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EXTENDED DIVERGENCE-MEASURE FIELDS,

THE GAUSS-GREEN FORMULA

AND CAUCHY FLUXES

GUI-QIANG G. CHEN, CHRISTOPHER IRVING, AND MONICA TORRES

Abstract. We establish the Gauss-Green formula for extended divergence-measure fields
(i.e., vector-valued measures whose distributional divergences are Radon measures) over
open sets. We prove that, for almost every open set, the normal trace is a measure sup-
ported on the boundary of the set. Moreover, for any open set, we provide a representation
of the normal trace of the field over the boundary of the open set as the limit of measure-
valued normal traces over the boundaries of approximating sets. Furthermore, using this
theory, we extend the balance law from classical continuum physics to a general framework
in which the production on any open set is measured with a Radon measure and the asso-
ciated Cauchy flux is bounded by a Radon measure concentrated on the boundary of the
set. We prove that there exists an extended divergence-measure field such that the Cauchy
flux can be recovered through the field, locally on almost every open set and globally on

every open set. Our results generalize the classical Cauchy’s Theorem (that is only valid
for continuous vector fields) and extend the previous formulations of the Cauchy flux (that
generate vector fields within Lp). Thereby, we establish the equivalence between entropy
solutions of the multidimensional nonlinear partial differential equations of divergence form
and of the mathematical formulation of physical balance laws via the Cauchy flux through
the constitutive relations in the axiomatic foundation of Continuum Physics.

1. Introduction

Divergence-measure fields are defined as vector-valued fields F = (F1, F2, · · · , Fn) whose
distributional divergences are represented by (signed) Radon measures. An underlying
connection between divergence-measure fields and hyperbolic conservation laws was first
observed in [10], and such vector fields over domains with Lipschitz boundary were analyzed
in [10,11]. Since then, the analysis of divergence-measure fields has depended essentially on
the regularity of F . For example, the divergence-measure fields were extensively analyzed
first in L∞ in [19] and then in Lp in [9]. See also [1, 4, 14, 16, 20–25, 58, 59, 62–64] and the
references therein for further developments for the theory of divergence-measure fields. In
this paper, we focus on the case when F is only a vector-valued Radon measure. More
precisely, we analyze extended divergence-measure fields which are defined as vector-valued
Radon measures whose distributional divergences are Radon measures.

Our approach in this paper is motivated by the previous results in the Lp setting in
[9, 19]. However, the case of extended divergence-measure fields is more delicate, since F
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may concentrate on lower dimensional sets (for instance, rectifiable curves). We prove that,
for almost every open set, the normal trace of an extended divergence-measure field is a
Radon measure supported on the boundary of the set. Moreover, for every open set, the
normal trace distribution can be computed as the limit of measure-valued normal traces
over the boundaries of approximating sets. Equipped with these results, we further develop
a theory of Cauchy fluxes, starting from the balance law and establishing a one-to-one
correspondence:

{Cauchy fluxes F in Ω} ←→ {Extended divergence-measure fields F in Ω}

via the normal trace. The precise statement is given in §6.2.
In the development of a theory of divergence-measure fields, one of the fundamental issues

is whether a Gauss-Green formula involving these weakly differentiable vector fields can still
be provided. We refer the reader to [18] for a detailed exposition on the development of
this fundamental formula, starting from Lagrange (1762) and culminating with the classical
formula ∫

U
φ divF dx+

∫

U
∇φ · F dx = −

∫

∂U
φF · ν dHn−1, (1.1)

valid for any smooth vector field F , smooth test function φ, and open set U with smooth
boundary and interior unit normal ν. A first extension of this formula was achieved by
Federer and De-Giorgi [28, 29, 36, 37] for the cases of Lipschitz vector fields and sets with
irregular boundaries (sets of finite perimeter) by using tools of geometric-measure theory.

Further extensions of (1.1) to divergence-measure fields require a notion of normal trace
on the boundary ∂U of any open U . For the case of bounded vector fields and sets of finite
perimeter, the approach in [19] consisted in constructing essentially interior and exterior

approximations of the sets of finite perimeter with smooth sets and then obtaining the
normal traces as the limits of classical normal traces on the smooth approximating sets,
which leads to the existence of interior and exterior traces for every set of finite perimeter
(see also [23]). This approach is consistent with applications to hyperbolic conservation laws
since solutions to these equations have jumps across the shock waves (cf. [8,10,27,45]). For a
divergence-measure field whose underlying field is bounded, given any set of finite perimeter,
it was shown in [19] that the normal trace is a bounded function supported on the reduced
boundary of the set. For the case of an unbounded vector field, the normal trace is classical
for almost every open set, and it was shown in [9] that the normal trace distribution on
every open set can be computed as the limit of the classical normal traces on the boundaries
of approximating sets. For unbounded vector fields, several counterexamples show that the
normal trace distribution can not be represented in general as a measure supported on the
boundary of the set (see for instance [9, 18, 64]). The technique that we use in this paper
in order to generalize (1.1) to the case of extended-divergence fields is the disintegration of

measures.
As indicated earlier, divergence-measure fields arise naturally in the field of nonlinear

hyperbolic conservation laws:

∂tu+

m∑

j=1

∂xj fj(u) = 0 for (t, x) ∈ R+ × Rm,

or in short form

∂tu+ divx f(u) = 0 for (t, x) ∈ R+ × Rm, (1.2)
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where n = m+1, taking the row-wise divergence of f(u) = (f1(u), f2(u), · · · , fm(u)), where
where f

⊺
i : RN → Rm for i = 1, · · · ,m and u = (u1, u2, · · · , uN )⊺. One of the main features

of (1.2) is that, no matter how smooth the initial data start with, the solution may develop
singularities to become discontinuous or singular (unbounded or measure-valued). Physical
relevant solutions, so-called entropy solutions, of (1.2) are required to be characterized by
the entropy inequality:

∂tη(u) + divx q(u) ≤ 0 (1.3)

that holds in the distributional sense for any entropy-entropy flux pair (η,q) = (η, q1, · · · , qm)
(i.e., ∇qi(u) = ∇η(u)fi(u), i = 1, · · · ,m) which is convex in that ∇2η(u) ≥ 0, for which
the field (η(u(t, x)),q(u(t, x))) is defined. From (1.3), it follows that there is a non-negative
measure ση such that

− divt,x(η(u(t, x)),q(u(t, x))) = ση.

Therefore, (η(u(t, x)),q(u(t, x))) is an extended divergence-measure field. To study the
jumps of entropy solutions across shock waves, we want to obtain the interior and exte-
rior normal traces of entropy-entropy flux fields of the solutions on the shock waves by
approximating them with smooth surfaces.

The theory of divergence-measure fields in L∞ has been applied to the analysis of prop-
erties of entropy solutions of nonlinear hyperbolic conservation laws (1.2); see for instance
[10,17,18] and the references cited therein, as well as §12 below for the details. Divergence-
measure fields also appear in many other areas of analysis, including the study of prescribed
mean curvature equations, the 1-Laplacian, the continuity equation, and related topics. We
refer to [26,44,46–48,55–57] and the references therein. The theory of divergence-measure
fields (such as normal traces, Gauss-Green formulas, and product rules, among others) pro-
vide a mathematical foundation for developing new techniques and tools for entropy meth-
ods, measure-theoretic analysis, partial differential equations, free boundary problems, and
related areas.

Furthermore, there are underlying intrinsic connections between divergence-measure fields
and the Cauchy fluxes for the physical balance laws in Continuum Physics. In this paper, we
further analyze such connections and present how the Cauchy fluxes can be represented by
extended divergence-measure fields. The origin of the study of Cauchy fluxes dates back to
the fundamental paper by Cauchy [6] who considered the balance law in Classical Physics:

∫

U
p(x) dx =

∫

∂U
f(x, ν(x)) dHn−1(x) for any U ⋐ Ω, (1.4)

where Ω is a bounded open set, ν is the interior unit normal, the production p(x) is a
bounded function in x ∈ Ω, and the density function f(x, ν) is continuous in x ∈ Ω. The
balance law postulates that the production of a quantity in any bounded open set U ⋐ Ω
is balanced by the flux of this quantity through ∂U . It was shown in [6] that there exists a
continuous vector field F such that

f(x, ν) = F (x) · ν. (1.5)

From classical continuum physics, it follows that the object of study should be the total
flux across a surface S contained in ∂U , that is,

F(S) =

∫

S
f(x, ν(x)) dHn−1(x).

In this paper, we formulate the conditions on the Cauchy flux F which guarantee the ex-
istence of an extended divergence-measure field F with the property that F(S) can be
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recovered through the normal trace of F on open sets. This recovery is global for every

open set, and local for almost every open set. Since the fundamental work of Cauchy [6],
some important developments have been made on the problem of removing the continuity
assumption; see [9, 19, 31, 43, 52, 59–63, 67] and the references cited therein. We refer the
reader to §6.1 for a more detailed description of the history of Cauchy fluxes and contribu-
tions of the aforementioned references.

Classically, the derivation of nonlinear system (1.2) of conservation laws is carried out
directly from the balance law (1.4) under the assumption that the vector field is classically
differentiable. This procedure is not rigorous, since the solutions to (1.2) may be discontin-
uous, or even measure-valued, in general. We seek to rigorously derive (1.5) under a general
framework with much weaker assumptions. We consider the generalized balance law:

σ(U) = F(∂U) for any U ⋐ Ω,

where the production σ is a Radon measure and the Cauchy Flux F is bounded by a Radon
measure concentrated on the boundary ∂U of U (see Definition 6.4). Moreover, we seek to
recover the flux locally as

FU (S) = (F · ν)∂U (S), (1.6)

valid for almost all open U ⋐ Ω and all Borel S ⊂ ∂U , where the right-hand side is the
normal trace of F to be made precise in Definition 2.4. An extensive analysis has been
made when the underlying field is bounded or lies in Lp, however a complete treatment in
the measure-valued case has remained open, which is one of our motivations.

In this paper, we propose a general formulation for the Cauchy flux in Definition 6.4,
which encapsulates the case of measure-valued fields. One of our main results, Theorem
6.6, states that the balance law, together with the conditions imposed on the Cauchy flux,
implies the existence of an extended divergence-measure field F such that the Cauchy flux
can be locally recovered through the normal trace of F on the boundary of almost every
open set in the sense of (1.6).

The outline of this paper is as follows: In §2, we introduce the distributional normal trace
and a product rule for extended divergence-measure fields. We show in §3, more precisely
in Theorem 3.3, that the disintegration of measures yields the Gauss-Green formulas for
extended divergence-measure fields. Further properties of this disintegration are studied in
§4. In particular, Theorem 4.1 is a coarea-type formula for divergence-measure fields. In
§5, the localization properties of the normal trace are developed, which further motivates
our notion of the Cauchy flux in the sequel. In §6–§9, we are devoted to the analysis of the
Cauchy flux and the proof of Theorem 6.6. The extensions of the aforementioned results
to general open sets U ⊂ Ω are analyzed in §10. In §11, we discuss the solvability of the
equation − divF = σ. Finally, in §12, we apply the theory of Cauchy fluxes to study the
equivalence between entropy solutions of the multidimensional nonlinear partial differential
equations of balance laws and of the mathematical formulation of physical balance laws
through the constitutive relations in the axiomatic foundation of Continuum Physics.

2. Extended Divergence-Measure Fields and Distributional Normal Traces

We start this section by introducing some basic notation and recalling some properties
of Radon measures, and then introduce divergence-measure fields and the normal traces.
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2.1. Preliminary notions. Throughout this paper, we work with open subsets Ω ⊂ Rn,
with the standing assumption that n ≥ 2 unless otherwise specified. We use Br(x) to
denote an open ball of radius r > 0 centered at x ∈ Rn; more generally, we write Br(A) =⋃

a∈ABr(a) for a set A ⊂ Rn. For any set A ⊂ Rn, denote the characteristic function of A

by 1A, and use Ac = Rn \ A to denote the complement of A. We also write A ⋐ Ω if A is
compact and A ⊂ Ω.

For any space X(Ω,Rn) of vector function fields on Ω ⊂ Rn, denote by Xloc(Ω,R
n) the

space of vector function fields f for which f |Ω′ ∈ X(Ω′,Rn) for all Ω′ ⋐ Ω, and by Xc(Ω,R
n)

the space of vector function fields f ∈ X(Ω,Rn) which are compactly supported in Ω. We
write X(Ω) for the space of scalar functions and define Xloc(Ω) and Xc(Ω) analogously.

Denote by Lipb(Ω) the space of Lipschitz-continuous functions that are bounded in the
sense that

‖φ‖Lipb(Ω) := ‖φ‖L∞(Ω) + Lip(φ) <∞.

Rademacher’s Theorem implies that Lipb(Ω) ⊂ W 1,∞(Ω); however, this inclusion may be
strict for a general open set Ω.

For any open set U ⊂ Ω and ε > 0, throughout the paper, we use the notation:

U ε := {x ∈ U : dist(x, ∂U) > ε}.

We also set U0 = U and

U−ε := {x ∈ Rn : dist(x,U) < ε}.

We see that ∂U ε are the interior approximations of ∂U , while ∂U−ε give exterior approx-

imations. We often abbreviate the distance function d(x) = dU (x) = dist(x, ∂U) if the
underlying set is clear from the context.

By a standard mollifier we mean a non-negative function ρ ∈ C∞
c (Rn), supported in the

unit ball, such that
∫
Rn ρ(x) dx = 1. For δ > 0, we set ρδ(x) = δ−nρ(xδ ) and, for f ∈ L

1
loc(Ω),

we often write fδ = f ∗ ρδ for the mollification defined in Ωδ.
For any open set Ω ⊂ Rn, denoteM(Ω,Rn) as the space of all finite vector-valued Radon

measures on Ω andM(Ω) as the space of finite signed Radon measures. If µk is a sequence
of vector-valued Radon measures inM(Ω,Rn), we use the notation:

µk
∗
−⇀ µ

to denote that the sequence converges to µ in the weak*–topology. If µ is a Radon measure,
denote its total variation as |µ|. We say that µ is concentrated in a set E ⊂ Rn if |µ| (Rn \
E) = 0. The support of µ, denoted as spt(µ), is the intersection of all closed sets E such
that µ is concentrated on E. In particular,

Rn \ spt(µ) = {x ∈ Rn : |µ| (Br(x)) = 0 for some r > 0}.

Let µ and λ be non-negative Radon measures onMloc(Ω). Define D+
µ λ : spt(µ)→ [0,∞]

and D−
µ λ : spt(µ)→ [0,∞] as

D+
µ λ(x) := lim sup

r→0

λ(Br(x))

µ(Br(x))
, D−

µ λ(x) := lim inf
r→0

λ(Br(x))

µ(Br(x))
for x ∈ spt(µ).

If D+
µ λ(x) = D−

µ λ(x), we denote this value as Dµλ(x). The function Dµλ(x) is called the
µ-density of λ at x. We now recall the well-known Lebesgue-Besicovitch Differentiation
Theorem (see for instance [2, §2.4] and [34, §1.6]) which states that

µ({x : D−
µ λ(x) < D+

µ λ(x)}) = 0, µ({x : D+
µ λ(x) =∞}) = 0,
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that is, Dµλ is defined and finite µ–a.e. on Rn.
Moreover, Dµλ is Borel measurable and locally µ-integrable, and satisfies

λ = (Dµλ)µ+ λsing.

Here the Radon measure λsing is defined as

λsing = λ Y

with
Y = spt(µ)c

⋃
{x ∈ spt(µ) : D+

µ λ(x) =∞}

that satisfies µ(Y ) = 0. We will make frequent use of the following property:

Lemma 2.1. Let µ and λ be non-negative Radon measures on Ω. Then Dµλsing(x) = 0 for

µ–a.e. x ∈ Ω.

Proof. Let λsing = λ Y as above. Consider the decomposition:

λsing = (Dµλsing)µ+ (λsing)sing.

Since all the measures are non-negative and λsing(R
n \ Y ) = (λsing)sing(R

n \ Y ) = 0, it
follows that ∫

Rn\Y
(Dµλsing)(x) dµ(x) = 0,

so that Dµλsing(x) = 0 for µ–a.e. x ∈ Rn \ Y . Since Y is µ-null, then the conclusion
follows. �

The above extends to the case when λ is a signed Radon measure by considering the
Jordan decomposition λ = λ+ − λ− with λ+ and λ− non-negative Radon measures (see [2,
§1.1]). Working componentwise, we can also allow for vector-valued measures.

Lemma 2.2. Let µ and λ be Radon measures on an open set Ω ⊂ Rn. Suppose that A
is a family of Borel subsets which is closed under intersections and generates the Borel

σ-algebra. If µ(A) = λ(A) for all A ∈ A, then µ = λ as measures.

This is shown in [2, Proposition 1.8] by noting that any Radon measure is σ-finite. While
the aforementioned proposition is only stated for non-negative measures, an inspection of
the proof reveals that the result also holds for signed and vector-valued measures.

2.2. Divergence-measure fields and normal traces. We are now ready to introduce
our central notions of interest:

Definition 2.3. If F ∈ M(Ω,Rn), define

|divF |(Ω) := sup
{∫

Ω
∇ϕ · dF : ϕ ∈ C1

c (Ω), |ϕ| ≤ 1
}
.

We say that F is an extended divergence-measure field over Ω if F ∈ M(Ω,Rn) and

|divF |(Ω) <∞. In this case, the Riesz Representation Theorem implies that divF ∈M(Ω)
and the total variation measure |divF | is computed as

|divF |(A) = sup
{∫

Ω
∇ϕ · dF : ϕ ∈ C1

c (A), |ϕ| ≤ 1
}

for every open set A ⊂ Ω,

and |divF | (E) = inf{|divF | (A) : A open set, A ⊃ E} for arbitrary measurable sets E.

If F ∈ Lp(Ω,Rn) for 1 ≤ p ≤ ∞, then we may view F as a measure in the sense:
∫

Ω
∇ϕ · dF =

∫

Ω
∇ϕ · F dx. (2.1)
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The spaces of all Lp-divergence-measure fields and extended divergence-measure fields
are denoted as DMp(Ω) and DMext(Ω), respectively. They are Banach spaces with norms
given respectively by

‖F ‖DMp(Ω) = ‖F ‖Lp(Ω,Rn) + |divF |(Ω)

and

‖F ‖DMext(Ω) = |F |(Ω) + |divF |(Ω).

Since the distributional divergences 〈divF , · 〉 of these vector fields are measures, we see
that, for any ϕ ∈ C∞

c (Ω),

〈divF , ϕ〉 =

∫

Ω
ϕd(divF ) = −

∫

Ω
∇ϕ · F dx for F ∈ Lp(Ω,Rn),

and

〈divF , ϕ〉 =

∫

Ω
ϕd(divF ) = −

∫

Ω
∇ϕ · dF for F ∈ M(Ω,Rn).

In what follows, we drop the term “extended” and refer to fields F ∈ DMext(Ω) simply
as divergence-measure fields. For such fields, we can make sense of its normal trace in a
distributional sense.

Definition 2.4. Let F ∈ DMext(Ω), and let E ⋐ Ω be a Borel set. The normal trace of

F on the boundary of E is defined as

〈F · ν, φ〉∂E := −

∫

E
∇φ · dF −

∫

E
φd(divF ) for φ ∈ C1

c (Ω). (2.2)

Equivalently, we can write (2.2) as an equality of distributions:

〈F · ν, · 〉∂E = div(1EF )− 1E divF in D′(Ω). (2.3)

If the distribution (2.3) can be identified as a measure in Ω, then we denote this measure by

(F · ν)∂E.

Note that the integrals in (2.2) are well-defined for Borel sets E, since F and divF are
Radon measures on Ω. In the case of a field F ∈ DMp(Ω), the normal trace is defined by
identifying F with the vector-valued Radon measure FLn as in (2.1).

Remark 2.5. We have opted to define the normal trace as a distribution in Ω; while one
can more generally consider the normal trace as a distribution on Rn, we will postpone this
discussion to §10.

Moreover, compared to the prior works such as [9, 11, 59, 64], our definition differs by a
minus sign, which corresponds to the use of the interior unit normal ν in the classical case.

Lemma 2.6. For F ∈ DMext(Ω) and any Borel set E ⋐ Ω, the normal trace 〈F · ν, · 〉∂E
is represented by a measure on Ω if and only if

1EF ∈ DM
ext(Ω).

Proof. By definition of the normal trace, we have

〈F · ν, · 〉∂E = div(1EF )− 1E divF

as distributions in Ω. Since 1E divF is a Radon measure on Ω, we see that the normal trace
is a measure if and only if div(1EF ) is a measure. This precisely corresponds to imposing
that 1EF ∈ DM

ext(Ω). �
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While we can view the normal trace as a distribution in Ω, analogously to the classical
case, one may wonder if it can be represented by a measure on ∂E, or equivalently as a
distribution of order zero. While counterexamples show this need not hold in general (see
[64, Example 2.5]), one can expand the allowed test functions φ in the definition of normal
trace. This will follow from the following product rule for DMext–fields due to Šilhavý [64]
based on the notion of pairings introduced by Anzelotti [3] (also see [10,11]). Far-reaching
generalizations of this pairing have recently been obtained by Comi, Cicco & Scilla [20].

Theorem 2.7. If F ∈ DMext(Ω) and φ ∈W 1,∞(Ω), then φF ∈ DMext(Ω) and

div(φF ) = φ divF +∇φ · F ,

where ∇φ · F is a signed measure on Ω characterized by∫

Ω
ψ d∇φ · F = lim

δ→0

∫

Ω
ψ∇φδ · dF for any ψ ∈ Cc(Ω), (2.4)

and satisfies the estimate:
|∇φ · F | ≤ ‖∇φ‖L∞(Ω)|F | (2.5)

as measures in Ω.

Proof. Let ρδ be a standard mollifer, and set φδ = φ ∗ ρδ. We first claim that

div(φδF ) = φδ divF +∇φδ · F in Ωδ, (2.6)

and notice that the right-hand side is well-defined since both terms are a product of a Borel
measure with a continuous function. To see this, we mollify the field F by F ε = F ∗ ρε, so
that the classical product rule

div(φδF ε) = φδ divF ε +∇φδ · F ε (2.7)

holds in Ωδ for 0 < ε < δ. Let ψ ∈ Cc(Ω) be supported in Ωδ. Since divF ε = (divF ) ∗ ρε,
(ψφδ) ∈ Cc(Ω), and the mollifications converge weakly∗, we have

lim
ε→0

∫

Ω
ψφδ divF ε dx =

∫

Ω
ψφδ d(divF ).

