $U \subset \ker \rho$.

Lemma 2 (No Small Subgroup). There exists an open set B in $GL_d(\mathbb{C})$ such that B does not contain any subgroup $\neq \{e\}$, e = the identity element of $GL_d(\mathbb{C})$.

Proof. Since the unit circle S^1 in $\mathbb{C}^{\times} (= GL_1(\mathbb{C}) \simeq$ the center Z of $GL_d(\mathbb{C}))$ is a subgroup of $GL_d(\mathbb{C})$, it is enough to verify the argument for S^1 . We claim that an open set $S^{1/2} :=$ $\{z \in S^1 : Re(z) > 0\}$ in S^1 does not contain any subgroup $\neq \{e\}$. Suppose that there exists a subgroup $H \supseteq \{e\}$ in $S^{1/2}$. Take $e^{\theta\sqrt{-1}} \in H$ for $0 \leq \theta < \pi/2$. Let $m \in \mathbb{Z}_{>0}$ be a minimal integer such that $m\theta > \pi/2$. It then turns out that $\pi/2 < m\theta < \pi$ by the minimality. It follows that $e^{m\theta\sqrt{-1}} \notin H$. This completes the proof. \Box

Remark 3. 3 (a) In general, any Lie group \mathcal{G} satisfies the previous Lemma 2("No Small Subgroup"). To see it, let \mathfrak{b} be a small ball around 0 in the Lie algebra \mathfrak{g} of \mathcal{G} such that the exponential map exp : $\mathfrak{g} \longrightarrow \mathcal{G}$ induces a diffeomorphism between \mathfrak{b} and its image. Set $B = \exp(\mathfrak{b}/2)$. Then for every $x \in B$ which is not the identity, there exists m > 1 such that $x^m \notin B.(\mathrm{cf.\ http://mathoverflow.net/questions/61921/on-closed-totally-disconnected -subgroups-of-connected-real-lie-groups.) (b) Conversely, it is known that a locally compact, separable metric, locally connected group with no small subgroup is a Lie group. (cf. Hilbert's fifth problem.)$

Now, we shall generalize Proposition 1 as follows:

Main Theorem. Let \mathcal{G} be a Lie group or $GL_d(\mathbb{C})$, and G a topological group having a basis of neighbourhoods of the identity 1 consisting of open subgroups. Then for any continuous homomorphism $\rho: G \longrightarrow \mathcal{G}$, ker ρ (=the kernel of ρ) is open.

Proof. It is a consequence of Remark 3 and the proof of Proposition 1.

Date: Aug. 30, 2011. Refer to MA 598: Introduction to p-adic Galois Representation lectured by Prof. Tong Liu, Fall 2011, Purdue University.

Example 4 (Examples for G in Main Theorem). Here are examples for G satisfying the hypothesis in Main Theorem.

- (a) Any discrete group G.
- (b) Any profinite group G, i.e. a compact, and totally disconnected topological group, equivalently, isomorphic to the projective limit of discrete finite groups. It is known that the open compact subgroups of G form a basis of neighbourhoods of the identity (cf. [Serre's Galois Cohomology, §1. Proposition 0]). In particular, Gal(\$\bar{F}/F\$) for any field F.
- (c) Let **G** be a connected reductive linear(=affine) algebraic group over a local field F. Then the set $G = \mathbf{G}(F)$ of F-rational points forms a group and satisfies the hypothesis in Main Theorem. In particular, for $F = \mathbb{Q}_p$, a finite prime p and $\mathbf{G} = \mathbb{G}_m$, the multiplicative group, $\mathbf{G}(F) = \mathbb{Q}_p^{\times} \supseteq \mathbb{Z}_p^{\times} \supseteq (1 + p\mathbb{Z}_p^{\times}) \supseteq (1 + p^2\mathbb{Z}_p^{\times}) \supseteq \cdots \supseteq \{1\}$.
- (d) Any locally profinite group G, i.e. a topological group G such that every open neighbourhood of the identity in G contains a compact open subgroup of G. In fact, groups in (a), (b) and (c) are locally profinite.

Note. A locally profinite group is locally compact and totally disconnected. Conversely, it is known that a compact, totally disconnected topological group is *profinite*.(see [Serre's Galois Cohomology, §1. Proposition 0]). Likewise, a locally compact, totally disconnected group is *locally profinite*.(cf. [Bushnell-Henniart's The Local Langlands Conjecture for GL(2), §1.1]).

Note. An arbitrary topological space is said to be *profinite* if it homeomorphic to the projective limit of a sequence of finite sets. It is said to be *locally profinite* if every point possesses a profinite neighbourhood.

Corollary 5 (Corollary to Main Theorem). Let G be a locally profinite group and \mathcal{G} a Lie group or $GL_d(\mathbb{C})$. Then for any continuous homomorphism $\rho: G \longrightarrow \mathcal{G}$, ker ρ (=the kernel of ρ) is open.

Corollary 6. Let G be a profinite group and \mathcal{G} a Lie group or $GL_d(\mathbb{C})$. Then any continuous homomorphism $\rho: G \longrightarrow \mathcal{G}$ is finite, i.e. the image $\rho(G)$ is a finite subgroup in \mathcal{G} .

Proof. The image $\rho(G)$ is isomorphic to $G/\ker(\rho)$, which is finite, since $\ker(\rho)$ is an open (normal) subgroup in the compact group G due to Corollary 5.

Finally, we present the following corollary which would give an answer to some question in class on August 25, 2011.

Corollary 7. Every complex Galois representation, i.e. continuous homomorphism from (any) Galois group to $GL_d(\mathbb{C})$, is finite.