In particular, φδ divF ε
∗
−⇀ φδ divF as measures in Ωδ. Similarly, ∇φδ · F ε

∗
−⇀ ∇φδ · F

in Ωδ. Thus, since div(φδF ε)
D′

−⇀ div(φδF ) as distributions in Ωδ and this limit is unique,
sending ε→ 0 in (2.7) gives that div(φδF ) is a measure on Ωδ given by (2.6) as claimed.

We now send δ → 0. By continuity of φ, we see that φδ → φ uniformly in Ωδ0 for each

δ0 > 0, which implies that φδ divF
∗
−⇀ φ divF in each Ωδ0 . Also, since φ is Lipschitz, we

now show that the second term in (2.6) is uniformly bounded in δ < δ0:∫

Ωδ0

|∇φδ|d|F | ≤ ‖∇φδ‖L∞(Ωδ0 ) |F |(Ω
δ0) ≤ ‖∇φ‖L∞(Ω) |F |(Ω) <∞. (2.8)

Thus, for any δk → 0, we can find a further subsequence δkm → 0 for which ∇φδkm · F

converges weakly∗ in Ωδ0 to some limiting measure as m→∞. Moreover, for each δ0 > 0,
we have

∇φδ · F = div(φδF )− φδ divF
D′

−−⇀ div(φF )− φ divF (2.9)

as distributions in Ωδ0 , so the limiting measure is uniquely determined in D′(Ωδ0) for each
δ0 > 0. Thus, we deduce the existence of a Radon measure in Ω, denoted as ∇φ · F , such
that

∇φδ · F
∗
−⇀ ∇φ · F as δ → 0 in Ωδ0
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for each δ0 > 0. Then we can upgrade the convergence in (2.9) to hold weakly∗ as measures,
and conclude that div(φF ) is a measure in Ω given by

div(φF ) = φ divF +∇φ · F .

Finally, to show (2.5), we use (2.8) to estimate
∣∣∣∣
∫

Ωδ0

ψ∇φδ · dF

∣∣∣∣ ≤ ‖∇φ‖L∞(Ω)

∫

Ωδ0

ψ d|F | for any ψ ∈ Cc(Ω
δ0) and 0 < δ < δ0.

Sending δ → 0 and noting that ψ is arbitrary, we deduce that

|∇φ · F | Ωδ0 ≤ ‖∇φ‖L∞(Ω) |F |

as measures. Since this estimate is uniform in δ0, it holds in Ω. �

Remark 2.8. As the proof illustrates, if φ ∈ C1(Ω), the product rule reduces to

div(φF ) = φ divF +∇φ · F , (2.10)

where the right-hand side can be understood classically via multiplying a Radon measure
by a continuous function. However, if φ is merely Lipschitz, then ∇φ is only defined almost
everywhere. Since the measure F may concentrate on the points of non-differentiablity, it
is necessary to understand the product via a suitable pairing. Moreover, if φ ∈ C1

c (Ω), we
apply (2.10) to write the normal trace as

〈F · ν, φ〉∂E = − div(φF )(E) for any E ⋐ Ω Borel.

We observe that, owing to Theorem 2.7, the right-hand side is well defined even when
φ ∈W 1,∞(Ω). This leads to the following corollary.

Corollary 2.9. Let F ∈ DMext(Ω), and let E ⋐ Ω be a Borel set. Then the normal trace

extends to a bounded linear functional on W 1,∞(Ω) by setting

〈F · ν, φ〉∂E = − div(φF )(E) = −

∫

E
φd(divF )−

∫

E
d∇φ · F

for any φ ∈W 1,∞(Ω).

Proof. By the product rule (Theorem 2.7), the extension is well-defined and agrees with
Definition 2.4 when φ ∈ C1

c (Ω). Moreover, by linearity of the distributional divergence, we
see that 〈F · ν, · 〉∂E is linear. Its boundedness follows from the estimate:

|〈F · ν, φ〉∂E | ≤

∫

Ω
|φ|d|divF |+ |∇φ · F |(Ω)

≤ ‖φ‖L∞(Ω)|divF |(Ω) + ‖∇φ‖L∞(Ω)|F |(Ω)

≤ ‖φ‖W 1,∞(Ω) ‖F ‖DMext(Ω) ,

valid for any φ ∈W 1,∞(Ω), where we have used (2.5). �

In what follows, we always take this extension when we test the normal trace against a
function in W 1,∞(Ω). Note in particular that

〈F · ν, 1Ω〉∂U = −(divF )(U) for any U ⋐ Ω, (2.11)

since 1Ω ∈W
1,∞(Ω) is a valid test function and ∇1Ω · F = 0.

Lemma 2.10. Let F ∈ DMext(Ω) with spt(|F |) ⊂ Ω. Then

divF (Ω) = 0.
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Proof. We extend F to a measure F̃ in Rn by setting |F̃ |(Rn \Ω) = 0. We claim that F̃ ∈
DMext(Rn) and that div F̃ is the zero-extension of divF to Rn. Indeed, for φ ∈ C∞

c (Rn),
spt(φ) ∩ spt(|F |) ⊂ Ω is compact, so that we can find χ ∈ C∞

c (Ω) such that χ = 1 in a
neighborhood of spt(φ) ∩ spt(|F |). Then χφ ∈ C∞

c (Ω) and
∫

Rn

∇φ · dF̃ =

∫

Ω
∇(χφ) · dF = −

∫

Ω
χφd(divF ) = −

∫

Ω
φd(divF )

by our choice of χ. Since φ was arbitrary, it follows that F̃ ∈ DMext(Ω) with the claimed
divergence.

Now, let χk ∈ C
∞
c (Ω) such that 1Bk(0) ≤ χ ≤ 1Bk+1(0) in Rn and ‖χk‖L∞(Ω) ≤ 2. By

definition of the distributional derivative,∫

Ω
χk d(divF ) =

∫

Rn

χk d(div F̃ ) = −

∫

Rn

∇χk · dF̃ .

Since χk is uniformly bounded in L∞ and converges pointwise to zero as k → ∞, the
Dominated Convergence Theorem leads to

lim
k→∞

∫

Rn

∇χk · dF̃ = 0.

Similarly, since χk converges pointwise to 1Rn and divF is a finite measure, we have

divF (Ω) = lim
k→∞

∫

Ω
χk d(divF ) = lim

k→∞

∫

Rn

∇χk · dF̃ = 0,

as required. �

Corollary 2.11. Let F ∈ DMext(Ω). Then, for any open set U ⋐ Ω,

〈F · ν, φ〉∂U =

∫

Ω\U
d∇φ · F +

∫

Ω\U
φd(divF ) for any φ ∈W 1,∞

c (Ω).

Proof. By Lemma 2.10 and the product rule, for φ ∈W 1,∞
c (Ω), we see that φF ∈ DMext(Ω)

is compactly supported, so that

0 =

∫

Ω
d(div(φF )) =

∫

Ω
d∇φ · F +

∫

Ω
φd(divF ).

By splitting the latter integrals to integrate over U and Ω \ U respectively, we deduce

0 = −〈F · ν, φ〉∂U +

∫

Ω\U
d∇φ · F +

∫

Ω\U
φd(divF ),

from which the result follows. �

Remark 2.12. Using Corollary 2.11, we can interpret −〈F · ν, · 〉∂U as the exterior normal

trace of F on ∂U . Since

〈F · ν, φ〉∂U − 〈F · ν, φ〉∂U =

∫

∂U
d∇φ · F +

∫

∂U
φd(divF ), (2.12)

the interior and exterior traces agree (up to a sign), provided that |F |(∂U) = |divF |(∂U) =
0, by using the fact that |∇φ · F | ≪ |F | by (2.5). In particular, this holds for ∂U ε for all
but countably many ε > 0. In general, this need not hold, for which we say that there is
a jump across the boundary ∂U if the two traces do not coincide. We emphasize that this
does not occur if |divF | ≪ Ln and |F | ≪ Ln, provided that Ln(∂U) = 0, so it is necessary
to consider measure-valued fields to model such phenomena.
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Example 2.13. We now show, by means of an example, that the jump in (2.12) can occur
due to the concentration of field F itself. For this, consider Ω = R2 and

F = e1H
1 {x ∈ R2 : x2 = 0},

where e1 = (1, 0). Since F is a Radon measure on R2 and
∫

R2

∇φ · dF =

∫

R

∂x1φ(x1, 0) dx1 = 0 for any φ ∈ C1
c (R

2),

it follows that F ∈ DMext
loc (Ω). Then, considering Q = (0, 1)2 ⋐ R2, we have

〈F · ν, φ〉∂Q = 0 for φ ∈ C1
c (R

2),

since supp (F ) ∩Q = ∅. On the other hand, we have

〈F · ν, φ〉∂Q =

∫ 1

0
∂x1φ(x1, 0) dx1 = φ(1, 0) − φ(0, 0).

This implies that the normal traces on Q and Q are represented by measures such that

(F · ν)∂Q = δ(1,0) − δ(0,0) 6= 0 = (F · ν)∂Q,

exhibiting a jump across the boundary ∂Q, despite the fact that divF = 0 in R2. This
is in contrast to the DMp setting for which, for sufficiently regular domains (i.e., when
Ln(∂U) = 0), there is a jump across the boundary if and only if |divF |(∂U) 6= 0.

We can also infer from Lemma 2.10 that the normal trace is supported on ∂E. We state
this result by using the language of distributions.

Lemma 2.14. Let F ∈ DMext(Ω), and let E ⋐ Ω a Borel set. Then the normal trace

〈F · ν, φ〉∂E is a distribution of order 1 supported on ∂E.

Proof. For φ ∈ C1
c (Ω), we can estimate

|〈F · ν, φ〉∂E | ≤

∫

Ω
|φ|d|divF |+

∫

Ω
|∇φ|d|F |

≤ ‖φ‖L∞(Ω)|divF |(Ω) + ‖∇φ‖L∞(Ω)|F |(Ω),

from which it follows that the normal trace is a distribution of order 1 in Ω.
For the second part, let φ ∈ C1

c (Ω) be supported in Ω \ ∂E. Since ∂E is compact,
dist(spt(φ), ∂E) > 0 so that V := spt(φ) ∩ E ⋐ E. Then, by the product rule, we have

〈F · ν, φ〉∂E = − div(φF )(E) = − div(φF )(V ), (2.13)

since φ vanishes in the relatively open set E \ V . Now, let χ ∈ C1
c (Ω) be a cutoff such that

χ ≡ 1 on V and vanishes on Ω \E. Then χφF ∈ DMext(Ω) is compactly supported, agrees
with φF in a neighborhood of E, and vanishes outside V . Applying Lemma 2.10 leads to

div(φF )(V ) = div(χφF )(V ) = div(χφF )(Ω) = 0.

We combine this with (2.13) to conclude the result. �

We can further refine Lemma 2.14 to allow for test functions that vanish merely on ∂E.
The following is due to [64] for the case of open sets; we record the proof for completeness
and observe that the result applies to more general cases.
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Theorem 2.15. Let F ∈ DMext(Ω), and let E ⋐ Ω be either open or closed, or Borel

satisfying |F |(∂E) = 0. Then, if φ ∈W 1,∞(Ω) vanishes on ∂E,

〈F · ν, φ〉∂E = 0.

Proof. We first consider the case when spt(φ) ∩ ∂E = ∅; in this case, the result follows by
arguing exactly as in Lemma 2.14. For φ ∈ W 1,∞(Ω), we see that (2.13) remains true by
Corollary 2.9, so the identical argument goes through.

For general φ ∈W 1,∞(Ω) vanishing on ∂E, we reduce to the first case via an approxima-
tion argument. For δ > 0, define

dδ(x) =





0 if 0 ≤ dist(x, ∂E) < δ,
1
δ (dist(x, ∂E) − δ) if δ ≤ dist(x, ∂E) < 2δ,

1 if dist(x, ∂E) ≥ 2δ.

(2.14)

Then dδ is 1
δ -Lipschitz and vanishes in a neighborhood of ∂E. Since dδφ is supported away

from ∂E, we know that

0 = 〈F · ν, dδφ〉∂E =

∫

E
dδφd(divF ) +

∫

E
d∇(dδφ) · F (2.15)

by above. We now argue that we can pass to the limit as δ → 0.
This can be seen as follows: Since φ vanishes on ∂E, by the Lipschitz property, we have

sup
B2δ(∂E)

|φ(x)| ≤ 2δ‖∇φ‖L∞(Ω),

where B2δ(∂E) = {x ∈ Rn : dist(x, ∂E) < 2δ}. By the product rule (namely, using (2.4)),
we see that, for any ψ ∈ Cc(Ω),

∫

Ω
ψ d∇(dδφ) · F = lim

ε→0

∫

Ω
ψ∇(dδφ) ∗ ρε · dF

= lim
ε→0

∫

Ω
ψ(dδ∇φ+ φ∇dδ) ∗ ρε · dF

=

∫

Ω
ψ dδ d∇φ · F +

∫

Ω
ψ φd∇dδ · F ,

which implies

∇(dδφ) · F = dδ∇φ · F + φ∇dδ · F as measures in Ω.

Moreover, since spt(∇dδ) ⋐ Aδ := {δ ≤ dist(x, ∂E) ≤ 2δ} ⊂ B2δ(∂E), ∇dδ · F is also
supported in Aδ. Hence, using (2.5), we can estimate

∣∣∣∣
∫

E
φd∇dδ · F

∣∣∣∣ ≤ sup
B2δ(∂E)

|φ|‖∇dδ‖L∞(Ω)|F |(Aδ)

≤ 2‖∇φ‖L∞(Ω)|F |(Aδ),

(2.16)



EXTENDED DIVERGENCE-MEASURE FIELDS AND CAUCHY FLUXES 13

which vanishes as δ → 0 since lim sup
δ→0

Aδ = ∅. Thus, passing to the limit in (2.15) and

noting that dδ → 1Ω\∂E pointwise,

0 = lim
δ→0
〈F · ν, dδφ〉∂E

= lim
δ→0

∫

E
dδφd(divF ) + lim

δ→0

∫

E
dδ d∇φ · F

=

∫

E\∂E
φd(divF ) +

∫

E\∂E
d∇φ · F ,

(2.17)

by (2.16) and the Dominated Convergence Theorem.
Moreover, since φ vanishes in ∂E, it follows that

∫

E\∂E
φd(divF ) =

∫

E
φd(divF ).

Now, if E is open, then E \ ∂E = 0 and (2.17) implies that 〈F · ν, φ〉∂E = 0. If E is closed,
the same argument applies to Ω \E so that, by Corollary 2.11,

〈F · ν〉∂E =

∫

Ω\E
φd(divF ) +

∫

Ω\E
d∇φ · F = 0.

Finally, if E is merely Borel with |F |(∂E) = 0, then, since ∇φ · F ≪ |F | by (2.5), it follows
that ∫

E∩∂E
d∇φ · F = 0.

Combining this with (2.17), we conclude the proof. �

Remark 2.16. We expect that the conclusion of Theorem 2.15 holds for any Borel set
E ⋐ Ω. However, we were unable to establish this without a further topological or measure-
theoretic condition to ensure that |∇φ · F |(E ∩ ∂E) = 0. Note that, for DMp(Ω)–fields
F , under the mild regularity condition that Ln(∂E) = 0, the condition that |F |(∂E) =∫
∂E |F |dL

n = 0 is always satisfied.

Corollary 2.17. Let F ∈ DMext(Ω), and let U ⋐ Ω be open. Then there is a linear

functional NU ∈ Lipb(∂U)∗ satisfying

〈F · ν, φ〉∂U = NU (φ|∂U ) for any φ ∈ Lipb(Ω).

Proof. Given φ0 ∈ Lipb(∂U), let φ ∈ Lipb(Ω) be an extension of φ0 to Ω; this is possible
by [2, Proposition 2.12] and multiplying the obtained extension by the Lipschitz cutoff
χ(x) = max{0, 1 − dist(x, ∂U)} to ensure that it is bounded. We then define

NU (φ0) := 〈F · ν, φ〉U .

Note that this extension can be chosen to satisfy that ‖φ‖Lipb(Ω) ≤ C‖φ‖Lipb(∂U), so it
follows from the boundedness of 〈F · ν, · 〉∂U that NU is bounded. To show that it is well-
defined, observe that, if φ1, φ2 ∈ Lipb(Ω) ⊂W

1,∞(Ω) are two such extensions, then φ1−φ2
vanishes on ∂U so that

〈F · ν, φ1〉U − 〈F · ν, φ2〉U = 〈F · ν, φ1 − φ2〉 = 0,

by Theorem 2.15. Therefore, NU is well-defined, independent of the choice of extension. �
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3. Representation and Limit Formula for the Normal Trace via

Disintegration

In this section, we show the normal trace admits a measure representation on almost

every open set and derive a limit formula in the general case. A key tool in our analysis is
the disintegration of measures, which we apply in the following form:

Theorem 3.1. Let µ be a finite Radon measure on an open set U ⊂ Rn such that U 6= ∅,Rn,

and let d = dist( · , ∂U) be the distance function. Then there exist both a non-negative

and finite Radon measure τ on (0,∞) and a family of measures µt in U such that the

mapping: t 7→ µt is τ -measurable. For τ–a.e. t ∈ (0,∞), µt is supported on d−1(t) with

|µt| (d
−1(t)) = 1 and

µ(A ∩ U t1 \ U
t2) =

∫ t2

t1

∫

d−1(t)
χA(x) dµt(x) dτ(t),

where the τ -integral is understood to be over the open interval (t1, t2). Furthermore, for any

bounded Borel function φ on U ,
∫

U
φ(x) dµ(x) =

∫ ∞

0

∫

d−1(t)
φ(x) dµt(x) dτ(t).

We write

µ = τ ⊗∂U t µt (3.1)

as a shorthand for this decomposition.

Proof. We define the function Φ: U → (0,∞) × U as Φ(x) = (d(x), x). Then the push-
forward measure Φ#µ is a measure on (0,∞)×U . By the Disintegration Theorem presented
in [2, Theorem 2.28] applied to Φ#µ, it follows that there exists a family of measures µt
satisfying

Φ#µ = τ ⊗ µt, |Φ#µ| = τ ⊗ |µt| ,

where τ is a measure on (0,∞) defined as

τ = π#(|Φ#µ|) with π : (0,∞) × U → (0,∞) and π(t, x) = t,

and µt is a family of measures on U with |µt| (U) = 1 for τ–a.e. t ∈ (0,∞). For a Borel set

A ⊂ U \ U
t
, since Φ is injective, Φ−1(Φ(A)) = A so that

µ(A) = Φ#µ(Φ(A)) =

∫ t

0

∫

U
χΦ−1(A)(t, x) dµt(x) dτ(t). (3.2)

We now claim that, for τ–a.e. t ∈ (0,∞), µt is supported on ∂Ut. Indeed, for any t1 < t2,
we have

τ((t1, t2)) = π#(|Φ#µ|)((t1, t2)) = |Φ#µ| (π
−1((t1, t2)))

= |Φ#µ| ((t1, t2)× U) = Φ# |µ| ((t1, t2)× U)

= |µ| (Φ−1((t1, t2)× U)) = |µ| (U t2 \ U
t1),

and

|µ| (U t2 \ U
t1) = |Φ#µ|

(
(t1, t2)× (U t2 \ U

t1)
)
=

∫ t2

t1

∫

U t2\U t1

d |µt| dτ(t).
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Combining the above, we infer that

1 =
|µ|(U t2 \ U t1)

τ((t1, t2))
=

1

τ((t1, t2))

∫ t2

t1

|µt|(U
t2 \ U t1) dτ(t).

Let t > 0 and 0 < ε < δ. Then we can employ the above with t1 = t− ε and t2 = t+ ε, and

apply that U t+ε \ U t−ε ⊂ U t+δ \ U t−δ to obtain

1

τ((t− ε, t+ ε))

∫ t+ε

t−ε
|µs|(U

t+δ \ U t−δ) dτ(s) ≥ 1.

Since the function:

s 7→ |µs|(U
t+δ \ U t−δ) (3.3)

is τ -measurable for t ≥ 0 by [2, (2.19)], there is a τ -null set N ⊂ [0,∞) such that every
t /∈ N is a Lebesgue point for (3.3) for each δ = 1

k with k ∈ N. Then, for such t, we have

1 ≤ lim
ε→0

1

τ((t− ε, t+ ε))

∫ t+ε

t−ε
|µs|(U

s+ 1
k \ U s− 1

k ) dτ(s) = |µt|(U
t+ 1

k \ U t− 1
k ).

Since this holds for all k, we infer that

|µt|(∂U
t) = lim

k→∞
|µt|(U

t+ 1
k \ U t− 1

k ) ≥ 1.

However, since |µt|(U) = 1, it follows that µt is supported on ∂U t.
Since τ -almost every µt is supported on ∂U t, (3.2) simplifies to give

µ(A) =

∫ t

0

∫

∂U t

χA(x) dµ(x) dτ(t),

which is what we set out to prove. Moreover, an approximation argument implies (3.1). �

Lemma 3.2. Let µ be a Radon measure on an open set U ⊂ Rn. Consider the decomposition

µ = τ ⊗∂U t µt

from Theorem 3.1. Then, for τ–a.e. t ∈ [0,∞),

D|µ|µ(x) = D|µt|µ
t(x), |µt|–a.e. on ∂U t.

Proof. We know from the above proof that Φ#µ = τ ⊗ µt and |Φ#µ| = τ ⊗ |µt|. Thus, if φ
is a bounded Borel-measurable function on U , we have

∫

U
φdµ =

∫ ∞

0

∫

∂U t

φdµt dτ =

∫ ∞

0

∫

∂U t

φD|µt|µt d|µt|dτ,

and ∫

U
φdµ =

∫

U
φD|µ|µ d|µ| =

∫ ∞

0

∫

∂U t

φD|µ|µ d|µt|dτ.

Now, replacing φ by 1
U t2\U t1

φ and then combining the above, we obtain

∫ t2

t1

∫

∂U t

φD|µt|µt d|µt|dτ =

∫ t2

t1

∫

∂U t

φD|µ|µ d|µt|dτ.
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Let {φj} be a countable and uniformly dense subset of Cc(U). Then, for τ–a.e. t ≥ 0,
∫

∂U t

φj D|µt|µt d|µt| = lim
ε→0

∫ t+ε

t−ε

∫

∂Us

φjD|µs|µs d|µs|dτ

= lim
ε→0

∫ t+ε

t−ε

∫

∂Us

φjD|µ|µ d|µs|dτ

=

∫

∂U t

φj D|µ|µ d|µt|.

By density of {φj}, it follows that, for any such t,

(D|µt|µt)|µt| = (D|µ|µ)|µt| as measures on ∂U t,

from which the result follows. �

Let τ be a non-negative Radon measure on R. In the subsequent proof, we apply the
Lebesgue-Besicovitch Differentiation Theorem to write

τ = (DL1τ)L1 + τsing,

where the Radon measure τsing satisfies

τsing = τ Y1, Y1 = {D
+
L1τ =∞}, L1(Y1) = 0.

By Lemma 2.1, DL1τsing(t) = 0 for L1–a.e. t > 0.

Theorem 3.3. Let F ∈ DMext(Ω), and let U ⋐ Ω be open. Then there is an L1–null set
N ⊂ (0,∞) such that, for any ε /∈ N , there exists a measure (F · ν)∂Uε supported on ∂U ε

such that

〈F · ν, φ〉∂Uε =

∫

∂Uε

φd(F · ν)∂Uε for any φ ∈W 1,∞(Ω).

Moreover, for every εk → 0 with εk /∈ N , the normal trace of F on ∂U can be represented

as the limit of trace measures:

〈F · ν, φ〉∂U = lim
k→∞

∫

∂Uεk

φd(F · ν)∂Uεk for any φ ∈W 1,∞(Ω).

Proof. We divide the proof into three steps.

1. For each 0 < t < s, we define ψU
t,s ∈ Lipc(Ω) by

ψU
t,s(x) =





s− t if x ∈ U s,
d(x) − t if x ∈ U t \ U s,
0 if x 6∈ U t.

(3.4)

We first show that ∫

U
ψU
t,s d(div(φF )) = −

∫

U t\Us

φd∇d · F (3.5)

for any φ ∈W 1,∞(Ω) and all 0 < t < s for which

|∇d · F |(∂U t) = |∇d · F |(∂U s) = 0 (3.6)

that holds for all but countably many s and t.
Since ψU

t,s is supported away from ∂U , by Lemma 2.14, we have

0 = 〈F · ν, ψU
t,sφ〉∂U = div(φψU

t,sF )(U) = 〈φF · ν, ψU
t,s〉∂U .
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Now, using the product rule (Theorem 2.7), we have

0 = 〈φF · ν, ψU
t,s〉∂U =

∫

U
ψU
t,s d(div(φF )) +

∫

U
d∇ψU

t,s · (φF ).

By definition of the pairing measure,

∇ψU
t,s · (φF ) = w*-lim

δ→0

(
∇(ψU

t,s ∗ ρδ)φF
)

= w*-lim
δ→0

(
(1U t\Us∇d) ∗ ρδφF

)

= φ∇d · F
(
U t \ U s

)
,

where we have used (3.6) to justify the weak∗–limit in the last equality. Combining this
with (3.7) yields (3.5), which can be written as

(s − t)

∫

Us

d(div(φF )) +

∫

U t\U
s
(d(x)− t) d(div(φF )) = −

∫

U t\Us

φd∇d · F , (3.8)

by definition of ψU
t,s.

2. We now apply the disintegration result (Theorem 3.1) with µ = ∇d · F to write
∫

U t\Us

φd∇d · F =

∫ s

t

∫

∂Ur

φdµr dτ(r).

Now, given ε, h > 0 with h < ε, we apply (3.8) with s = ε+ h and t = ε− h to obtain

−

∫ ε+h

ε−h

∫

∂U t

φdµt dτ(t)

= 2h

∫

Uε+h

d(div(φF )) +

∫

Uε−h\Uε+h

(d(x)− ε+ h) d(div(φF )).

(3.9)

This is valid for all but countably many h > 0 depending on ε. We also impose that

|F |(∂U ε) = |divF |(∂U ε) = 0, (3.10)

which holds for all but countably many ε.
We now divide both sides by 2h and study the limit as h → 0. Let hk ց 0 be any

sequence such that (3.9) is valid with each hk in place of h. Since |d(x)− ε+ hk| ≤ 2hk on

U ε−hk \ U
ε+hk and |div(φF )|(U ε−hk \ U

ε+hk)→ 0 as k →∞ by (3.10), we have

lim
k→∞

1

2hk

∫

Uε−hk\Uε+hk

(d(x) − ε+ hk) d(div(φF )) = 0.

The Dominated Convergence Theorem gives

lim
k→∞

∫

Uε+hk

d(div(φF )) =

∫

Uε

d(div(φF )) = −〈F · ν, φ〉∂Uε .

Hence, we infer that

〈F · ν, φ〉∂Uε = lim
k→∞

1

2hk

∫ ε+hk

ε−hk

∫

∂U t

φdµt dτ(t). (3.11)

3. To proceed, we decompose measure τ in two parts: the absolutely continuous part
with respect to L1 and the singular part as

τ = (DL1τ)L1 + τsing, DL1τ ∈ L1
loc((0,∞)).
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Hence, with T := DL1τ , we have
∫ ε+hk

ε−hk

∫

∂U t

φdµt dτ(t) =

∫ ε+hk

ε−hk

∫

∂U t

φdµt T (t) dt+

∫ ε+hk

ε−hk

∫

∂U t

φdµt dτsing(t). (3.12)

We can estimate the first integral on the right-hand side of (3.12) by using the Lebesgue
Differentiation Theorem. Indeed, for L1–a.e. ε, we obtain

lim
k→∞

1

2hk

∫ ε+hk

ε−hk

( ∫

∂U t

φdµt

)
T (t) dt =

∫

∂Uε

φT (ε) dµε, (3.13)

so that

(F · ν)∂Uε = T (ε)µε, (3.14)

from (3.11). Since |µt| (∂U
t) = 1 for τsing–a.e. t, we have

∣∣∣
∫

∂U t

φdµt

∣∣∣ ≤ ‖φ‖L∞(Ω) |µt| (∂U
t) = ‖φ‖L∞(Ω) .

Using this and Lemma 2.1, we can estimate the second integral on the right-hand side of
(3.12) as

lim
k→∞

1

2hk

∣∣∣
∫ ε+hk

ε−hk

∫

∂U t

φdµtdτsing(t)
∣∣∣ ≤ ‖φ‖L∞(Ω) lim

hk→0

τsing(ε− hk, ε+ hk)

L1(ε− hk, ε+ hk)

= ‖φ‖L∞(Ω)DL1τsing(ε) = 0 (3.15)

for L1–a.e. ε > 0. Thus, defining N ⊂ (0,∞) to be the set of points where (3.10), (3.13),
or (3.15) does not hold, which is L1–null, and from (3.14),

〈F · ν, φ〉∂Uε =

∫

∂Uε

φd(F · ν)∂Uε for any ε /∈ N .

Finally, taking any εk → 0 with εk /∈ N for all k, we have

〈F · ν, φ〉∂U = lim
k→∞
〈F · ν, φ〉∂Uεk = lim

k→∞

∫

∂Uεk

φd(F · ν)∂Uεk

as required. �

Remark 3.4. Similar results were previously obtained by Frid [40] for domains with Lips-
chitz deformable boundaries.

Later in §7.1, we will use a similar decomposition to ∇d · F from the above proof applied
to a non-negative measure, which we record here.

Lemma 3.5. Let µ be a non-negative Radon measure on an open set U ⊂ Rn. Then there

exists a decomposition

µ = L1 [0,∞)⊗∂U t µt + τsing ⊗∂U t µ̃t,

where DL1τsing = 0 L1–a.e. on [0,∞), and we have used notation (3.1) from Theorem 3.1.

Proof. We apply Theorem 3.1 to µ to decompose

µ = τ ⊗∂U t µ̃t,

and then use the Lebesgue-Besicovitch Theorem to decompose

τ = TL1 [0,∞) + τsing,
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where L1 and τsing are mutually singular, and T = DL1τ ∈ L1((0,∞)). Taking the precise
representative of T , we set µt = T (t)µ̃t, which is defined L1–a.e. on (0,∞). This gives the
claimed decomposition by noting that the last part follows from Lemma 2.1. �

4. Properties of the Disintegration

In §3, we have established Theorem 3.3 by considering a suitable disintegration of ∇d · F
along {∂U ε}ε>0 and showing that the obtained measures (F · ν)∂Uε coincided with the
normal trace. We now investigate this decomposition more closely and show that measure
∇d · F can actually be recovered from these traces.

Informally, if we take d(x) = xi, which corresponds to taking U to be a half-plane
{x ∈ Rn : xi ≥ 0} for some 1 ≤ i ≤ n, then it follows from ∇d = ei that ∇d · F = Fi for
each 1 ≤ i ≤ n, where F = (F1, F2, · · · , Fn). Thus, such a result allows us to recover the
underlying field F from the associated normal trace over the sets {∂U ε}ε>0; while Theorem
4.1 cannot directly be applied to the half-space which is unbounded, we adapt this later
in Lemma 8.3. This observation serves as a fundamental starting point for the theory of
Cauchy fluxes in the extended setting, which will be developed from §6 onwards.

Theorem 4.1. Let F ∈ DMext(Ω), U ⋐ Ω, and let d(x) = dist(x, ∂U). Then
∫ ∞

0
〈F · ν, φ〉∂U t dt =

∫

U
φd∇d · F for any φ ∈W 1,∞(Ω), (4.1)

where ∇d · F is given as in Theorem 2.7. Moreover, (4.1) extends to any bounded Borel

function φ on Ω, understanding that t 7→ 〈F · ν, φ〉∂U t is only defined for L1–a.e. t > 0.

Equivalently, consider the disintegration given by Theorem 3.1, which allows us to write
∫

U
φd∇d · F =

∫ ∞

0

∫

d−1(t)
φ(x) dµt(x) dτ(t) (4.2)

for any bounded Borel function φ on U. Now, in Theorem 3.3, we have seen that

〈F · ν, ·〉∂U t = (F · ν)∂Uε = DL1τ(t)µt for L1–a.e. t > 0, (4.3)

so Theorem 4.1 is equivalent to the assertion that τsing = 0. To prove this, we use the
following elementary lemma.

Lemma 4.2. Let τ and σ be finite Radon measures on (0,∞) such that

τ ′ = σ in D′((0,∞)),

that is,

−

∫ ∞

0
ψ′(t) dτ(t) =

∫ ∞

0
ψ(t) dσ(t) for any ψ ∈ C1

c ((0,∞)).

Then τ ≪ L1 and there exists T ∈ BV ((0,∞)) such that τ = TL1 (0,∞).

Proof. Define v(x) = σ((0, x)) for x > 0, which lies in BV ((0,∞)). Then v satisfies v′ = σ
and is bounded pointwise by |σ|((0,∞)). Define the measure: τ̃ = τ − vL1. Since τ̃ ′ = 0 in
D′((0,∞)), we claim τ̃ is a constant multiple of the Lebesgue measure. Indeed, mollifying
τ̃ , we obtain a smooth function τ̃δ that satisfies τ̃ ′δ ≡ 0 in (0,∞). Thus, for each δ > 0,

there exists a constant cδ ∈ R such that τ̃δ(x) = cδ for all x > δ. Since τ̃δ
∗
−⇀ τ̃ as δ → 0

locally in (0,∞), we know that cδ → c for some c ∈ R. Hence, τ = (v+ c)L1, which implies
that τ is represented by a BV function. �
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Proof of Theorem 4.1. We divide the proof into four steps.

1. Let ψ ∈ C1
c ((0,∞)) and g ∈ C1

c (Ω), and set φ(x) = ψ(d(x))g(x). Then φ ∈ Lipc(U),
and the mollification φδ is defined and vanishes on ∂U for δ > 0 sufficiently small. By
Lemma 2.10, we have

∫

U
∇φ · F δ dx =

∫

U
∇φδ · dF = −

∫

U
φδ d(divF ) = −

∫

U
φdivF δ dx.

Expanding ∇φ(x) = ψ′(d(x))g(x)∇d(x) + ψ(d(x))∇g(x) gives

−

∫

U
ψ′(d) g∇d · F δ dx =

∫

U

(
φ (divF )δ + ψ(d)∇g · F δ

)
dx.

Sending δ → 0 and using Theorem 2.7, we obtain

−

∫

U
ψ′(d) g d∇d · F =

∫

U
φd(divF ) +

∫

U
ψ(d)∇g · dF . (4.4)

2. Now set λ = g divF +∇g · F and use Proposition 3.1 to write

∇d · F = τ ⊗∂U t µt, λ = σ ⊗∂U t λt.

Using this, we can rewrite (4.4) as

−

∫ ∞

0
ψ′(t)

∫

∂U t

g(x) dµt(x) dτ(t) =

∫ ∞

0
ψ(t)

∫

∂U t

dλt(x) dσ(t).

Hence, as distributions on (0, 1), we have shown that

d

dt

( ∫

∂U t

g(x) dµt(x) τ
)
=

( ∫

∂U t

dλt(x)
)
σ.

By Lemma 4.2, we infer that
(∫

∂U t g(x) dµt(x)
)
τ can be represented by a BV function. In

particular, decomposing τ = TL1 [0,∞) + τsing, we infer by uniqueness of the Lebesgue-
Besicovitch Decomposition Theorem that

( ∫

∂U t

g(x) dµt(x)
)
τ =

( ∫

∂U t

g(x) dµt(x)
)
T (t)L1 [0,∞)

as measures on [0,∞) so that, for any g ∈ C1
c (Ω),

∫

∂U t

g(x) dµt(x) = 0 τsing–a.e. (4.5)

3. Set µ = ∇d · F and put g̃ = D|µ|µ. In order to apply (4.5) with g̃, we approximate

g̃ by mappings in C1
c (U). By the Lusin Theorem [2, Theorem 1.45, Remark 1.46], we can

find a sequence g̃k of continuous functions in U such that

g̃k(x)→ g̃(x) for |µ|–a.e. x ∈ U as k →∞,

and |g̃k| ≤ 1 holds |µ|–a.e. for each k. Then, for any δk → 0, gk = (χU2δk g̃k)δk is a sequence
of C∞

c (U) functions converging pointwise |µ|–a.e. to g̃ in U , which is also uniformly bounded
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by the constant 1. Now applying (4.5) with each gk yields
∫ ∞

0

∣∣∣
∫

∂U t

g̃ dµt(x)
∣∣∣ dτsing(t) =

∫ ∞

0

∣∣∣
∫

∂U t

gk − g̃ dµt(x)
∣∣∣ dτsing(t)

≤

∫ ∞

0

∫

∂U t

|gk − g̃|dµt(x) dτ

=

∫

U
|gk − g̃|dµ,

which tends to zero as k →∞ by the Dominated Convergence Theorem. Hence, it follows
that ∫

∂U t

D|µ|µ(x) dµt(x) = 0 τsing–a.e.

By Lemma 3.2, we have

D|µ|µ(x) = D|µt|µt(x) for τ–a.e. t and µt–a.e. x,

so it follows that

|µt|(∂U
t) =

∫

∂U t

D|µ|µ(x) dµt(x) = 0 τsing–a.e.

However, by Theorem 3.1, |µt| is a probability measure supported on ∂U t for τ–a.e. t ∈
(0,∞), so the above can only hold if τsing = 0.

4. By (4.2)–(4.3), we have
∫

U
φd∇d · F =

∫ ∞

0

∫

∂U t

φd(F · ν)ε dε+

∫ ∞

0

∫

∂Ut

φdµt dτsing

for any bounded Borel function φ in Ω. Since we have shown that τsing = 0, the last integral
is zero, thus establishing the result. �

Remark 4.3. A similar coarea-type formula was recently obtained in [20, Theorem 6.1] in
a more general context. Moreover, while it is not explicitly stated, a careful inspection of
their argument reveals an alternative proof of Theorem 4.1.

As a consequence, we obtain an alternative proof of the following result from [64], which
will be used later. Similar results for Lipschitz-deformable boundaries were proved earlier
in [11].

Theorem 4.4 (Theorem 2.4 in [64]). Let F ∈ DMext(Ω) and U ⋐ Ω, and let d(x) =
dist(x, ∂U). Then

〈F · ν, φ〉∂U = lim
ε→0

1

ε

∫

U\Uε

φd∇d · F for any φ ∈W 1,∞(Ω). (4.6)

Moreover, if

lim inf
ε→0

1

ε
|∇d · F |(U \ U ε) <∞,

then the normal trace 〈F · ν, · 〉∂U is represented by a measure on ∂U .

Proof. By Theorem 4.1, we see that
∫ ∞

0

∫

∂U t

ψ d(F · ν)∂U t dt =

∫

U
ψ d∇d · F
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holds for all bounded Borel functions ψ on Ω. Then, taking ψ = 1U\Uε φ with ε > 0 and

φ ∈W 1,∞(Ω), we have

1

ε

∫ ε

0
φd∇d · F =

1

ε

∫ ε

0
〈F · ν, φ〉∂U t dt. (4.7)

Since the mapping:

t 7→ 〈F · ν, φ〉∂U t =

∫

U t

d∇φ · F +

∫

U t

φ d(divF )

is right-continuous on [0,∞) for φ ∈ W 1,∞(Ω), sending ε → 0 in (4.7), we deduce (4.6).
Now, for any εk → 0, the above implies that

1

εk
∇d · F

(
U \ U ε

k

) D′

−−⇀ 〈F · ν, · 〉∂U as k →∞

as distributions in Ω. If this sequence of measures is uniformly bounded in M(Ω), by the
weak∗–compactness and uniqueness of the limit, we infer that the limiting distribution is
also a measure. �

5. Localization of the Normal Trace

In this section, we analyze how the normal trace relative to different boundaries can
differ. In particular, we seek to understand whether the relation

〈F · ν, φ〉∂U = 〈F · ν, φ〉∂V (5.1)

holds for U, V ⊂ Ω with overlapping boundary and for any φ supported in a suitable
neighborhood of ∂U ∩ ∂V . Moreover, if the normal traces of F on the boundaries of U and
V are represented by measures, one may ask if the equality holds as measures:

(F · ν)∂U (∂U ∩ ∂V ) = (F · ν)∂V (∂U ∩ ∂V ). (5.2)

This question is motivated by the study of Cauchy fluxes in the sequel. Indeed, it is
easily answered whenever the normal trace admits a representation of the form

〈F · ν, φ〉∂U =

∫

∂U
φ(x)F (x) · ν∂U dHn−1,

which is valid by the classical Gauss-Green formula for a Lipschitz F and a bounded Lip-
schitz domain U ; we see that it is necessary for the associated normals ν∂U and ν∂V to
coincide Hn−1–a.e. on the common intersection. For bounded divergence-measure fields
and sets of finite perimeter, this can be affirmatively answered by using [19, Theorem 5.3]
after reformulation to consider suitable notions of measure-theoretic boundaries and nor-
mals. However, for a general field F and open sets U and V , the normal trace may fail

to be equal as measures on the common intersection, which is illustrated by the following
examples.

Example 5.1. Following [11, Example 1.1] which is itself based on [66, §III.14, Example
1], consider the vector field

F (x) =
(x1, x2)

x21 + x22
for x = (x1, x2) ∈ R2,

which lies in DM1
loc(R

2) with divF = 2πδ0. Indeed, F (x) = 2π∇Γ(x), where Γ is the
fundamental solution for the Laplacian in R2 (see e.g., [35, §2.2.1]). Let H = (0,∞)×R be
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the half-space where x1 > 0, and let Q = (0, 1) × (0, 1) be the unit cube. Then we claim
the normal traces of F on ∂H and ∂Q can be represented by measures that take the form:

(F · ν)∂H = −πδ0, (5.3)

(F · ν)∂Q = −
π

2
δ0 + (F · ν)H1 ∂Q. (5.4)

Indeed, for (5.3), using an unbounded version of [9, Theorem 7.1], for φ ∈ C∞
c (R2), we can

show that

〈F · ν, φ〉∂H = − lim
ε→0

∫

R

ε

ε2 + x22
φ(ε, x2) dx2 = −πφ(0, 0),

which implies (5.3). To prove this limit, observe that
∫ ∞

−∞

ε

ε2 + x22
φ(0, 0) dx2 = πφ(0, 0) for any ε > 0

and, if φ is supported in BR(0), the remainder can be estimated by
∣∣∣
∫

R

ε

ε2 + x22
(φ(ε, x2)− φ(0, 0)) dx2

∣∣∣

≤

∫ R

−R

ε

ε2 + x22
|φ(ε, x2)− φ(0, 0)|dx2 + 2|φ(0, 0)|

∫ ∞

R

ε

ε2 + x22
dx2

≤ ‖∇ϕ‖L∞(R2)

∫ R

−R

ε√
ε2 + x22

dx2 + |φ(0, 0)|
2ε

R
,

which vanishes as εց 0. Thus, (5.3) follows.
For the flux on ∂Q, we apply Theorem 4.4 near the origin to check that (F · ν)∂Q is a

measure on ∂Q; indeed, we now show that

lim sup
ε→0

1

ε

∫

B1/2(0)∩Q\Q
ε
|∇d · F |dx <∞. (5.5)

For this, observe that, for x ∈ Q satisfying |x| < 1
2 , d(x) = dist(x,Q) satisfies

∇d(x) =

{
e1 if x1 < x2,

e2 if x2 < x1.

Then, for each ε > 0, we split the integral in (5.5) into four pieces:

A1,ε =
{
(x1, x2) ∈ B1/2(0) : 0 < x1 < x2 < ε

}
,

A2,ε =
{
(x1, x2) ∈ B1/2(0) : 0 < x1 < ε < x2 <

1

2

}
,

A3,ε =
{
(x1, x2) ∈ B1/2(0) : 0 < x2 < x1 < ε

}
,

A4,ε =
{
(x1, x2) ∈ B1/2(0) : 0 < x2 < ε < x1 <

1

2

}
,

so that

B1/2(0) ∩ (Q \Q
ε
) = A1,ε ∪A2,ε ∪A3,ε ∪A4,ε.

Since ∇d = e1 on A1,ε and A2,ε, we can compute

1

ε

∫

A1,ε

|∇d · F |dx ≤
1

ε

∫ ε

0

∫ x2

0

x1
x21 + x22

dx1 dx2 =
1

2
log 2, (5.6)
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and

1

ε

∫

A2,ε

|∇d · F |dx ≤
1

ε

∫ 1
2

ε

∫ ε

0

x1
x21 + x22

dx1 dx2

=
1

4ε
log(1 + 4ε2)−

1

2
log 2 + arctan(

1

2ε
)−

π

4
,

(5.7)

by a direct calculation. Both terms remain bounded as ε → 0, since arctan(x) ≤ π
2 and

log(1 + x) ≤ x for all x ≥ 0. Moreover, the integrals over A3,ε and A4,ε coincide with
the integrals in (5.6) and (5.7), respectively, by swapping the coordinates. Then the claim
follows.

Therefore, (F · ν)∂Q is a measure on ∂Q, which agrees with (F · ν)H1 (∂Q \ {0}) on
∂Q \ {0}, by using Theorem 5.3 below and since F is smooth there. Then there is c0 ∈ R

such that (F · ν)∂Q = c0δ0 + (F · ν)H1 ∂Q. This constant can be determined by noting
that

(F · ν)∂Q(∂Q) = c0 +
π

2
=

∫

Q
d(divF ) = 0.

so that c0 = −
π
2 , establishing (5.4). Then we have

(F · ν)∂Q (∂Q ∩ ∂H) = −
π

2
δ0 6= −πδ0 = (F · ν)∂H (∂Q ∩ ∂H).

Thus, the respective normal traces concentrate at the corner point (0, 0) and take different
values there. This shows that (5.2) may fail in general.

The above example is for a field F that is singular at the origin, and the discrepancy
arose due to the concentration of the normal trace at a point. One may also encounter
obstructions arising from the regularity of the domains, which is illustrated in the following
example.

Example 5.2. In R2, we can consider the domains:

V = B1(0) \ {(x1, 0) : x1 ≥ 0}, U = {x ∈ V : x2 > 0} = B1(0)
+.

Then we take F (x) = e2 = (0, 1), which is smooth and hence lies in DM∞
loc(R

2). Set
A = {x ∈ B1(0) : x1 > 0}. Then A ∩ ∂U = A ∩ ∂V = {(x1, 0) : 0 < x1 < 1}. However, we
have

(F · ν)∂U (A ∩ ∂U) = H1 {(x1, 0) : 0 < x1 < 1},

(F · ν)∂V (A ∩ ∂V ) = 0,

so the associated normal traces do not coincide, even though U ⊂ V . Indeed, the normal
trace on ∂U ∩A is understood in the classical sense, since U is a Lipschitz domain. For ∂V ,
using the definition, we can compute the normal trace for φ ∈W 1,∞

c (R2) as

〈F · ν, φ〉∂V = −

∫

V
φ divF dx−

∫

V
∇φ · F dx

= −

∫

B1(0)
φ divF dx−

∫

B1(0)
∇φ · F dx

= 〈F · ν, φ〉∂B1(0),

by noting that L2(B1(0) \ V ) = 0, so the normal trace indeed vanishes on A.
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In general, one may still hope for (5.1) to hold on relatively open portions of the common
boundary, which will be sufficient for our later purposes. More precisely, we have

Theorem 5.3. Let Ω ⊂ Rn be open and F ∈ DMext(Ω). Given U, V ⋐ Ω, let A ⊂ Rn be

open such that

U ∩A = V ∩A. (5.8)

Then A ∩ ∂U = A ∩ ∂V and

〈F · ν, φ〉∂U = 〈F · ν, φ〉∂V for any φ ∈W 1,∞
c (A).

In particular, if the normal traces on ∂U and ∂V are represented by measures, then

(F · ν)∂U (∂U ∩A) = (F · ν)∂V (∂V ∩A). (5.9)

Proof. Replacing A by A ∩ Ω if necessary, we can assume that A ⊂ Ω. We first show that
A∩∂U = A∩∂V . Indeed, if x ∈ A∩∂U , since U is open, then x /∈ U . Moreover, since A is
open, there is a sequence {xk} ⊂ A ∩ U such that xk → x. However, by (5.8), each xk ∈ V
while x /∈ V , so x ∈ ∂V and the latter inclusion follows by symmetry.

Now, for any δ > 0, when ε ∈ (0, δ), we claim that

Aδ ∩ (U \ U ε) = Aδ ∩ (V \ V ε),

and that dU = dV on this common intersection. Indeed, if x ∈ Aδ∩(U \U ε), there is y ∈ ∂U
such that |x− y| < ε. Since ε < δ, we see that y ∈ A and so y ∈ ∂V , giving

dV (x) ≤ |x− y| < ε.

Hence, x ∈ Aδ∩ (V \V ε), and taking the infimum over all such y yields that dV (x) ≤ dU (x).
By symmetry of U and V , the claim follows.

In particular,
∇dU · F (Aδ ∩ U \ U ε)∇dV · F (Aδ ∩ V \ V ε),

by definition of the pairing from Theorem 2.7. Hence, by Theorem 4.4, it follows that, for
any φ ∈W 1,∞

c (Aδ),

〈F · ν, φ〉∂U = lim
ε→0

1

ε

∫

U\Uε

φd∇dU · F

= lim
ε→0

1

ε

∫

V \V ε

φd∇dV · F = 〈F · ν, φ〉∂V .

Since δ > 0 is arbitrary, it follows that the above holds for any φ ∈W 1,∞
c (A). If the normal

traces are represented by measures, (5.9) follows by a standard density argument. �

Remark 5.4. One may wonder if the condition: U ∩ A = V ∩ A can be modified to hold
at the level of boundaries, that is, to impose ∂U ∩A = ∂V ∩A instead. However, Example
5.2 shows that this is insufficient, even if the additional assumption that U ⊂ V is made.

We conclude this section by recording that a maximal portion of the common intersection
∂U ∩ ∂V can be defined, where Theorem 5.3 applies; that is, we can define

S(U, V ) = {x ∈ ∂U ∩ ∂V : Bε(x) ∩ U = Bε(x) ∩ V for some ε > 0}.

Indeed, if A is any open set such that A∩U = A∩V , then, for every x ∈ A∩∂U ∩∂V , there
is ε > 0 such that Bε(x) ⊂ A. It follows that x ∈ S(U, V ) so that A ∩ ∂U ∩ ∂V ⊂ S(U, V ).

Conversely, we can take Ã =
⋃

x∈S(U,V )Bεx(x), where εx > 0 is as in the definition of set

S(U, V ).
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6. Cauchy Flux I: Main Results and Connections

The balance law postulates that the production of a quantity in any open set U ⋐ Ω is
balanced by the Cauchy flux of this quantity through boundary ∂U of U . We assume the
production is represented by a finite (signed) Radon measure σ in Ω such that

σ(U) = F(∂U) for any U ⋐ Ω,

where F is the flux through the boundary of U . In this section, we introduce the conditions
on the Cauchy flux F that guarantee the existence of an extended divergence-measure vector
field F satisfying

− divF = σ

and such that F can be recovered locally, on the boundary of almost every open set, through
the measure normal trace of F . We begin by presenting the existing developments in this
direction and emphasizing the remaining difficulties, before stating our main results.

6.1. Connections to other formulations of the Cauchy flux. The origin of the study
of Cauchy fluxes dates back to the fundamental paper by Cauchy [6] in 1823 who considered
the balance law in a bounded domain Ω in Classical Physics:

∫

U
p(x) dx =

∫

∂U
f(x, ν(x)) dHn−1(x) for any U ⊂ Ω, (6.1)

where the production p(x) is a bounded function in x ∈ Ω, and the density function f(x, ν)
of the flux depends on point x ∈ ∂U and the corresponding interior unit normal ν. It was
shown in [6] that, if f is continuous in x, then f must be linear in ν. For self-containedness
and subsequent development, we now present a brief description of Cauchy’s argument.

Theorem 6.1 (Cauchy’s tetrahedron argument). Consider the classical balance law (6.1)
in Rn, where f is continuous in x and p ∈ L∞(Ω). Then there exists a continuous vector

field F such that

f(x, ν(x)) = F (x) · ν(x).

Proof. Consider the standard orthonormal basis {ei}
n
i=1 of Rn. Let ν = (ν1, ν2, · · · , νn) be

any unit normal vector satisfying ν · ei 6= 0 for each 1 ≤ i ≤ n. Fix ǫ > 0 and consider
the tetrahedron Tε with vertices v0 = 0, vi = ενnνi ei for each 1 ≤ i ≤ n − 1, and vn = εen.

Then the boundary of Tε is composed of (n + 1) faces, denoted by Si,ε for 1 ≤ i ≤ n and
Sε. These are chosen so that Si,ε are contained in the planes: xi = 0, 1 ≤ i ≤ n, and Sε is
contained in the plane perpendicular to ν with the equation:

∑n
i=1 νixi = ενn. For x̃ ∈ Rn,

we consider the translated tetrahedron Tx̃,ε := x̃+Tε, whose faces are denoted as Sx̃,i,ε and
Sx̃,ε.

Then the balance law gives
∫

Tx̃,ε

p(x) dx =
n∑

i=1

∫

Sx̃,i,ε

f(x, ei) dH
n−1 +

∫

Sx̃,ε

f(x,−ν) dHn−1, (6.2)

where we split the boundary integral in terms of the contributions on the (n + 1) faces.
Since the production is bounded, we can estimate

∣∣∣
∫

Tx̃,ε

p(x) dx
∣∣∣ ≤ ‖p‖L∞(Ω)L

n(Tx̃,ε).
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We then divide both sides of (6.2) by Hn−1(Sx̃,ε) and observe that

(ν · ei)H
n−1(Sx̃,ε) = H

n−1(Sx̃,i,ε)

to deduce ∣∣∣∣∣

∫
Sx̃,ε

f(x,−ν)dHn−1(x)

Hn−1(Sx̃,ε)
+

n∑

i=1

(ν · ei)

∫
Sx̃,i,ε

f(x, ei)dH
n−1(x)

Hn−1(Sx̃,i,ε)

∣∣∣∣∣

≤ ‖p‖L∞(Ω)
Ln(Tx̃,ε)

Hn−1(Sx̃,ε)
= C(n)‖p‖L∞(Ω) ε.

(6.3)

We let ε→ 0 in (6.3) and use the fact that x 7→ f(x, ν) is continuous to obtain

f(x̃,−ν) +
n∑

i=1

νif(x̃, ei) = 0. (6.4)

Define a vector field F = (F1, F2, · · · , Fn) by

Fi(x) := f(x, ei) for x ∈ Ω.

Since x̃ ∈ Ω is arbitrary in (6.4), then F satisfies

f(x,−ν) = −F (x) · ν (6.5)

for any x ∈ Ω and ν ∈ Rn such that νi 6= 0 for all 1 ≤ i ≤ n. To extend this to hold
for any ν, we can choose a different orthonormal basis {ẽi}

n
i=1 and work in the associated

coordinate system (x̃1, · · · , x̃n) to allow for ν ∈ Rn satisfying ν · ẽi 6= 0 for all 1 ≤ i ≤ n in
(6.5). Since f is continuous, it follows that F is also continuous. �

The above derivation assumes the existence of a continuous density f . However, in ap-
plications, we may naturally encounter solutions that are discontinuous or singular, thereby
violating this continuity hypothesis. It was not until 1959 that Noll in [52] considered the
problem of removing the continuity assumption of f and proposed an axiomatic scheme for
Continuum Mechanics, which reduces to the familiar balance law for contact forces in the
stationary case. In this setting, the body Ω is composed of parts that are sets with smooth
boundary. In [52, Theorem IV], it was shown that the density function should depend only
on the position x and the normal vector ν(x), independent of other properties of the surface
such as the curvature. However, additional conditions are necessary to derive the linearity
of f , as it was later remarked in [51, p. 79] that “it is unfortunate that nobody has been

able, so far, to [establish the linearity of f ] under [the proposed axioms] without the ad-hoc

continuity assumption. . . ”.
From Classical Mechanics, it follows that the object of study should be the total flux

across a surface S contained in ∂U , that is,

F(S) =

∫

S
f(x, ν(x)) dHn−1(x). (6.6)

This viewpoint of studying the Cauchy flux F was proposed by Gurtin & Martin in [43].
Since they assumed the production p is bounded, the balance law (6.1) immediately implies
the inequality:

|F(∂U)| ≤ KLn(U) for any U ⊂ Ω. (6.7)

Moreover, from (6.6), it also follows that the flux should be an additive function in the
sense that

F(S1 ∪ S2) = F(S1) + F(S2) for disjoint S1, S2 ⊂ ∂U. (6.8)
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Therefore, Gurtin & Martins in [43] considered an additive set function F defined on (suffi-
ciently regular) oriented surfaces (S, ν) which satisfies the properties of being area-bounded :

|F(S)| ≤ CHn−1(S), (6.9)

and weakly volume-bounded in the sense that (6.7) holds. Under these assumptions, they
deduced the existence of a density function f(x, ν) defined for Ln–a.e. x ∈ Ω and all unit
vectors ν for which (6.6) holds for every admissible surface. Moreover, the following linearity
of f was proved: There exists a field F ∈ L∞ such that

f(x, ν) = F (x) · ν for Ln–a.e. x ∈ Ω.

Furthermore, the following uniform average density condition on F was introduced:

{fr(x, ν)}r>0 with fr(x, ν) :=
F(Dr(x,ν))

Hn−1(Dr(x,ν))
, (6.10)

which converges uniformly as r → 0 on any compact set K ⊂ Ω, where Dr(x, ν) is the
(n− 1)-dimensional disk of radius r centered at x with normal ν. It was proved that (6.10)
is a necessary and sufficient condition for the Cauchy flux F to have a continuous density
f that is linear for every x.

The class of admissible surfaces was extended by Ziemer in [67] to consider boundaries of
sets of finite perimeter. We refer the reader to [50] for a detailed exposition on the theory
of sets of finite perimeter, which gives a natural class of admissible surfaces that are closed
under the set operations and provides a suitable measure-theoretic notion of the normal.
Under the same assumptions (6.7)–(6.8), considered on sets of finite perimeter, the existence
of a bounded density f(x, ν) satisfying (6.6) on every oriented surface S was established
in [67, Theorem 3.3]. Once the existence of a density was established, the linearity of the
flux followed from the results in [43]. Indeed, in both [43] and [67], the existence of the
vector field is ultimately based (after suitable mollifications) on the Cauchy’s tetrahedron

argument, as sketched above in Theorem 6.1. Moreover, it was proved in [67] that the
constructed vector field F ∈ L∞ satisfies divF ∈ L∞ and that the Gauss-Green formula

∫

Q
d(divF ) = −

∫

∂Q
F (x) · ν(x) dHn−1(x)

holds for almost all cubes Q = (a1, b1)× · · · × (an, bn).
The boundedness conditions (6.7) and (6.9) were relaxed by Šilhavý in [60, 61] to allow

the Cauchy fluxes of the form:

|F(S)| ≤

∫

S
hdHn−1, (6.11)

|F(∂∗M)| ≤

∫

M
k dx, (6.12)

for h, k ∈ Lp and any Borel set S ⊂ ∂∗M , where M is assumed to be a normalized set of
finite perimeter in Ω and ∂∗M is the measure-theoretic normal. We denote the collection
of such M by P. We note that (6.11) holds only for a particular representative h in the Lp

class, which encodes fine properties of the underlying field, and the right-hand side may fail
to be finite in general. As such the class of admissible surfaces must be relaxed to “almost
all” surfaces, which is made precise by the class

Ph =
{
M ∈P : M ⋐ Ω and

∫
∂∗M

hdHn−1 <∞
}
. (6.13)
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This leads to the establishment of a one-to-one correspondence between Cauchy fluxes and
Lp–integrable fields F with Lp divergence in [61, Theorem 5.1]. It is shown that conditions
(6.11)–(6.12) imply the existence of a vector field in Lp.

However, the Lp–regularity of the divergence rules out the important physical behavior
where the Cauchy flux may jump across the boundary. One may naturally wonder whether
the case of divergence-measure fields can be treated in this framework. This was answered by
Degiovanni, Marzocchi & Musesti [31], providing a definition of Cauchy fluxes representable
by DMp–fields. For this, the upper bound (6.11) for the flux remains the same, while (6.12)
is replaced by the measure bound:

|F(∂∗M)| ≤ λ(M)

for some non-negative Radon measure λ on Ω. In this setting, the flux is recovered on the
class of surfaces

Ph,λ =
{
M ∈P : M ⋐ Ω,

∫

∂∗M
hdHn−1 <∞, λ(∂∗M) = 0

}
.

However, in general, the condition λ(∂∗M) = 0 rules out surfaces along which F has a jump,
say, F(−∂∗M) 6= −F(∂∗M). This requirement was removed by Schuricht [59], where the
flux is defined for all subsets in Ph, where a formulation in terms of contact interactions
between two bodies is proposed.

We also refer to [19] for bounded divergence-measure fields in which every set of finite
perimeter can be treated and to [9] in which the limit formula for any general open subset
is obtained.

Nevertheless, a characterization of Cauchy fluxes in the extended case has still been
missing. Note that a formulation was proposed in [63] in which the flux is defined only
on planar polyhedra and involves the estimates valid for almost all translates, making
the hypotheses difficult to verify. Instead, we now seek a construction in the spirit of
[31,43,59,61] that is also sufficiently robust to treat jumps across boundaries and one-sided
singularities.

6.2. Formulation of the Cauchy flux and statement of the main theorem for the

Cauchy flux. We begin by precisely defining the admissible class of surfaces under con-
sideration. This is because the class Ph from (6.13) has seemingly no natural replacement
when h is replaced by a Radon measure µ and, moreover, we wish to depart from sets of
finite perimeter and consider general open sets.

Definition 6.2. For a non-negative and finite Radon measure µ in Ω, denote

Oµ :=
{
U ⋐ Ω open : lim inf

ε→0

1

ε
µ ({x ∈ U : dist(x, ∂U) < ε}) <∞

}
. (6.14)

This condition is motivated by Theorem 4.4. We see later as a consequence of Lemma 7.4
that, for any open set U ⋐ Ω, U ε ∈ Oµ for L1–a.e. ε > 0. Thus, in this sense, Oµ contains
almost all open sets.

Remark 6.3. Recall that, for U ⊂ Ω and ε > 0, we write

U ε = {x ∈ U : dist(x, ∂U) > ε}. (6.15)

We also set U0 = U and

U−ε = {x ∈ Rn : dist(x,U) < ε}.
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Using this notation, we can equivalently formulate (6.14) as

lim inf
ε→0

µ(U)− µ(U
ε
)

ε
= lim inf

ε→0

1

ε
µ(U \ U ε) <∞. (6.16)

Notice that µ(∂U ε) = 0 for L1–a.e. ε > 0 and ε 7→ µ(U
ε
) is non-increasing and left-

continuous. If εk → 0 is a sequence realizing this limit inferior in (6.16), then, for each k,

we can find 0 < ε̃k ≤ εk such that µ(U
ε̃k) − εk

k ≤ µ(U
εk) ≤ µ(U

ε̃k) and µ(∂U ε̃k) = 0 for
each k. Thus, we always have

lim inf
ε→0

µ(U)− µ(U
ε
)

ε
= lim inf

ε→0

µ(U)− µ(U ε)

ε
,

regardless of whether both sides are finite or not. In addition, we may also consider the
Oµ–condition for subsets U ⊂ Rn that are not necessarily compactly contained in Ω; for
this, we simply extend measure µ by zero to Rn.

Definition 6.4. A Cauchy flux in Ω is a mapping F defined on pairs (S,U) with S ⊂ ∂U
Borel and U ⋐ Ω open, so that the balance law is satisfied:

FU (∂U) = σ(U) for any U ⋐ Ω, (6.17)

and there is a non-negative finite Radon measure µ such that the following conditions hold:

(i) Additivity property: For any U ∈ Oµ and disjoint Borel subsets S, T ⊂ ∂U ,

FU (S ∪ T ) = FU (S) + FU (T ).

(ii) Localization property: For any U, V ∈ Oµ and any open set A ⊂ Ω such that A∩U =
A ∩ V , then

FU (A ∩ ∂U) = FV (A ∩ ∂V ).

(iii) Upper bound: For any U ∈ Oµ,

|FU (S)| ≤ µ
n−1
U (S) (6.18)

holds for any Borel set S ⊂ ∂U and any limiting measure

1

εk
µ

(
U \ U εk

) ∗
−⇀ µn−1

U as εk ց 0.

In Remark 7.5, we will draw some connections to Condition (iii) in relation to the existing
formulations in the Lp setting. However, our condition appears to be fundamentally different
to the class Ph that appears in the previously existing formulations.

Remark 6.5. In Condition (iii), since U ∈ Oµ, then there is a sequence εk ց 0 for which
the non-negative measure sequence:

νk :=
1

εk
µ

(
U \ U εk

)

satisfies

lim
k→∞

νk(Ω) = lim inf
ε→0

1

ε
µ
(
U \ U ε

)
<∞.

Thus, {νk} is uniformly bounded inM(Ω) and, up to a subsequence, converges weakly∗ to
a measure ν. Moreover, since each νk vanishes on (Ω\U )∪U εk for each k, the limit measure
ν is supported on ∂U . Therefore, such a limiting measure µn−1

U always exists, even though
it is non-unique in general, and we impose (6.18) for every limiting measure obtained in
this way. However, it turns out that this limiting measure is unique on most surfaces, which
will be made precise in Lemma 7.4.
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The main result of this section is that Definition 6.4 implies the existence of a vector-
valued Radon measure F = (F1, · · · , Fn) in Ω, whose normal trace corresponds to F . More
precisely, we prove the following main theorem for the Cauchy flux.

Theorem 6.6. Let F be a Cauchy flux in Ω. Then there exists a unique divergence-measure

field F ∈ DMext(Ω) such that

− divF = σ

and

FU (S) = (F · ν)∂U (S) (6.19)

for any U ∈ Oµ and any Borel set S ⊂ ∂U , where the measure (F ·ν)∂U is the normal trace

of F on ∂U . Conversely, every F ∈ DMext(Ω) defines a Cauchy flux, by taking µ = |F |
and σ = − divF .

This makes precise the one-to-one correspondence

{Cauchy fluxes F in Ω} ←→ DMext(Ω)

as we claimed in the introduction, and the local recovery is now precisely formulated via
the class Oµ. We point out that there is no hope to obtain the recovery on all open sets U ,
as the normal trace appearing in (6.19) is not generally a measure on arbitrary open sets.

The converse statement of Theorem 6.6 is a consequence of the properties of the normal
trace established in earlier sections, which we record here.

Theorem 6.7. Let F ∈ DMext(Ω). Define

FU (S) := (F · ν)∂U (S) (6.20)

for any open set U ⋐ Ω and any Borel set S ⊂ ∂U , whenever the normal trace (F · ν)∂U
restricts to a measure on ∂U . Furthermore, for U ⋐ Ω, define globally

FU (∂U) := 〈F · ν, 1Ω〉∂U . (6.21)

Then F defines a Cauchy flux in the sense of Definition 6.4, with σ = − divF and any

non-negative Radon measure µ such that |F | ≤ µ.

Proof. By definition of the normal trace, it follows that FU (∂U) = − divF (U). Using
(2.11), we see that the balance law holds for all U ⋐ Ω. Also, if (F · ν)∂U is represented by
a measure on ∂U , then (6.20) and (6.21) coincide when S = ∂U .

By Theorem 4.4, the normal trace (F · ν)∂U is represented by a measure whenever U ∈
O|F |, property (i) follows from the fact that Oµ ⊂ O|F |. The localization property (ii)
follows from Theorem 5.3. Finally, for (iii), for any U ∈ Oµ, it follows from Remark 6.5

that there exists both εk → 0 and a limiting measure µn−1
U such that

1

εk
µ (U \ U εk)

∗
−⇀ µn−1

U .

Since |∇d · F | ≤ |F | ≤ µ by (2.5) from the product rule, we see from Theorem 4.4 that

1

εk
∇d · F (U \ U

εk)
∗
−⇀ (F · ν)∂U ,

which implies that |(F · ν)∂U | ≤ µ
n−1
U as measures. Therefore, F is a Cauchy flux. �
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The main implication of Theorem 6.6 will be proven in several steps, which will be broken
up into separate theorems. After establishing several useful properties of the flux in §7, we
will first construct a candidate field F by integrating the Cauchy flux along hyperplanes.
This will be done in §8.1, where the constructed field is shown to satisfy − divF = σ,
thereby establishing global recovery of the flux. Although the construction of F involves a
choice of measure to integrate the flux, in §8.2, we will justify our choice by showing that
the said flux is uniquely determined; this will rely on a version of Theorem 4.1 valid for
half-spaces. Finally, we will show that the flux and the normal trace coincide in the sense of
(6.19), which will be a local recovery result, in §9. This will first be done on generic cubes,
after which an approximation argument will extend this to general surfaces. Once the main
theorem is proven, we will also collect a few consequences in §9.2.

7. Cauchy Flux II: Properties of the Cauchy Flux

7.1. General properties of the Cauchy flux. We now present some useful properties of
the Cauchy flux, starting with some properties of sets in Oµ and consequences of property
(iii). Recall that we have defined the class of open subsets:

Oµ =
{
U ⋐ Ω open : lim inf

ε→0

1

ε
µ(U \ U

ε
) <∞

}
.

In what follows, we also consider the more restrictive class:

Õµ =
{
U ⋐ Ω open : lim sup

ε→0

1

ε
µ(U \ U

ε
) <∞

}
.

Lemma 7.1. If U ∈ Oµ, then FU (·) is represented by a measure supported on ∂U .

Proof. By Condition (i), the flux is finitely additive. By (iii), there exists some measure
µn−1
U such that the following upper bound holds:

|FU (S)| ≤ µ
n−1
U (S) for any Borel set S ⊂ ∂U.

Note that setting S = ∅ gives FU (∅) = 0. For countable additivity, let {Sk}
∞
k=1 be disjoint

Borel subsets of ∂U , and set S =
⋃∞

k=1 Sk. Then, for each N ≥ 1, we can estimate

∣∣∣FU (S)−
N∑

k=1

FU (Sk)
∣∣∣ =

∣∣∣FU (

∞⋃

k=N+1

Sk)
∣∣∣

≤ µn−1
U (

∞⋃

k=N+1

Sk) =

∞∑

k=N+1

µn−1
U (Sk)→ 0 as N →∞,

where we have repeatedly used the additivity property (i), in addition to (iii) and the fact
that µn−1

U is a measure. Thus, it follows that

FU (S) =
∞∑

k=1

FU (Sk),

from which the result follows. �

Lemma 7.2. Suppose that U1 ∈ Oµ and U2 ∈ Õµ. Then U1 ∩U2 and U1 ∪U2 lie in Oµ. In

addition, if U1 ∈ Õµ, then U1 ∩ U2, U1 ∪ U2 ∈ Õµ.
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Proof. For any U1, U2 ⊂ Ω, set U = U1 ∩ U2 and V = U1 ∪ U2. Then we claim:

U \ U ε ⊂ (U1 \ U ε
1 ) ∪ (U2 \ U ε

2 ), (7.1)

V \ V ε ⊂ (U1 \ U ε
1 ) ∪ (U2 \ U ε

2 ). (7.2)

Indeed, if x ∈ U \ U ε, then there exists y ∈ Rn \ U such that |x − y| < ε. Since Rn \ U =
(Rn \ U1) ∪ (Rn \ U2), then x ∈ U1 \ U ε

1 if y ∈ Rn \ U1, and x ∈ U2 \ U ε
2 if y ∈ Rn \ U2.

Similarly, if x ∈ V \ V ε, there is y ∈ Rn \ V with |x − y| < ε. If x ∈ U1, then y ∈ Rn \ U1

so that x ∈ U1 \ U ε
1 ; similarly, if x ∈ U2, then x ∈ U2 \ U ε

2 .
Thus, taking µ on both sides of (7.1), we obtain

1

ε
µ(U \ U ε) ≤

1

ε
µ(U1 \ U ε

1 ) +
1

ε
µ(U2 \ U ε

2 ) for any ε > 0, (7.3)

so that

lim inf
ε→0

1

ε
µ(U \ U ε) ≤ lim inf

ε→0

1

ε
µ(U1 \ U ε

1 ) + lim sup
ε→0

1

ε
µ(U2 \ U ε

2 ) <∞,

which implies that U ∈ Oµ. Moreover, if U1 ∈ Õµ, we have

lim sup
ε→0

1

ε
µ(U \ U ε) ≤ lim sup

ε→0

1

ε
µ(U1 \ U ε

1 ) + lim sup
ε→0

1

ε
µ(U2 \ U ε

2 ) <∞,

so U ∈ Õµ. The same result holds for V by using (7.2) instead to obtain an estimate
analogous to (7.3). �

Adapting the arguments of the above proof allows us to establish the following upper
bound for the limit measure µn−1

∂U .

Lemma 7.3. Let U1, · · · , UN ∈ Oµ such that there exists a common subsequence εk → 0 so

that
1

εk
µ (Ui \ U

εk
i )

∗
−⇀ µn−1

Ui
for each 1 ≤ i ≤ N,

and set

U =
N⋂

i=1

Ui, V =
N⋃

i=1

Ui.

(i) If 1
εk
µ (U \ U εk)

∗
−⇀ µn−1

U , then

µn−1
U (S) ≤

N∑

i=1

µn−1
Ui

(S ∩ ∂Ui ∩
⋂

j 6=i

Uj) for any Borel set S ⊂ ∂U.

(ii) If 1
εk
µ (V \ V εk)

∗
−⇀ µn−1

V , then

µn−1
V (S) ≤

N∑

i=1

µn−1
Ui

(S ∩ (∂Ui \
⋃

j 6=i

Uj)) for any Borel set S ⊂ ∂V .

Proof. For (i), arguing as in (7.1) from the proof of Lemma 7.2, we have

U \ U ε ⊂
N⋃

i=1

(
Ui \ U ε

i

)
for ε > 0.
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Given any non-negative φ ∈ Cc(Ω), we can integrate φ over these levels sets with respect
to µ and take the limit as εk → 0 to obtain

∫

∂U
φdµn−1

U ≤
N∑

i=1

∫

∂Ui

φdµn−1
Ui

.

Then we can argue by density to infer that

µn−1
U (S) ≤

N∑

i=1

µn−1
Ui

(S ∩ ∂Ui) for any Borel set S ⊂ Ω.

Now, since µn−1
∂U is supported on ∂U , we can replace S by S ∩ ∂U on the right-hand side.

Moreover, since

∂Ui ∩ ∂U ⊂ ∂Ui ∩
⋂

j 6=i

Uj ,

the result follows. The argument for (ii) is analogous, based on the inclusions:

V \ V ε ⊂
N⋃

i=1

(U1 \ U ε
1 )

for each ε > 0 which is established analogously to (7.2) and

∂V ⊂
N⋃

i=1

∂Ui \
⋃

j 6=i

Uj.

�

Lemma 7.4. Let F be a Cauchy flux, and let U ⊂ Rn be an open set. Consider the

disintegration of µ along ∂U t given by

µ = L1 [0,∞) ⊗∂U t µt + τsing ⊗∂U t µ̃t

from Lemma 3.5, extending µ by zero to a measure on Rn. Then, for L1–a.e. t > 0,

1

ε
µ Ω ∩ U t \ U t+ε)

∗
−⇀ µt,

1

ε
µ (Ω ∩ U t−ε \ U t)

∗
−⇀ µt as ε→ 0, (7.4)

and µ(Ω∩ ∂U t) = 0. In particular, if U ⋐ Ω, then U t, (U
t
)c ∈ Oµ, and µ

n−1
U t and µn−1

(U
t
)c

are

uniquely determined as µt for L
1–a.e. t > 0.

Proof. We apply Lemma 3.5, which asserts that, for any φ ∈ Cc(Ω) and any 0 < t < s,

1

s− t

∫

U t\Us

φdµ =
1

s− t

∫ s

t

∫

∂Ur

φdµr dr +
1

s− t

∫

(t,s)

∫

∂Ur

φdµ̃r dτsing(r).

For ε > 0, we apply the above with s = t+ε. For any countable dense subset {φj} of Cc(Ω)
(with respect to the uniform convergence), consider the partial mappings:

Φj(t) :=

∫

∂U t

φj dµt for each j.
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Then we choose t > 0 to be a Lebesgue point for each Φj and to satisfy DL1(τsing)(t) = 0
(using Lemma 2.1), which forms a set whose complement is L1–null. For such t, sending
ε→ 0 gives that, for each j,

lim
ε→0

1

ε

∫ t+ε

t

∫

∂Us

φj dµs ds = Φ(t) =

∫

∂U t

φj dµt,

and

lim sup
ε→0

1

ε

∣∣∣
∫

(t,t+ε)

∫

∂U t

φj dµ̃s dτsing(s)
∣∣∣ ≤ ‖φj‖L∞(Ω) lim sup

ε→0

1

ε
|τsing((t, t+ ε))| = 0.

Combining the above, we deduce

lim
ε→0

1

ε

∫

U t\U
t+ε

φj dµ =

∫

∂U t

φj dµt. (7.5)

Applying the same to (t, s) = (t− ε, t) with 0 < ε < t, we have

lim
ε→0

1

ε

∫

U t−ε\U t

φj dµ =

∫

∂U t

φj dµt for the same t.

Discarding a null set if necessary, we can moreover assume that

lim sup
ε→0

1

2ε
µ(U t−ε \ U

t+ε
) <∞,

so, in particular, U t, (U
t
)c ∈ Õµ and µ(Ω∩∂U t) = 0. Then, for any sequence εk → 0 giving

rise to a limiting measure
1

ε
µ U t \ U

t+εk ∗
−⇀ ν,

testing against φj and using (7.5) yields
∫

Ω
φj dν =

∫

∂U t

φj dµt for any j.

By density of {φj}, it follows that ν = µt ∂U t. This uniquely determines the limit. We
can similarly show that

1

ε
µ U t−ε \ U t ∗

−⇀ µt,

as required. �

Remark 7.5. In the theory of Lp–integrable fields, one may consider µ = hLn with a
non-negative function h ∈ Lp(Ω). In this case, the disintegration reads as

µ = L1 [0,∞)⊗∂U t µt, µt = h|∂U t Hn−1 ∂U t

by using the coarea formula, where a representative of h is fixed. In this case, using Lemma
7.4, condition (iii) implies that

|FU t(S)| ≤

∫

S
hdHn−1 for L1–a.e. t > 0 and any Borel set S ⊂ ∂U t.

This is reminiscent of the flux bound appearing in [9, 31, 59, 61], even though the notions
need not coincide for a general open set U .
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For the next result, we introduce the sets:

Ω̃δ = B1/δ ∩ Ωδ =
{
x ∈ Ω : dist(x, ∂Ω) > δ, |x| <

1

δ

}
for each δ > 0. (7.6)

Note that each Ω̃δ ⋐ Ω and
⋃

δ>0 Ω̃
δ = Ω. Using Lemmas 7.2 and 7.4, we see that Ω̃δ ∈ Õµ

for L1–a.e. δ > 0.

Lemma 7.6. Suppose that U ⊂ Rn is open such that

1

ε
µ (Ω ∩ (U \ U ε))

∗
−⇀ µn−1

U as ε→ 0. (7.7)

Then an extension of the Cauchy flux can be defined by

FU (S) := FU∩Ω̃δ (S) (7.8)

for L1–a.e. δ > 0 such that Ω̃δ ∈ Õµ and for any Borel set S ⊂ ∂U such that S ⊂ Ω̃δ ∩ ∂U .

Moreover, this extends uniquely to a measure on Ω ∩ ∂U satisfying

|FU (S)| ≤ µ
n−1
U (S) for any Borel set S ⊂ Ω ∩ ∂U. (7.9)

Proof. First, the weak∗–convergence in (7.7) implies that

lim sup
ε→0

1

ε
µ(Ω ∩ (U \ U ε)) <∞.

By Lemma 7.2 applied in Rn via extending µ by zero outside Ω, if δ > 0 such that Ω̃δ ∈ Õµ,

then Ω̃δ ∩ U ∈ Õ. By property (ii), we see that

F
U∩Ω̃δ1

(A ∩ ∂U) = F
U∩Ω̃δ2

(A ∩ ∂U)

for any δ1 and δ2 such that 0 < δ1 < δ2, as above, and A ⊂ Ω̃δ2 open. Since the flux
is a measure on Oµ by Lemma 7.1, by approximation (Lemma 2.2), the above extends to

general Borel sets S ⊂ Ω̃δ2 ∩ ∂U . Hence, (7.8) is well-defined. To show that it extends to a
measure, using Lemma 7.4, let δ > 0 such that

1

ε
µ (Ωδ \Ωδ+ε)

∗
−⇀ µn−1

Ωδ ,
1

ε
µ (B1/δ \B

ε
1/δ)

∗
−⇀ µn−1

B1/δ
.

Then, since U ∩ Ω̃δ ∈ Oµ by Lemma 7.3, we can estimate

µn−1

U∩Ω̃δ
≤ µn−1

U Ω̃δ + (µn−1
Ωδ + µn−1

B1/δ ) (Ω̃δ ∩ U)

as measures. Then, if S ⊂ Ω ∩ ∂U such that S ⋐ Ω̃δ, we obtain the claimed bound

|FU (S)| ≤ µ
n−1
U (S).

Since this estimate is independent of δ > 0, we claim that FU extends uniquely to a measure

on Ω ∩ ∂U . Indeed, take δj ց 0 such that each Ω̃δj ∈ Õµ and, given S ⊂ Ω ∩ ∂U , define

S1 = S ∩ Ω̃δ1 and Sj = S ∩ (Ω̃δj \ Ω̃δj−1) for j ≥ 2. Then, by additivity, we have

N∑

j=1

FU (Sj) = FU (

N⋃

j=1

Sj),

which is uniformly bounded in N by noting that
∞∑

j=1

|FU (Sj)| ≤ µ
n−1
U (S) <∞.
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Thus, there is a unique limit

FU (S) :=

∞∑

j=1

FU (Sj),

which also satisfies (7.9). Arguing analogously with disjoint sets S1, S2 ⊂ ∂U and consider-

ing Si,j = Si ∩ (Ω̃
δj \ Ω̃δj−1), we see that this extension is also additive. Since this extension

is additive and satisfies (7.9), arguing as in the proof of Lemma 7.1, we conclude that this
extension FU is a measure on Ω ∩ ∂U . �

Remark 7.7. In the case that U = V
c
= Rn \V for some V ⋐ Ω, it suffices to assume that

lim inf
ε→0

1

ε
µ(Ω ∩ (V −ε \ V )) <∞,

which is written as V
c
∈ Oµ. In this case, we can set

FV
c := F

Ω̃δ\V Ω̃δ (7.10)

for any δ > 0 such that δ < dist(V, ∂Ω), V ⊂ B1/δ , and Ω̃δ ∈ Õµ. Indeed, by Lemma 7.2

(applied in Rn extending µ by zero), Ω̃δ\V ∈ Oµ, so it follows from Lemma 7.1 that F
Ω̃δ\V is

a measure. By the localization property (ii), its restriction to ∂V is independent of the choice
of δ > 0, so (7.10) is well-defined. Also, for any such δ, we can set µn−1

V
c := µn−1

Ω̃δ\V
∂V ,

which satisfies

|FV
c(S)| ≤ µn−1

V
c (S) for any Borel set S ⊂ ∂V.

7.2. Properties of the Cauchy flux on cubes and half-spaces. Our proof of Theorem
6.6 relies on considering the Cauchy flux F on the boundaries of half-spaces and cubes, and
integrating along suitable hyperplanes to construct the desired field F . Since a general
half-space H = {x ∈ Rn : a · x > t} need not be contained in Ω, we use Lemma 7.6
to consider the flux on Ω ∩ ∂H for almost all H. In doing so, it is useful to understand
the behavior of the flux on cubes and, in particular, write FQ(·) as a sum of fluxes going
through the respective faces. It turns out that this is not possible for arbitrary cubes, since
the vector field may potentially concentrate at the corners, as illustrated for the normal
traces in Example 5.1.

However, localization to faces is possible for almost all cubes, which we will make precise
below. For this, it is useful to introduce some notation. For simplicity, we consider only
cubes and hyperplanes subordinate to the coordinate axes x1, · · · , xn, even though more
general frames in Rn can also be considered as done in [31] with minimal modifications.

Definition 7.8. For a cube Q = Q(a, b) := (a1, b1)× · · · × (an, bn), define the 2-skeleton of

Q as

∂2Q =
{
x ∈ Q : xi ∈ {ai, bi}, xj ∈ {aj , bj} for some i 6= j

}
.

Note that, in two dimensions, ∂2Q consists of the corner points, whereas it is the union of

all of the edges of Q (including the vertices) in three dimensions.

Additionally, for 1 ≤ i ≤ n, define the half-spaces

Ht
i,+ =

{
x ∈ Rn : xi > t

}
, Ht

i,− =
{
x ∈ Rn : xi < t

}
.

Note that (Ht
i,+)

ε = Ht+ε
i,+ and (Ht

i,−)
ε = Ht−ε

i,− by recalling definition (6.15). In particular,

∂Hai
i,+ and ∂Hbi

i,− contain the faces of Q for each 1 ≤ i ≤ n.
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We also define suitable null sets to make precise our notions of almost all cubes and
half-spaces.

Definition 7.9. Given the Radon measures µ and σ from Definition 6.4, for 1 ≤ i ≤ n,
define Ni,µ ⊂ R to be the complement of the set of points t ∈ R for which µ(∂Ht

i,+) = 0,
and the limits:

1

ε
µ (Ht

i,+ \H
t+ε
i,+ )

∗
−⇀ µn−1

Ht
i,+

and
1

ε
µ (Ht−ε

i,− \H
t
i,−)

∗
−⇀ µn−1

Ht
i,−

exist as ε → 0 with µn−1
Ht

i,+
= µn−1

Ht
i,−

, where µ is viewed as a measure on Rn by setting

|µ|(Rn \ Ω) = 0, and the set Ni,µ ⊂ R is L1-null by Lemma 7.4. Furthermore, define

Mi,σ ⊂ R as the complement of the set of points t ∈ R such that

|σ|(∂Ht
i,+) = 0,

which is at most countable and hence L1-null.

Observe that Lemma 7.6 applies to the half-spaces Ht
i,±, provided that t /∈ Ni,µ, allowing

us to make sense of FHt
i,±

, which will frequently be used in what follows.

Lemma 7.10. Let Q = Q(a, b) ⋐ Ω be a cube such that ai, bi /∈ Ni,µ and

µn−1
H

ai
i,+

(∂2Q) = µn−1

H
bi
i,−

(∂2Q) = 0 for any 1 ≤ i ≤ n. (7.11)

Then Q,Q
c
∈ Õµ, and there is a unique measure µn−1

Q such that

1

ε
µ(Q \Qε)

∗
−⇀ µn−1

Q ,
1

ε
µ(Q−ε \Q)

∗
−⇀ µn−1

Q as ε→ 0. (7.12)

Furthermore, for each 1 ≤ i ≤ n,

µn−1
Q (∂Hai

i,+ ∩ ∂Q) = µn−1
H

ai
i,+

(∂Hai
i,+ ∩ ∂Q),

µn−1
Q (∂Hbi

i,− ∩ ∂Q) = µn−1

H
bi
i,−

(∂Hbi
i,− ∩ ∂Q),

which uniquely determines µn−1
Q . In particular, µn−1

Q (∂2Q) = µn−1
Q

c (∂2Q) = 0.

Proof. Viewing µ as a measure on Rn, we see that each Hai
i,+,H

bi
i,− ∈ Õµ. Then it follows

from Lemma 7.2 that Q ∈ Õµ. Now, for any εk ց 0, there exists a limit measure λ such
that

1

εk
µ (Q \Qεk)

∗
−⇀ λ as k →∞.

We now show this limit measure is uniquely determined, from which the full convergence
(7.12) follows.

Since Q =
⋂n

i=1(H
ai
i,+ ∩H

bi
i,−) by using Lemma 7.3(i) together with (7.11), we have

λ(∂2Q) = 0. (7.13)

Moreover, if φ ∈ Cc(Ω \ ∂
2Q), then φ is supported in some open subset A ⋐ Ω \ ∂2Q.

Choosing ε > 0 such that ε < dist(A, ∂2Q) and ε < 1
2 (bj − aj) for each 1 ≤ j ≤ n, we have

A ∩ (Q \Qε) =

n⋃

j=1

(
A ∩ (H

aj
j,+ \H

aj+ε
j,+ )

)
∪

n⋃

j=1

(
A ∩ (H

bj
j,− \H

bj−ε
j,− )

)
,
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and the sets of the right-hand side are disjoint. Hence, integrating over φ with respect to
1
ε µ and sending εk ց 0 give

∫

∂Q
φdλ =

n∑

j=1

∫

∂H
aj
j,+

φdµn−1

H
aj
j,+

+

n∑

j=1

∫

∂H
bj
j,−

φdµn−1

H
bj
j,−

.

This, combined with (7.13), uniquely determines λ = µn−1
Q . Similarly, for the complement,

we obtain that Q
c
∈ Õµ by using Lemma 7.2 and noting that it is the union of Hai

i,− and

Hbi
i,+ for each 1 ≤ i ≤ n. Then, if εk ց 0 for which

1

εk
µ (Q−εk \Q)

∗
−⇀ λ̃,

it follows from Lemma 7.3(b) that λ̃(∂2Q) = 0. Moreover, we argue that, for each A ⋐

Ω \ ∂2Q,

λ̃ A =

n∑

j=1

(
µn−1

∂H
aj
j,−

(A ∩ ∂Q) + µn−1

∂H
bj
j,+

(A ∩ ∂Q)
)
,

from which we infer that λ̃ = µn−1
Q , since µn−1

∂H
aj
j,−

= µn−1

∂H
aj
j,+

and µn−1

∂H
bj
j,+

= µn−1

∂H
bj
j,−

for each

1 ≤ j ≤ n. �

Lemma 7.11. Let Q = Q(a, b) ⋐ Ω be a cube such that ai, bi /∈ Ni,µ for each 1 ≤ i ≤ n
and that (7.11) holds. Then, for any Borel set S ⊂ ∂Q,

FQ(S) =
n∑

i=1

(
FH

ai
i,+

(S ∩ ∂Hai
i,+) + FH

bi
i,−

(S ∩ ∂Hbi
i,−)

)
, (7.14)

FQ
c(S) =

n∑

i=1

(
FH

ai
i,−

(S ∩ ∂Hai
i,−) + FH

bi
i,+

(S ∩ ∂Hbi
i,+)

)
. (7.15)

Proof. By Lemma 7.6, the flux is defined on the hyperplanes associated with each face of

Q. Also, by Lemma 7.10 and condition (iii), Q,Q
c
∈ Õµ so that FQ and FQ

c are measures

majorized by µn−1
Q (by using Remark 7.7 for the complement).

Since Ω \ ∂2Q is open, for any open set A ⊂ Ω \ ∂2Q, the additivity property (i) from
Definition 6.4 gives

FQ(A ∩ ∂Q) =

n∑

i=1

(
FQ(A ∩ ∂Q ∩ ∂H

ai
i,+) + FQ(A ∩ ∂Q ∩ ∂H

bi
i,−)

)
,

by noting that the collection {(∂Hai
i,+, ∂H

bi
i,−) : 1 ≤ i ≤ n} is pairwise disjoint in Rn \ ∂2Q.

We now claim that, for each 1 ≤ i ≤ n,

FQ(A ∩ ∂Q ∩ ∂H
ai
i,+) = FH

ai
i,+

(A ∩ ∂Q ∩ ∂Hai
i,+),

FQ(A ∩ ∂Q ∩ ∂H
bi
i,−) = FH

bi
i,−

(A ∩ ∂Q ∩ ∂Hbi
i,−).

Indeed, when i = 1, writing Q = (a1, b1)×Q
′ with Q′ ⊂ Rn−1, for δ > 0 sufficiently small,

we see that Q1,δ = (a1 − δ, a1 + δ) ×Q′ is an open cube such that

A ∩Q1,δ ∩Q = A ∩Q1,δ ∩H
a1
1,+.
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Thus, applying property (ii) with the open set A ∩Q1,δ, we have

FQ(A ∩ ∂Q ∩ ∂H
a1
1,+) = FQ(A ∩Q1,δ ∩ ∂Q)

= FH
a1
1,+

(A ∩Q1,δ ∩ ∂H
a1
1,+) = FH

a1
1,+

(A ∩ ∂Q ∩ ∂Ha1
1,+).

Arguing similarly for the remaining terms, the claim follows.
Therefore, we have

FQ(A ∩ ∂Q) =

n∑

i=1

(
FH

ai
i,+

(A ∩ ∂Q ∩ ∂Hai
i,+) + FH

bi
i,−

(A ∩ ∂Q ∩ ∂Hbi
i,−)

)

for any open set A ⊂ Ω \ ∂2Q.
By Lemmas 7.1 and 7.6, we know that both sides of (7.14) are Radon measures on ∂Q,

and the equality holds for any relatively open set S ⊂ ∂Q \ ∂2Q, so that this extends to
all Borel subsets S ⊂ ∂Q \ ∂2Q by Lemma 2.2. Moreover, since both sides of (7.14) vanish
on ∂2Q by property (iii), (7.11), and Lemma 7.10, this extends to hold for any Borel set
S ⊂ ∂Q. The argument for the flux on the complement, namely (7.15), is analogous. �

The previous lemma relies crucially on condition (7.11), which ensures that the flux does
not concentrate on the corners of the cube. The following result asserts that this condition
holds for almost all cubes in a suitable sense, which is used frequently in the sequel. We
postpone the technical proof until the end of this section, as it is disjoint from the discussion
which follows.

Lemma 7.12. Given a cube Q = Q(a, b) ⋐ Ω, for Ln–a.e. x ∈ Rn, (7.11) holds for x+Q:

µn−1

H
xi+ai
i,+

(∂2(x+Q)) = µn−1

H
xi+bi
i,−

(∂2(x+Q)) = 0 for any 1 ≤ i ≤ n.

Lemma 7.13. Consider a cube Q = Q(a, b) ⋐ Ω with ai, bi /∈ Ni,µ which satisfies (7.11)
for each 1 ≤ i ≤ n. Then, for each 1 ≤ j ≤ n, there exists an L1-null set Nj,Q ⊂ (aj , bj)
such that

t 7→ FHt
j,+

(Q ∩ ∂Ht
j,+) (7.16)

is continuous when restricted to R \ Nj,Q and hence is L1-measurable on R, and

FHt
j,+

(Q ∩ ∂Ht
j,+) = −FHt

j,−
(Q ∩ ∂Ht

j,−) for any t ∈ R \ Nj,Q. (7.17)

Proof. We divide the proof into two steps.

1. By permuting the coordinates, we can assume that j = 1. We write Q = (a1, b1)×Q
′

and set Qs,t := (s, t)×Q′ ⊂ Q for a1 < s < t < b1. This satisfies

∂2Qs,t ⊂ {s, t} × ∂Q
′ ∪ ∂2Q,

viewing ∂Q′ as the boundary of Q′ ⊂ Rn−1. Furthermore, notice that

∂2Qs,t ∩ (∂Hai
i,+ ∪ ∂H

bi
i,−) ⊂ ∂Q

′ ∪ ∂2Q for any 2 ≤ i ≤ n.

combining this with (7.11), we obtain

µn−1
H

ai
i,+

(∂2Qs,t) = µn−1

H
bi
i,−

(∂2Qs,t) = 0 for any 2 ≤ i ≤ n. (7.18)

Observe that, since ai, bi 6∈ Ni,µ, we have

µ((a1, b1)× ∂Q
′) = 0
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owing to µ(∂Hai
i,+) = µ(∂Hbi

i,−) = 0 for all 2 ≤ i ≤ n by Definition 7.9. Thus, for L1–a.e.

t ∈ (a1, b1),

µn−1
Ht

i,+
(((a1, b1)× ∂Q

′) ∩ ∂Ht
i,+) = µn−1

Ht
i,−

(((a1, b1)× ∂Q
′) ∩ ∂Ht

i,−) = 0.

We denote by T the set of points t ∈ (a1, b1) \ (N1,µ ∪M1,σ) for which the above holds.
Then, for s, t ∈ T with s < t, we have

µn−1
Hs

1,+
(∂2Qs,t) = µn−1

Ht
1,−

(∂2Qs,t) = 0.

Then, combined with (7.18), Lemmas 7.10–7.11 apply to Qs,t.

2. We now show the result holds with N1,Q = (a1, b1) \ T .
Let εk, δk > 0 such that εk, δk ց 0 and t − εk, t + δk ∈ T for each k. Then, applying

Lemma 7.11 and the balance law (6.17) to cube Qt−εk,t, we deduce

σ(Qt−εk,t) = FQt−εk,t(∂Qt−εk ,t)

= F
H

t−εk
1,+

(Q ∩ ∂Ht−εk
1,+ ) + FHt

1,−
(Q ∩ ∂Ht

1,−)

+

n∑

i=2

(
FH

ai
i,+

(Qt−εk,t ∩ ∂H
ai
i,+) +FH

bi
i,−

(∂Qt−εk ,t ∩ ∂H
bi
i,−)

)

=: Ik1,+ + I1,− +
n∑

i=2

(
Iki,+ + Iki,−

)
.

By Lemma 7.1, the fluxes on the respective hyperplanes are measures. It follows that
Iki,± → 0 as k →∞ for each 2 ≤ i ≤ n. Similarly, σ(Qt−εk,t)→ 0. Then we see that

lim
k→∞

F
H

t−εk
1,+

(Q ∩ ∂Ht−εk
1,+ ) = lim

k→∞
Ik1,+ = −I1,− = −FHt

1,−
(Q ∩ ∂Ht

1,−).

Analogously, for Qt,t+δk , it follows that

lim
k→∞

F
H

t+δk
1,−

(Q ∩ ∂Ht+δk
1,− ) = −FHt

1,+
(Q ∩ ∂Ht

1,+),

and, for Qt−εk,t+δk , we apply that σ(∂H1,+) = 0 to obtain

lim
k→∞

F
H

t+δk
1,−

(Q ∩ ∂Ht+δk
1,− ) + lim

k→∞
F
H

t−εk
1,+

(Q ∩ ∂Ht−εk
1,+ ) = 0.

Thus, it follows that

FHt
1,+

(Q ∩ ∂Ht
1,+) = −FHt

1,−
(Q ∩ ∂Ht

1,−)

establishing (7.17), which implies

lim
k→∞

F
H

t+δk
1,−

(Q ∩ ∂Ht+δk
1,− ) = FHt

1,−
(Q ∩ ∂Ht

1,−),

lim
k→∞

F
H

t−εk
1,+

(Q ∩ ∂Ht−εk
1,+ ) = FHt

1,+
(Q ∩ ∂Ht

1,+),

leading to the continuity of (7.16) restricted to R \ Nj,Q. Finally, the L1–measurability
follows from a general principle; indeed, denoting this mapping by g, if A ⊂ R is open, then

g−1(A) =
(
g|R\Nj,Q

)−1
(A) ∪

(
g−1(A) ∩ Nj,Q

)
.

This is the union of a relatively open subset of the L1-measurable set R \ Nj,Q and an
L1-null set, so both are L1-measurable by using the completeness of the Lebesgue measure.
Therefore, g is L1-measurable, as required. �
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Combining Lemma 7.12 with measure-theoretic argument allows us to extend Lemma
7.13 to hold for general Borel subsets. This provides a key step in the construction of an
associated field F in §8.1.

Lemma 7.14. For each 1 ≤ j ≤ n, there is a null set Kj ⊂ R containing Nj,µ ∪Mj,σ such

that, for t /∈ Kj ,

FHt
j,+

(S ∩ ∂Ht
j,+) = −FHt

j,−
(S ∩ ∂Ht

j,−) for any Borel set S ⊂ Ω. (7.19)

Moreover, for any such S, the mapping:

t 7→

{
FHt

j,+
(S ∩ ∂Ht

j,+) if t /∈ Kj ,

0 if t ∈ Kj ,
(7.20)

is L1-integrable satisfying

∫

R

|FHt
j,+

(S ∩ ∂Ht
j,+)|dt ≤ µ(S). (7.21)

Proof. Consider the collection {Q(a, b) : a, b ∈ Qn} of cubes with rational endpoints in Rn.
Then, for Ln–a.e. x ∈ Rn, the conclusion of Lemma 7.12 is satisfied for all x+Q(a, b) with
a, b rational, and xi + ai, xi + bi /∈ Ni,µ ∪Mi,σ for all 1 ≤ i ≤ n. We then let QΩ be the
collection of such cubes x + Q ⋐ Ω that are compactly contained in Ω. Observe that QΩ

is a countable collection of open cubes generating the Borel σ-algebra of Ω, which is also
closed under finite intersections.

Writing QΩ = {Qk}k∈N and applying Lemma 7.13 to each Qk, we obtain an associated
null set Nj,Qk

for each 1 ≤ j ≤ n, which contains Nj,µ ∪ Mj,σ by construction. We set
Kj :=

⋃
kNj,Qk

, which is a null set for each j. Then, for all t /∈ Kj and k ∈ N, (7.19) holds
with S = Qk, and the mapping in (7.20) with S = Qk is L1-measurable.

Now, for any t /∈ Kj, Lemma 7.6 ensures that FHt
j,±

( · ∩ ∂Ht
j,±) are measures on Ω, so

we can extend (7.19) that holds for any S = Qk to all Borel sets S ⊂ Ω by using Lemma
2.2. For the second part, let Dj denote the set of Borel subsets S ⊂ Ω for which the result
holds; that is, (7.20) is L1-integrable satisfying (7.21).

We now show that Dj contains all Borel subsets of Ω, by a similar argument to that in
[2, Remark 1.9], thereby establishing the result. For this, observe first that, if S ⊂ Ω is a
Borel set, then, by property (iii) and Lemma 7.4,

|FHt
j,+

(S ∩ ∂Ht
j,+)| ≤ µt(S ∩ ∂H

t
j,+) for L1–a.e. t,

where µt is given by the disintegration

µ = L1 [0,∞)⊗∂Ht
j,+

µt + τsing ⊗∂Ht
j,+

µ̃t.

Hence, if mapping (7.20) is measurable, we can integrate in t to deduce (7.21) and thus
infer that S ∈ Dj . In particular, QΩ ⊂ Dj , since the associated mapping is measurable.

We now claim that Dj is closed under the set differences and countable increasing unions.
Indeed, if A,B ∈ Dj with A ⊂ B, then, for t /∈ Kj , we can write

FHt
j,+

((B \ A) ∩ ∂Ht
j,+) = FHt

j,+
(B ∩ ∂Ht

j,+)−FHt
j,+

(A ∩ ∂Ht
j,+),
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which is evidently measurable in t, so that B \A ∈ Dj . Also, if {Sj} ⊂ Dj is any countable
collection of pairwise disjoint Borel subsets in Ω, then, setting S =

⋃
j Sj , we have

∑

j

FHt
j,+

(Sj ∩ ∂H
t
j,+) = FHt

j,+
(S ∩ ∂Ht

j,+) for any t /∈ Kj ,

so this is also measurable in t. Now, if {Aj} ⊂ Dj is a countable collection of Borel subsets

which is not necessarily disjoint, define {Sk} by setting S1 = A1 and Sk = Ak \
(⋃k−1

j=1 Sj
)

for each k ≥ 2. Then {Sk} are pairwise disjoint such that
⋃

k Sk =
⋃

k Ak =: A and, by
induction, each Sk ∈ Dj, so that A ∈ Dj. Using this, we also obtain Ω ∈ Dj , so Dj is a
σ-algebra containing QΩ and hence contains all Borel subsets S ⊂ Ω, thereby establishing
the result. �

Lemma 7.15. Suppose that Q = Q(a, b) ⋐ Ω such that ai, bi /∈ Ki for all 1 ≤ i ≤ n and

(7.11) holds. Then

FQ(S) =

n∑

i=1

(
FH

ai
i,+

(S ∩ ∂Hai
i,+)−FH

bi
i,+

(S ∩ ∂Hbi
i,+)

)
= −FQ

c(S)

for any Borel set S ⊂ ∂Q. In particular, for any cube Q, this holds for x + Q for Ln–
a.e. x ∈ Rn.

Proof. The representations of FQ(S) and FQ
c(S) follow by combining Lemma 7.11 with

(7.19) from Lemma 7.14 and recalling that Nj,µ ∪ Mj,σ ⊂ Kj for each 1 ≤ j ≤ n. For
the last part, we apply Lemma 7.12 to see that (7.11) is satisfied for Ln–a.e. x ∈ Rn. By
increasing the null set if necessary, we also require that xj+aj, xj+bj /∈ Kj for all 1 ≤ j ≤ n,
where Q = Q(a, b). �

We now conclude this section with the proof of Lemma 7.12.

Proof of Lemma 7.12. Extending µ by zero, we view µ as a measure on Rn in what follows:
Let v,w ∈ Rn be unit vectors with non-zero components such that, for all 1 ≤ i < j ≤ n, the
vectors (vi, vj) and (wi, wj) are linearly independent. For instance, we can define ṽ, w̃ ∈ Rn

by setting ṽj = j and w̃j = j2 for each 1 ≤ j ≤ n, which can then be normalized by letting

v = ṽ
|ṽ| and w = w̃

|w̃| . For this choice, we can readily verify that viwj 6= vjwi for all i 6= j,

which implies linear independence. Now we define

C :=
⋃

β∈R

(
βw + ∂2Q

)
. (7.22)

Then we divide the rest of the proof into three steps.

1. We first prove that, for the set C as defined in (7.22) above,

µ(αv +C) = 0 for L1–a.e. α ∈ R. (7.23)

We establish this in two substeps, starting with the following algebraic result.
1.1. We show that there isM ∈ N sufficiently large such that, for any α1, α2, · · · , αM ∈ R

distinct,
M⋂

k=1

(αkv +C) = ∅. (7.24)

In fact, we can take M = 2n(n− 1) + 1.
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To see this, observe that, for each x ∈ αv + C, there is some β ∈ R such that y :=
x − αv − βw ∈ ∂2Q. Then there exist i and j with 1 ≤ i < j ≤ n such that yi ∈ {ai, bi}
and yj ∈ {aj , bj}. We can associate y as lying in the corner associated to ((i, j), (yi, yj)),
for which there are 22

(n
2

)
= 2n(n− 1) =M − 1 distinct choices.

Now, for this choice of M , suppose that there are distinct α1, · · · , αM ∈ R for which the
claim fails to hold, so that there exists some x ∈

⋂M
k=1(αkv + C). For each k, we can find

βk such that
yk := x− αkv − βkw ∈ ∂

2Q.

By the pigeonhole principle, there exists two points that lie in the same corner, that is, there
exist k1, k2 ∈ {1, 2, · · · ,M} with k1 6= k2 and 1 ≤ i < j ≤ n such that (y1)i = (y2)i ∈ {ai, bi}
and (y1)j = (y2)j ∈ {aj , bj}. We denote these common values by ci and cj , respectively:

(yq)i = xi − αkqvi − βkqwi = ci,

(yq)j = xj − αkqvj − βkqwj = cj ,

for q = 1, 2. Rearranging for xi − ci and xj − cj , we obtain the following equations:

αk1vi + βk1wi = αk2vi + βk2wi,

αk1vj + βk1wj = αk2vj + βk2wj .

Since v and w have been chosen so that (vi, vj) and (wi, wj) are linearly independent, it
follows that αk1 = αk2 and βk1 = βk2 . However, this contradicts the fact that αk are
distinct, which implies that (7.24) holds as claimed.

1.2. For each 1 ≤ k ≤ M , we will show there exists a countable set Nk with NM ⊂
NM−1 ⊂ · · · ⊂ N1 such that

µ
( k⋂

i=1

(αiv +C)
)
= 0

for all α1, · · · , αk ∈ R \ Nk distinct. Note that claim (7.23) is precisely the case k = 1.
We show this by induction descending in k. First, we notice that this holds for k = M

with NM = ∅, since the previous step ensures that the intersection is empty.
For general k < M , suppose that there is a µ-null set Nk+1 as claimed, and consider any

finite collection F of subsets Λ = {α1, · · · , αk} containing k distinct elements taking values
in R \ Nk+1. Observe that, if Λ1,Λ2 ∈ F are distinct, then the union Λ1 ∪ Λ2 contains at
least k + 1 elements and, by assumption on Nk+1,

µ
( ⋂

α∈Λ1∪Λ2

(αv +C)
)
= 0.

Now the inclusion-exclusion principle gives

µ
( ⋃

Λ∈F

⋂

α∈Λ

(αv +C)
)

=
∑

Λ∈F

µ
( ⋂

α∈Λ

(αv +C)
)
+

∑

S⊂F
|S|>1

(−1)1+|F |
∑

Λ∈F

µ
( ⋂

α∈
⋃

S

(αv +C)
)
. (7.25)

We see that all terms in the second sum are zero, since
⋃
S always contains at least k + 1

distinct elements of R \ Nk+1. Thus, we deduce from (7.25) that
∑

Λ∈F

µ
( ⋂

α∈Λ

(αv +C)
)
= µ

( ⋃

Λ∈F

⋂

α∈Λ

(αm
i v +C)

)
≤ µ(Ω) <∞.
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Since F is arbitrary, it follows that there are at most countably many collections Λm =
{αm

1 , · · · , α
m
k } of subsets of k distinct elements in R \ Nk+1 such that

µ
( ⋃

α∈Λm

(αv +C)
)
6= 0.

Thus, we take Nk = Nk+1 ∪
⋃

mΛm which is L1-null, and observe that any collection
α1, . . . , αk ∈ R \ Nk necessarily does not coincide with any of Λm, which implies that

µ
( k∑

i=1

(αiv +C)
)
= 0.

Therefore, the claim follows by induction.

2: We now show that (αv + βw) +Q satisfies (7.11) for L2–a.e. (α, β) ∈ R2,

Let α ∈ R \ N1. For β ∈ R to be determined, let x = αv + βw. Then x + Q has faces

intersecting with ∂Hαvi+βwi+ai
i,+ and ∂Hαvi+βwi+bi

i,− for each 1 ≤ i ≤ n. Moreover, by Lemma
7.4, we can estimate

∫

R

µn−1

H
αvi+t+ai
i,+

(
(αv +C) ∩ ∂Hαvi+t+ai

i,+

)
dt ≤ µ(αv +C) = 0,

and similarly for ∂Hαvi+t+bi
i,− . Thus considering t = βwi in the respective cases, by noting

that wi 6= 0,

µn−1

H
αvi+βwi+ai
i,+

(αv +C) = µn−1

H
αvi+βwi+bi
i,−

(αv +C) = 0 for L1–a.e. β ∈ R.

For such β, we see that x+Q with x = αv+βw satisfies (7.11), provided that x+Q ⋐ Ω.
That is, for L2–a.e. (α, β) ∈ R2, the result holds for x = αv + βw .

3: We now show that x+Q satisfies (7.11) for Ln–a.e. x ∈ Rn.
For each y ∈ P := (span{v,w})⊥, applying the above to y +Q, we obtain an L2-null set

My ⊂ R2 such that the result holds for (αv + βw) + y +Q, whenever (α, β) /∈ My. Then,

for M̃y := {y + αv + βw : (α, β) ∈ My}, H
2(M̃y) = 0 by the area formula ([2, Theorem

2.71]). Then, settingM =
⋃

y∈P M̃y, by the Fubini Theorem, we have

Ln(M) =

∫

P
H2(M̃y) dH

n−2(y) = 0.

Therefore, (7.11) holds for all x /∈ M, provided that x+Q ⋐ Ω. �

8. Cauchy Flux III: Construction and Uniqueness of the Representing

Divergence-Measure Field

We now employ the properties of the flux established in §7 to work towards the proof
of Theorem 6.6. In particular, we define a candidate vector field F to represent the flux,
recover the balance law, and show that any such field must take this form.
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8.1. Construction of a divergence-measure field.

Theorem 8.1. Given a Cauchy flux, there exists a measure-valued vector field

F = (F1, F2, · · · , Fn) ∈ M(Ω,Rn)

such that |Fj | ≤ µ for each 1 ≤ j ≤ n and

Fj(S) =

∫

R

FHt
j,+

(S ∩ ∂Ht
j,+) dt for any Borel set S ⊂ Ω. (8.1)

Proof. By Lemma 7.14, we know that integral (8.1) is well-defined for any Borel set S ⊂ Ω
(understanding that it is zero on the null set Kj) and satisfies the estimate:

|Fj(S)| ≤ µ(S). (8.2)

From this, it also follows that Fj(∅) = 0. By the additivity property (i) of the flux and the
linearity of the integral, we know that Fj is additive on Borel sets. To show the countable
additivity, let {Sk} be a collection of pairwise disjoint Borel subsets of Ω, and let S =

⋃
k Sk.

Then, by finite additivity and (8.2), we have

∣∣∣Fj(S)−
M∑

k=1

Fj(Sk)
∣∣∣ =

∣∣∣Fj

(
S \

M⋃

k=1

Sk
)∣∣∣ ≤ µ

(
S \

M⋃

k=1

Sk
)
→ 0 as M →∞.

This shows that each Fj is a signed measure on Ω, as required. �

Theorem 8.2 (Recovery of the balance law). The field F constructed in Theorem 8.1 lies

in DMext(Ω) and satisfies

− divF = σ in Ω.

In particular, for any U ⋐ Ω,

FU (∂U) = σ(U) = 〈F · ν, 1Ω〉∂U . (8.3)

Proof. To simplify notation, we write Ht
j,+ = Ht

j . Let ρδ be a standard mollifier, and define

F δ := F ∗ ρδ. Then, for any cube Q = Q(a, b) ⋐ Ω and 0 < δ < dist(Q, ∂Ω), since F δ is
smooth on Q, the classical Divergence Theorem gives

∫

Q
divF δ(x) dx = −

∫

∂Q
F δ(x) · ν∂Q(x) dH

n−1(x)

= −

∫

∂Q

∫

Rn

ρδ(x− y) ν∂Q(x) · dF (y) dHn−1(x),

where ν∂Q is the inwards facing normal for ∂Q.
We consider the face: ∂Q ∩ ∂Ha1

1 on which ν∂Q = e1. Then, by construction of Fj from
Theorem 8.1, we know that the disintegration

Fj = L
1 ⊗∂Ht

j
Fj,t = L

1 ⊗∂Ht
j
FHt

j
( · ∩ ∂Ht

j)
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holds. Using this and writing Q = (a1, b1)×Q
′, we can write

∫

∂Q∩∂H
a1
1

∫

Rn

ρδ(x− y) ν∂Q(x) · dF (y) dHn−1(x)

=

∫

Rn−1

∫

R

∫

Rn−1

χQ′(x′)ρδ(a1 − y1, x
′ − y′) dF1,y1(y) dy1 dx

′

=

∫

Rn−1

∫

R

∫

Rn−1

χQ′−z′(y
′)ρδ(z1, z

′) dF1,a1−z1(a1 − z1, y
′) dz1 dz

′

=

∫

Rn

ρδ(z)F1,a1−z1({a1 − z1} × (Q′ − z′)) dz

=

∫

Rn

ρδ(z)F−z+H
a1
1
(−z + (∂Q ∩ ∂Ha1

1 )) dz,

where we have made the change of variables y1 7→ z1 = a1 − y1 and x′ 7→ z′ = x′ − y′. The
remaining sides can be computed similarly. Writing Qz = z +Q that has faces Hai−zi

i and

Hbi−zi
i , we deduce

∫

Q
divF δ(x) dx =

n∑

i=1

∫

Rn

ρδ(z)F
H

aj−zj
j

(∂Q−z ∩ ∂H
aj−zj
j ) dz

−
n∑

i=1

∫

Rn

ρδ(z)F
H

bj−zj
j

(∂Q−z ∩ ∂H
bj−zj
j ) dz.

Now, by Lemmas 7.15 and 7.12, for Ln–a.e. z with |z| ≤ dist(Q, ∂Ω), we have

n∑

i=1

∫

Rn

(
F
H

aj−zj
j

(∂Q−z ∩ ∂H
aj−zj
j )−F

H
bj−zj
j

(∂Q−z ∩ ∂H
bj−zj
j )

)

= FQ−z(∂Q−z) = σ(Q−z).

Thus, we obtain
∫

Q
divF δ(z) dx = −

∫

Rn

ρδ(z)σ(Q+ z) dz = −

∫

Q
σ ∗ ρ̃δ(x) dx,

where ρ̃δ(x) = ρδ(−x) is also a mollifier. Since this holds for all cubes Q ⋐ Ω whenever
0 < δ < dist(Q, ∂Ω), it follows that

− divF ∗ ρδ = σ ∗ ρ̃δ in Ωδ.

Sending δ → 0, we deduce that F ∈ DMext(Ω) with − divF = σ. Finally, it follows from
the balance law (6.17) that, for any U ⋐ Ω,

FU (∂U) = σ(U) = −

∫

U
d(divF ),

and, by (2.11), this is equal to 〈F · ν, 1Ω〉∂U , thereby establishing (8.3). �

8.2. Uniqueness of the field. We now show that the constructed field F is unique. Note
that, in Theorem 8.1, the divergence-measure field F has been constructed componentwise
by integrating the fluxes on ∂Ht

j,+ with respect to the Lebesgue measure. However, this
choice of the measure is seemingly arbitrary, and one may wonder if there is a singular part

that is missed with this construction. This possibility is essentially ruled out by Theorem
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4.1; however, this cannot be directly applied with U = Ht
j,+ since U 6⋐ Ω. Nevertheless,

using the localization results from §5 and §7.1, we can adapt the result as follows:

Lemma 8.3. Let F = (F1, F2, · · · , Fn) ∈ DM
ext(Ω). Consider the disintegration:

Fj = τ ⊗∂Ht
j,+

F̃j,t for 1 ≤ j ≤ n,

where Ht
j,+ = {x ∈ Rn : xj > t}, extending Fj by zero to a measure on Rn. Then τ ≪ L1

and, for L1–a.e. t ∈ R, Fj,t := DL1τ(t)F̃j,t is well-defined and satisfies

Fj,t Ω̃δ = (F · ν)
∂(Ω̃δ∩Ht

j,+)
Ω̃δ for L1–a.e. δ > 0

as measures. In particular, Fj = L
1 ⊗∂Ht

j,+
Fj,t.

Proof. By Theorem 6.7, the divergence-measure field F defines a Cauchy flux F̃ via its
normal trace with µ = |F |. Fix t ∈ R be such that

1

ε
|F | Ht

j,+ \H
t+ε
j,+

∗
−⇀ µn−1

t as ε→ 0

to some limiting measure µn−1
t , which is satisfied for L1–a.e. t by Lemma 7.4 applied with

µ = |F |. Then, by Lemma 7.6, there is a well-defined measure F̃Ht
j,+

(·) on Ω such that

F̃Ht
j,+

(S) = (F · ν)∂(Ω̃δ∩Ht
j,+)(S) (8.4)

for L1–a.e. δ ∈ (0, 1) with Ω̃δ ∈ O|F | and for any Borel set S ⊂ Ω̃δ ∩ ∂Ht
j,+, where Ω̃δ is

defined in (7.6). For any such δ > 0, we can apply Theorem 4.1 to U := Ω̃δ ∩Ht
j,+ ⋐ Ω,

which gives
∫ δ

0
〈F · ν, φ〉∂(Ω̃δ∩Ht

j,+)ε dε =

∫

U\Uδ

φd∇dU · F for any φ ∈ Lipc(Ω). (8.5)

Now suppose further that φ is compactly supported in Ω̃2δ, and set

Vt,δ := Ω̃2δ ∩ (Ht
j,+ \H

t+δ
j,+ ).

Then, for each ε ∈ (0, δ), observe that dU (x) = dHt
j,+

(x) = ε for x ∈ Ω̃2δ ∩ ∂Ht+ε
j,+ , since

dist(x, ∂Ω̃δ) ≥ min{δ, δ−1} and δ < 1. Hence, Vt,δ ⊂ U \ U
δ
and dU = dHt

j,+
on Vt,δ that is

open. Then, by the product rule (Theorem 2.7), we infer

∇dU · F Vt,δ = ∇dHt
j,+
· F Vt,δ = F · ej Vt,δ (8.6)

as measures. In addition, for each ε ∈ (0, δ), the above implies that

(Ω̃δ ∩Ht
j,+)

ε ∩ Vδ = Ω̃δ ∩Ht+ε
j,+ ∩ Vδ.

By localization (Theorem 5.3), we have

(F · ν)
∂(Ω̃δ∩Ht

j,+)ε
Vδ = (F · ν)

∂(Ω̃δ∩Ht+ε
j,+ )

Vδ = F̃Ht
j,+

Vδ for L1–a.e. ε, (8.7)

by using (8.4). Combining (8.7) with (8.6) in (8.5), we arrive at
∫ δ

0

∫

Ω∩∂Ht+ε
j,+

φdF̃Ht+ε
j,+

dε =

∫

Ht
j,+\Ht+δ

j,+

φdFj , for any φ ∈ Lipc(Ω
2δ).
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This shows that

Fj Vt,δ = L
1 ⊗∂Ht

j,+
F̃Ht

j,+
Vt,δ

as measures. Since δ ∈ (0, 1) is arbitrary and L1–a.e. t ∈ R can be taken, it follows that

Fj = L
1 ⊗∂Ht

j,+
F̃Ht

j,+

as measures in Rn. Then the result follows by using (8.4). �

Theorem 8.4 (Uniqueness of the representing field). Given a Cauchy flux F , suppose that

there exists a field G ∈ DMext(Ω) such that

FU (S) = (G · ν)∂U (S) for any U ∈ Oµ and any Borel set S ⊂ ∂U.

Then F = G as measures, where F the field constructed in Theorem 8.1.

Proof. By Theorem 6.7, the fieldG = (G1, G2, · · · , Gn) defines a Cauchy flux via the normal
trace, which is denoted by G. Let 1 ≤ j ≤ n, and consider t ∈ R for which both limits:

1

ε
µ (Ht

j,+ \H
t+ε
j,+ )

∗
−⇀ µn−1

t ,
1

ε
|G| (Ht

j,+ \H
t+ε
j,+ )

∗
−⇀ µ̃n−1

t

exist as ε→ 0, which is satisfied by L1–a.e. t ∈ R. For any such t, applying Lemma 7.6 to
F and G with U = Ht

j,+, we see that

FHt
j,+

( · ∩ Ω ∩ ∂Ht
j,+) = GHt

j,+
( · ∩ Ω ∩ ∂Ht

j,+)

are well-defined and agree as measures, since they agree on Ω̃δ ∩ ∂Ht
j,+ for L1–a.e. δ > 0.

Then, applying Lemma 8.3 above, we conclude

Gj = L
1 ⊗FHt

j,+
( · ∩ ∂Ht

j,+) Ω for each 1 ≤ j ≤ n.

This is precisely how F has been defined in Theorem 8.1. Therefore, F = G. �

9. Cauchy Flux IV: Local Recovery and Applications

In §8, we have constructed an associated field F ∈ DMext(Ω) and have shown that
any field representing the flux F must take this form. It remains to show that the field
F represents the flux in the sense of Theorem 6.6, which is the content of the following
subsection.

9.1. Local recovery of the flux. The precise statement of the local recovery result is
following:

Theorem 9.1 (Local recovery of the flux). Let F be a Cauchy flux, and let F ∈ DMext(Ω)
be the associated field from Theorem 8.1. Then

FU (S) = (F · ν)∂U (S) (9.1)

for any U ∈ Oµ and any Borel set S ⊂ ∂U .

We first show this local recovery result holds on almost all cubes, before extending to
general open sets in Oµ.
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Lemma 9.2. Let F be a Cauchy flux, and let F be the associated field from Theorem
8.1. Then, for any cube Q, there exists a null set N ⊂ Rn such that, for any x /∈ N , if

Qx = x+Q ⋐ Ω, then

FQx(S) = (F · ν)∂Qx(S) = −FQ
c
x
(S) = −(F · ν)∂Qc

x
(S) (9.2)

for any Borel set S ⊂ ∂Qx, where the flux on Q
c
x in (9.2) is defined in Remark 7.7.

Proof. By Theorem 6.7, F defines a Cauchy flux F̃ via its normal trace. Also, by construc-
tion of F = (F1, F2, · · · , Fn) from Theorem 8.1 and Lemma 8.3 applied to F , we know that
there is a null set Nj ⊂ R such that

F̃Ht
j,+

= Fj = FHt
j,+

(9.3)

as measures whenever t /∈ Nj. Now, for any cube Q = Q(a, b), consider Qx = x + Q for

x ∈ Rn such that Qx ⋐ Ω, Lemma 7.15 holds for both F and F̃ , and Lemma 7.14 applies
at the endpoints xj + aj and xj + bj for each 1 ≤ j ≤ n (so, in particular, they do not lie in
Nj). By Lemma 7.12, this holds for Ln–a.e. x such that Qx ⋐ Ω. Then, for such x, using
(9.3), we infer that, for any Borel set S ⊂ ∂Qx,

FQx(S) =

n∑

i=1

(
F
H

xi+ai
i,+

(S ∩ ∂Hxi+ai
i,+ )−F

H
xi+bi
i,+

(S ∩ ∂H
xj+bi
i,+ )

)

=

n∑

i=1

(
F̃
H

xi+ai
i,+

(S ∩ ∂Hxi+ai
i,+ )− F̃

H
xi+bi
i,+

(S ∩ ∂H
xj+bi
i,+ )

)

= F̃Qx(S) = (F · ν)∂Qx(S).

Since Lemma 7.15 also gives FQx = −FQ
c
x
and similarly for F̃ , (9.2) holds as required. �

We now extend Lemma 9.2 by approximating a general domain U ∈ Oµ via finite unions
of good cubes for which the local recovery holds, and argue that we can pass to the limit.
To do this, we first show the existence of a family of the said good cubes.

Lemma 9.3. There exists a countable collection QΩ of cubes such that

(i) For each Q ∈ QΩ, Q,Q
c
∈ Õµ and Q ⋐ Ω.

(ii) If Q1, Q2 ∈ QΩ intersect non-trivially, then Q1 ∩Q2 ∈ QΩ.

(iii) Every open set U ⋐ Ω can be written as a union of cubes in QΩ.

(iv) For each Q ∈ QΩ, the recovery of the flux on Q and its complement can be achieved

in the sense that

FQ = (F · ν)∂Q = −FQ
c = −(F · ν)∂Qc

holds as measures on ∂Q.

(v) For each Q ∈ QΩ, the localization and two-sided properties of Lemmas 7.11 and 7.15
hold for both the flux F and the normal trace F · ν.

(vi) µ(∂Q) = 0 and µn−1
Q (∂2Q) = µn−1

Q
c (∂2Q) = 0 for each Q ∈ QΩ.

Proof. Consider the collection {Q(a, b) : a, b ∈ Qn} of open cubes with rational endpoints
in Rn, which is countable and closed under finite intersections.
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Then, for Ln–a.e. x ∈ Rn, Lemma 9.2 applies to each Qx := x+Q(a, b) such that Qx ⋐ Ω:

FQx(S) =

n∑

i=1

(
F
H

xi+ai
i,+

(S ∩ ∂Hx+ai
i,+ )−F

H
xi+bi
i,+

(S ∩ ∂Hbi
i,+)

)

=
n∑

i=1

(
−F

H
xi+ai
i,−

(S ∩ ∂Hx+ai
i,− ) + F

H
xi+bi
i,−

(S ∩ ∂Hbi
i,−)

)

= −FQ
c
x
(S) = (F · ν)∂Qx(S) = −(F · ν)∂Qc

x
(S) (9.4)

for each Borel set S ⊂ ∂Qx. Moreover, we can ensure that (7.11) holds for each Qx by
Lemma 7.12. We can also choose x such that (9.4) holds with the normal trace F · ν in
place of the flux F , by using Theorem 6.7, so that each Qx satisfies properties (iv) and (v).
In addition, we can ensure that the endpoints xj + aj and xj + bj do not lie in Nj,µ from
Definition 7.9 for each 1 ≤ j ≤ n so that µ(∂Qx) = 0. Also, Lemma 7.10 holds for Qx

as (7.11) is satisfied, which ensures that µn−1
Q (∂2Q) = µn−1

Q
c (∂2Q) = 0. Hence, Qx satisfies

(vi). Now, for such x, we let

QΩ = {Qx = x+Q(a, b) : Qx ⋐ Ω, a, b ∈ Qn}.

By construction, (i) and (ii) hold. Since every open set U can be written as the union of
cubes with rational endpoints, by considering −x+U , we see that (iii) also holds. Therefore,
QΩ satisfies (i)–(vi) as required. �

Next, we show that local recovery holds for unions of cubes from this good collection.

Lemma 9.4. Given QΩ as in Lemma 9.3, denote VΩ as the set of all finite unions V of

cubes in QΩ given by

V = int
( k⋃

i=1

Qi

)
for Q1, · · · , Qk ∈ QΩ. (9.5)

Then, for any V ∈ VΩ, V, V
c
∈ Õµ and

FV = −FV
c = (F · ν)∂V = −(F · ν)∂V c (9.6)

as measures on Ω.

Proof. Since |F | ≤ µ, by Theorem 6.7, we can view the normal trace F · ν as a flux F̃ with
the same µ. Now we divide the proof into four steps.

1. We first show that every V ∈ VΩ can be written as a union of disjoint cubes. It
suffices to establish this claim in the case of two cubes, since the general case follows by
inductively replacing the cubes that overlap. Suppose that Q1 = Q(a, b) and Q2 = Q(c, d)
are contained in the union of V and intersect non-trivially. Denote S as the set of cubes
Q(x, y) ⊂ Q1 ∪ Q2 such that xj, yj ∈ {aj , bj , cj , dj} and xj < yj for all 1 ≤ j ≤ n, which

defines a finite collection of cubes in QΩ. We use S to define S̃ by discarding all cubes

Q ∈ S for which there is Q̃ ∈ S with Q̃ ⊂ Q (this can be done inductively in any order).

Then S̃ is a disjoint collection of cubes such that

int
( ⋃

Q∈S̃

Q
)
= int

(
Q1 ∪Q2

)
,

so that Q1 and Q2 can be replaced by this collection S̃.
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2. We now show that, for any V ∈ VΩ,

lim sup
ε→0

1

2ε
µ(V −ε \ V ε) <∞. (9.7)

That is, µ(∂V ) = 0 and V, V
c
∈ Õµ.

We induct on the number of cubes in the union to show this. If V = Q, this follows by
properties (i) and (vi) of QΩ. Assuming that this holds for some V , we consider a disjoint

cube Q ∈ QΩ and put Ṽ = int
(
V ∪ Q

)
. Then, arguing analogously as in the proof of

Lemma 7.2, we have

Ṽ −ε \ Ṽ ε ⊂ (V −ε \ V ε) ∪ (Q−ε \Qε) for any ε > 0.

Integrating this over 1
2ε µ and sending ε → 0 yield (9.7), by noting that both Q and V

satisfy (9.7).

3. We next show that, for every V ∈ VΩ and any cube Q ∈ QΩ contained in the union,

FV ∂V ∩ ∂2Q = FV
c ∂V ∩ ∂2Q = 0,

and the same holds with F̃ in place of F .
Writing V ∈ VΩ as a union of disjoint cubes {Qi}

k
i=1, by property (vi) of QΩ, we know

that
µn−1
Qi

(∂2Qi) = µn−1
Q

c
i
(∂2Qi) = 0 for each 1 ≤ i ≤ k.

Then, by Lemma 7.3(ii), we see that

µn−1
V (∂V ∩ ∂2Qi) = µn−1

V
c (∂V ∩ ∂2Qi) = 0 for each 1 ≤ i ≤ k.

By Definition 6.4(iii) applied to both F and F̃ , the result follows.

4. We prove that, if V ∈ VΩ is the disjoint union of cubes {Qi}
k
i=1 in QΩ, then

FV =

k∑

i=1

FQk
, FV

c =

k∑

i=1

FQ
c
k

(9.8)

as measures in Ω, and the same holds with F̃ in place of F .
We prove (9.8) by inducting on the number of cubes, where the case k = 1 follows by

Lemma 9.3(iv). While we only consider F , the argument for F̃ is analogous since it is a
Cauchy flux with the same µ and σ, and agrees with F on cubes Q ∈ QΩ.

Assuming that V ∈ VΩ satisfies (9.8) and Q ∈ QΩ is disjoint from V , define Ṽ :=
int(V ∪Q). By the localization property (ii) applied with A = Ω \Q, we see that FṼ and

FV agree on ∂Ṽ \ ∂Q and similarly for the complement by localizing on Q, so that (9.8)
holds on ∂V \ ∂Q. Similarly, by localizing on Ω \ V and V , we deduce that (9.8) holds on
∂Q \ ∂V .

It remains to show that (9.8) holds on the intersection ∂Q ∩ ∂V . Let H be a half-space
such that ∂H intersects both ∂V and ∂Q. We assume that H = H

aj
j,+ for some j, since the

case H = H
bj
j,− is analogous. Suppose that Q̃ ⊂ V is one of the disjoint cubes whose union

gives V , and set

I := ∂Q ∩ ∂Q̃ ∩ ∂H \ (∂2Q ∪ ∂2Q̃).

Since the fluxes vanish on ∂2Q ∪ ∂2Q̃, we know that (9.8) holds there so that, if I = ∅,

there is nothing further to show. Otherwise, if I 6= ∅, observe the projections of Q and Q̃
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to ∂Hj intersect non-trivially. Then it follows that Q̃ ⊂ H
aj
j,− since Q and Q̃ are disjoint.

Moreover, writing Q = (a1, b1)×Q
′ with Q′ ⊂ Rn−1 an open cube, there is κ > 0 such that

(a1 − κ, a1)×Q
′ ⊂ Q̃. Therefore, setting

A = (a1 − κ, b1)×Q
′

which is open, we see that A∩H = A∩Q and A∩H
c
= A∩ Q̃. Hence, by the localization

property (ii) and the two-sided property of the flux on ∂H from Lemma 9.3(v), we deduce
that

FV I = FQ̃ I = F
H

aj
j,−

I = −F
H

aj
j,+

I = −FQ I,

and, for the complement, we have

FV
c I = F

Q̃
c I = F

H
aj
j,+

I = −F
H

aj
j,−

I = −FQ
c I.

Since I ∩ ∂Ṽ = ∅, it follows that

FṼ I = 0 = FV I + FQ I,

and similarly for the complement. Thus, by inductive hypotheses with Q and V , (9.8) holds

for Ṽ on I, so the result follows by induction.
Finally, given V ∈ VΩ, by the first step, we can write V as a disjoint union of cubes

{Qi}
k
i=1 in QΩ and, by Lemma 9.3(iv), (9.6) holds for each Qi. By summation, we have

k∑

i=1

FQi =

k∑

i=1

(F · ν)∂Qi
= −

k∑

i=1

FQi
c = −

k∑

i=1

(F · ν)∂Qi
c .

Combining this with (9.8) as proved, we obtain (9.6) as required. �

Proof of Theorem 9.1. Let UΩ be the set of U ⋐ Ω such that conclusion (9.1) holds. Then
VΩ ⊂ UΩ by Lemma 9.4. We fix U ∈ Oµ and then show that U ∈ UΩ.

To achieve this, we approximate U by elements in VΩ as follows: For each k ∈ N, take a

finite covering of U2−k by cubes Q ∈ QΩ such that each Q ⋐ U2−(k+1)
. Let Vk be the union

of this covering in the sense of (9.5) so that U2−k
⋐ Vk ⋐ U2−(k+1)

and Vk ∈ VΩ ⊂ UΩ. We
now divide the remaining proof into three steps.

1. We first show that, for any open cube Q ⋐ Ω and L1–a.e. ε > 0,

FU (Q
ε ∩ ∂U) = lim

k→∞
FVk

(Qε ∩ ∂Vk). (9.9)

To achieve this, we set

Aε,k := Qε ∩ (U \ Vk),

and apply the balance law on this open set. By discarding a null set, we can assume that

Qε ∈ Õµ, so Aε,k ∈ Oµ by Lemma 7.2. Then, by the balance law (6.17) and the additivity
property (i),

σ(Aε,k) = FAε,k
(Qε ∩ ∂U) + FAε,k

(Qε ∩ ∂Vk)

+FAε,k
(∂Qε ∩ (U \ Vk))

+FAε,k
(∂Aε,k ∩ ∂Q

ε ∩ ∂(U \ Vk))

=: I1 + I2 + I3 + I4. (9.10)
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Since sets Aε,k are nested in k (as Vk ⊂ U
2−(k+1)

⊂ Vk+1), we have

lim
k→∞

σ(Aε,k) = σ
(
Qε ∩ (∩k∈N(U \ Vk))

)
= σ(∅) = 0 for each ε.

Moreover, by the localization property (ii) applied with A = Qε and since each Vk ∈ VΩ,
we have

I1 = FU (Q
ε ∩ ∂U),

I2 = F(U\V k)
(Qε ∩ ∂Vk) = −FVk

(Qε ∩ ∂Vk).

By property (ii) applied with A = U \ V k and since FQε is a measure on ∂Qε (by Lemma
7.1), we see that

lim
k→∞

I3 = lim
k→∞

FQε(∂Qε ∩ (U \ Vk)) = FQε(∂Qε ∩ (∩k∈N(U \ Vk))) = 0.

For the final term, we set Bε,k := ∂Aε,k ∩ ∂Q
ε ∩ ∂(U \ Vk) and claim that

µn−1
Aε,k

(Bε,k) = 0 for any k and L1–a.e. ε > 0. (9.11)

Indeed, let δj ց 0 such that

1

δj
µ (U \ U δj )

∗
−⇀ µn−1

U as j →∞.

Then, by arguing as in the proof of Lemma 7.2, we see that 1
δj
µ(U \ U δj) is uniformly

bounded in j and hence, passing to a subsequence (depending on ε and k), we obtain a
limiting measure

1

δj
µ (Aε,k \A

δj
ε,k)

∗
−⇀ µn−1

Aε,k
as j →∞.

Since V
c
k, Q

ε ∈ Õµ, passing to a further subsequence, we can also assume that there exist
limit measures:

1

δj
µ (V

−δj
k \ Vk)

∗
−⇀ µn−1

V
c
k
,

1

δj
µ (Qε \Qε+δj)

∗
−⇀ µn−1

Qε as j →∞.

By Lemma 7.3(i),

µn−1
Aε,k

(Bε,k) ≤ µ
n−1
U (∂Qε ∩ ∂U) + µn−1

V
c
k
(∂Qε ∩ ∂Vk) + µn−1

Qε (Bε,k) (9.12)

for each k and L1–a.e. ε > 0. We now show that (9.12) vanishes for any k and L1–a.e. ε > 0.
Indeed, by considering µ̃ = µ (Ω \ ∂U) and noting that µn−1

Aε,k
= µ̃n−1

Aε,k
for all ε and k, we

can assume that µ(∂U) = 0 in what follows. Since {∂Qε}ε>0 are pairwise disjoint in ε > 0,
for all but countably many ε > 0, we have

µn−1
U (∂Qε ∩ ∂U) + µn−1

V
c
k
(∂Qε ∩ ∂Vk) = 0 for any k.

Also, by disintegration along ∂Qε, we obtain
∫ ∞

0
µn−1
Qε (∂Qε ∩ (∂U ∩ ∂Vk)) dε ≤ µ(Q \Q

ε0 ∩ (∂U ∩ ∂Vk)) = 0,

by noting that µ(∂U) = 0 as assumed and µ(∂Vk) = 0 by Lemma 9.3(vi). Then, for L1–
a.e. ε > 0, µn−1

Qε (Bε,k) = 0 for all k which, combining with (9.12), leads to (9.11) as claimed.

Hence, by property (iii), we have

|I4| = |FAε,k
(Bε,k)| ≤ µ

n−1
Aε,k

(Bε,k) = 0,
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giving I4 → 0 for this choice of ε. Thus, combining everything in (9.10), we conclude

0 = lim
k→∞

σ(Aε,k) = I1 + lim
k→∞

I2 + lim
k→∞

(I3 + I4)

= FU (Q
ε ∩ ∂U)− lim

k→∞
FVk

(Qε ∩ ∂Vk),

which rearranges to give (9.9) as claimed.

2. Notice that the normal trace F · ν defines a Cauchy flux F̃ with the same µ and σ by
Theorem 6.7. By restricting the allowed parameter ε > 0 if necessary, we can ensure that

the above claim also holds for F̃ , that is,

(F · ν)∂U (Q
ε ∩ ∂U) = lim

k→∞
(F · ν)∂Vk

(Qε ∩ ∂Vk).

Since Vk ∈ VΩ ⊂ UΩ, then

FU (Q
ε ∩ ∂U) = (F · ν)∂U (Q

ε ∩ ∂U) (9.13)

for all cubes Q ⋐ Ω and for L1–a.e. ε > 0, where the null set depends on Q. We can further
assume that

FU ( · ∩ ∂U) ∂Qε = (F · ν)∂U ( · ∩ ∂U) ∂Qε = 0 (9.14)

by restricting the allowed parameter ε > 0.

3. To complete the proof, we need to extend (9.13) to hold for all Borel subsets of ∂U .
To do this, for each ε > 0, define

Dε
Ω =

{
Q(a, b)ε : a, b ∈ Qn, Q(a, b) ⋐ Ω

}
, (9.15)

and let D̃ε
Ω be the collection of all finite unions of cubes in Dε

Ω in the sense of (9.5). Since
this is a countable collection, for L1–a.e. ε > 0, we can ensure that (9.13)–(9.14) hold for
each Qε ∈ Dε

Ω.
We first claim that Dε

Ω is closed under finite intersections. Indeed, observe that

Q(a, b)ε = (a1 + ε, b1 − ε)× · · · × (an + ε, bn − ε) = Q(a+ ε111, b− ε111),

where 111 = (1, · · · , 1) ∈ Rn. Using this, we can verify that (Q1 ∩Q2)
ε = Qε

1 ∩Q
ε
2 in general,

from which the assertion follows. Now, let V ∈ D̃ε
Ω, which can be written as a union

V = int(
⋃k

i=1Qi), where Qi ∈ D
ε
Ω, i = 1, · · · , k, are pairwise disjoint. Then

FU (V ∩ ∂U) =

k∑

i=1

FU (Qi ∩ ∂U) =

k∑

i=1

(F · ν)∂U (Qi ∩ ∂U) = (F · ν)∂U (V ∩ ∂U)

by using (9.13)–(9.14). Thus, (9.14) holds if Qε is replaced by the elements in D̃ε
Ω.

Now, let A ⊂ Ωε be open. We claim that, for each x ∈ A, there is a cube in Qε ∈ Dε
Ω

such that x ∈ Qε ⋐ A. Indeed, there exists δ > 0 such that Q0 := Q(x − δ111, x + δ111) ⋐ A.
Then we can choose y ∈ Qn so that |x − y| < δ

4 and r ∈ Q ∩ (ε + δ
4 , ε +

δ
2 ). Letting

Q1 = Q(y− r111, y + r111), we see that Qε
1 ∈ D

ε
Ω. Since

δ
4 < r− ε < δ

2 , we obtain the following
inclusions:

x ∈ Qε
1 = Q(y − (r − ε)111, y + (r − ε)111) ⋐ Q0 ⋐ A,

as required. Performing this about each point and passing to a countable subcover give a

collection {Qj} ⊂ D
ε
Ω such that

⋃
j Qj = A. Then, since (9.13) holds for elements in D̃ε

Ω, it
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follows that

FU

( J⋃

j=1

Qj ∩ ∂U
)
= (F · ν)∂U

( J⋃

j=1

Qj ∩ ∂U
)

for any J,

so passing to the limit gives

FU (A ∩ ∂U) = (F · ν)∂U (A ∩ ∂U) (9.16)

for any A ⊂ Ωε open and L1–a.e. ε > 0. Since both sides are Radon measures and ε > 0
can be chosen to be arbitrarily small, it follows from Lemma 2.2 that this holds when A is
replaced by an arbitrary Borel set B ⊂ Ω. From this, we infer that U ∈ UΩ, establishing
the result. �

We can now collect the results established in the previous results to prove the main
theorem.

Proof of Theorem 6.6. Given a Cauchy fluxF , Theorem 8.1 gives the existence of a measure-
valued field F , which further satisfies the global and local recovery properties by Theorems
8.2 and 9.1, respectively. Moreover, Theorem 8.4 shows that this flux is unique and the
converse statement is precisely the content of Theorem 6.7. �

9.2. Consequences of the main theorem. Using the equivalence given by Theorem 6.6,
we can infer the properties of the Cauchy flux based on the results about the normal traces
established in earlier sections. We now list two of such consequences.

Theorem 9.5. Let F be a Cauchy flux, and let U ⋐ Ω such that U,U
c
∈ Oµ and µ(∂U) =

|σ|(∂U) = 0. Then

FU (S) = −FU
c(S) for all Borel subsets S ⊂ ∂U,

where FU
c is defined through Remark 7.7.

Proof. Let F be the corresponding DMext–field given by Theorem 6.6. Then the corre-
sponding result for the normal traces holds by Remark 2.12, which asserts that

〈F · ν, · 〉∂U = 〈F · ν, · 〉∂U (9.17)

as distributions, whenever |F |(∂U) = |divF |(∂U) = 0, and this is satisfied since |F | ≪ µ
and |divF | ≪ |σ|. Since U ∈ Oµ, both sides of (9.17) can be represented as measures,
which remain equal. By Theorem 6.6, FU (·) = 〈F ·ν, · 〉∂U as measures. On the other hand,

since U
c
∈ Oµ, using the notation from Remark 7.7, for L1–a.e. δ > 0 such that U ⋐ Ω̃δ,

we have
〈F · ν, · 〉∂(Ω̃δ\U ) = 〈F · ν, · 〉∂Ω̃δ − 〈F · ν, · 〉∂U .

Restricting to Ω̃δ by using Theorem 5.3 and Remark 7.7, we obtain

FU
c = FΩ̃δ\V Ω̃δ = 〈F · ν, · 〉∂(Ω̃δ\U) Ω̃δ = −〈F · ν, · 〉∂U .

We combine this with (9.17) to complete the proof. �

Theorem 9.6. For any open set U ⋐ Ω,

lim
ε→0
FUε(∂U ε) = FU (∂U). (9.18)

If, in addition, U ∈ Oµ, then there exists tk → 0 such that each U tk ∈ Oµ, and

FU tk

∗
−⇀ FU as measures in Ω.
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Proof. The global convergence of the flux sequence in (9.18) is immediate from the balance
law (6.17), since

⋃
ε>0 U

ε = U . For the local convergence, since U ∈ Oµ, there is εk ց 0
such that

M := sup
k∈N

1

εk
µ(U \ U

εk) <∞.

By Lemma 7.4, we can disintegrate µ along ∂U t as

µ = L1 [0,∞) ⊗∂U t µn−1
U t + τsing ⊗∂U t µ̃t.

Consider the function:
T (t) = |µn−1

U t |(∂U
t)

defined L1–a.e. t > 0 such that (7.4) holds, which also holds for any t outside a null set
N ⊂ [0,∞). We set T (t) = 0 whenever t ∈ N . Then T ∈ L1([0,∞)) and

1

εk

∫ εk

0
T (t) dt ≤M for any k.

Applying the Markov inequality gives

L1({t ∈ (0, εk) \ Nk : T (t) ≥ 2M}) ≤
1

2M

∫ εk

0
T (t) dt ≤

εk
2
,

so that there exists a sequence tk ∈ (0, εk) of distinct values such that T (tk) ≤ 2M for all
k. Then tk → 0 and

|FU tk |(∂U
tk) ≤ ηU tk (∂U

tk) = T (tk) ≤ 2M for any k.

Passing to a subsequence, we see that FU tk converges weakly∗ in Ω.
Now, by Theorem 6.6, F is represented by the normal trace of a field F ∈ DMext(Ω), so

that the weak∗–limit of these measures can be identified with FU = (F · ν)∂U by Theorem
3.3. �

10. Extension of the Normal Trace

So far, we have restricted our attention to the normal trace on the boundary of a set E
that is compactly contained in Ω. However, in applications, it is useful to consider a set
E ⊂ Ω whose boundary may touch ∂Ω, for which we introduce the following definition:

Definition 10.1. Let Ω ⊂ Rn be open and F ∈ DMext(Ω). For a Borel set E ⊂ Ω, define
the normal trace of F on the boundary of E as

〈F · ν, φ〉∂E = −

∫

E
d∇φ · F −

∫

E
φd(divF ) for any φ ∈W 1,∞(Ω),

where the middle term is defined from the product rule (Theorem 2.7).

If E ⋐ Ω, then this coincides with Definition 2.4 when testing against φ ∈ C1
c (Ω), and

it is precisely how we extended the normal trace to W 1,∞(Ω) in Corollary 2.9. We do not
require that φ vanishes on ∂Ω, since ∂E ∩ ∂Ω may be non-empty in general. We can also
generalize (2.11) as

〈F · ν, 1Ω〉∂U = (divF )(U) for any U ⊂ Ω. (10.1)

We record that the normal trace remains supported on ∂U in the sense of Theorem 2.15.

Lemma 10.2. Let U ⊂ Ω be open, and let φ ∈ Lipb(Ω) vanish on ∂U . Then

〈F · ν, φ〉∂U = 0.
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Equipped with this result, we can also argue as in Corollary 2.17 and view the normal
trace on an open set U ⊂ Ω as a linear functional NU ∈ Lipb(∂U)∗.

Proof. Since the argument is similar to the proof of Theorem 2.15, we only outline the main
modifications. Observe that, since any function φ ∈ Lipb(Ω) admits a unique continuous
extension to ∂Ω, the condition: φ|∂U = 0 is well-posed.

Given 0 < δ < 1, let dδ as in (2.14) with U in place of E so that dδ is supported in
Ωδ. Also, let χδ ∈ W 1,∞(Rn) be 1-Lipschitz such that χδ ≡ 1 in B1/(2δ) with support

in B1/δ. Thus, letting ψδ := χδdδ, we see that ψδ is 1
δ -Lipschitz and is supported on

Ω̃δ = B1/δ ∩ Ωδ ⋐ Ω.

Then, by Theorem 2.15 with ψδφ on U ∩ Ω̃δ, we have

0 = 〈F · ν, ψδφ〉∂(U∩Ω̃δ)

=

∫

U∩Ω̃δ

ψδφd(divF ) +

∫

U∩Ω̃δ

d∇(ψδφ) · F

=

∫

U
ψδφd(divF ) +

∫

U
d∇(ψδφ) · F

= 〈F · ν, ψδφ〉∂U ,

by noting that both integrals vanish outside Ω̃δ.
We now pass to the limit in δ ց 0. Using the definition of the pairing from Theorem 2.7,

∇(ψδφ) · F = ψδ∇φ · F + φ∇ψδ · F ,

and since ∇ψδ is supported on Aδ = Ω̃δ \ Ω2δ and |φ| ≤ 2δ‖∇φ‖L∞(Ω) on Aδ, analogously
to (2.16), we obtain ∣∣∣

∫

U
φd∇ψδ · F

∣∣∣ ≤ 2‖∇φ‖L∞(Ω)|F |(Aδ),

which vanishes as δ → 0. Finally, since ψδ(x) → 1 for any x ∈ U , by the Dominated
Convergence Theorem and the above bounds, we have

0 = lim
δ→0
〈F · ν, ψδφ〉∂U = 〈F · ν, φ〉∂U

as required. �

Remark 10.3. While the corresponding result for U ⋐ Ω (Theorem 2.15) is stated for any
function φ ∈ W 1,∞(Ω), we have stated Lemma 10.2 for the test function in Lipb(Ω). This
is because, for a general function φ ∈ W 1,∞(Ω), we only know that φ is continuous in Ω,
which means that the condition: φ|∂U = 0 may be ill-posed if ∂U 6⊂ Ω. However, if we take
φ ∈W 1,∞(Ω) and additionally impose that

|φ(x)| ≤ Cδ for any x ∈ ∂U δ

for some C > 0 and all δ > 0, then we can argue analogously as in the above proof.

We can also extend Theorems 3.3, 4.1, and 4.4 to hold for general U ⊂ Ω.

Theorem 10.4. Let F ∈ DMext(Ω), and let U ⊂ Ω be open and d(x) := dist(x, ∂U). Then

there exists an L1-null set N ⊂ (0,∞) such that

(i) For any ε /∈ N , the normal trace 〈F · ν, · 〉∂Uε is represented by a measure on ∂U ε,

denoted by (F · ν)∂Uε.
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(ii) For any φ ∈W 1,∞(Ω) and any sequence εk → 0 with εk /∈ N ,

〈F · ν, φ〉∂U = lim
k→∞

∫

∂Uεk

φd(F · ν)∂Uεk .

(iii) For any φ ∈W 1,∞(Ω),

〈F · ν, φ〉∂U = lim
ε→0

1

ε

∫

U\Uε

φd∇d · F .

(iv) For any bounded Borel function φ on Ω,
∫ ∞

0

∫

∂U t

φd(F · ν)∂U t dt =

∫

U
φd∇d · F ,

understanding that the integrand is defined for t ∈ (0,∞) \ N .

Proof. For 0 < t < s, define ψU
t,s by (3.4), which lies in Lipb(Ω) ⊂ W 1,∞(Ω) and vanishes

on ∂U . Choose s and t such that |∇d · F |(∂U t) = |∇d · F |(∂U s) = 0, which holds for all
but countably many s and t. By Lemma 10.2 and the product rule (Theorem 2.7), we have

0 = 〈F · ν, ψU
t,sφ〉∂U

=

∫

U
ψU
s,t d(div(φF )) +

∫

U
d∇ψU

t,s · (φF )

=

∫

U
ψU
t,s d(div(φF )) +

∫

U t\Us

φd∇d · F .

We can then argue as in the proof of Theorem 3.3 to show that the disintegration of ∇d · F
takes the form:

∇d · F = L1 ⊗∂U t (F · ν)∂U t + τsing ⊗∂U t µt,

from which (i) and (ii) follow. For (iv), we can argue as in the proof of Theorem 4.1 to
show that τsing = 0, by observing the test function φ(x) = ψ(d(x))g(x) remains compactly
supported when U ⊂ Ω. Finally, (iii) follows from (iv) by arguing exactly as in the proof of
Theorem 4.4. �

The localization result from §5 also extends to this setting as follows:

Theorem 10.5. Let Ω ⊂ Rn be open and F ∈ DMext(Ω). For U, V ⊂ Ω, suppose that an

open set A ⊂ Rn satisfies

U ∩A = V ∩A.

Then

〈F · ν, φ〉∂U = 〈F · ν, φ〉∂V for any φ ∈W 1,∞
c (A).

As in Theorem 5.3, if the normal traces on ∂U and ∂V are represented by measures, then
a density argument implies that

(F · ν)∂U (∂U ∩A) = (F · ν)∂V (∂V ∩A)

as measures. The proof of Theorem 10.5 is analogous to that of Theorem 5.3, by noting
that A can be replaced by a bounded open set Ã containing A∩spt(φ), since φ is compactly
supported in A, and that Theorem 10.4(iii) can be applied in place of Theorem 4.4.

Finally, we can formulate the Cauchy flux to be defined up to the boundary of Ω. Given
a non-negative measure µ on Ω, we introduce the set:

Oµ =
{
U ⊂ Ω open : lim inf

ε→0

1

ε
µ(U \ U ε) <∞

}
.
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Definition 10.6. An extended Cauchy flux Ω is a mapping F defined on pairs (S,U) with
S ⊂ ∂U Borel and U ⊂ Ω open, which satisfies the balance law (6.17) for any U ⊂ Ω so

that there is a Radon measure µ such that properties (i)–(iii) hold with Oµ replaced by Oµ.

Theorem 10.7. Let F be an extended Cauchy flux in Ω. Then there exists a unique

divergence-measure field F ∈ DMext(Ω) representing F in the sense that both the global

recovery:

FU (∂U) = 〈F · ν, 1Ω〉∂U for any open set U ⊂ Ω, (10.2)

and the local recovery:

FU (S) = (F · ν)∂U (S) for any U ∈ Oµ and any Borel Set S ⊂ ∂U (10.3)

hold. Conversely, any F ∈ DMext(Ω) defines an extended Cauchy flux by (10.2)–(10.3),
and every Cauchy flux F in the sense of Definition 6.4 extends uniquely to an extended

Cauchy flux.

Proof. Since an extended Cauchy flux F is also a Cauchy flux in the sense of Definition 6.4,
the existence and uniqueness of a representing field F ∈ DMext(Ω) satisfying − divF = σ
follows from Theorems 8.1–8.2 and 8.4. Then, from (10.1), we obtain (10.2).

It remains to extend the local recovery result (Theorem 9.1) to hold for any U ∈ Oµ. For

this, we closely follow the proof of Theorem 9.1, approximating U ∈ Oµ by subsets Vk ∈ VΩ;
since each Vk ⋐ Ω, the localization and two-sided properties are guaranteed by Lemma 9.4.
The key difference is to show that (9.9) holds for all cubes Q ⊂ Rn and L1–a.e. ε > 0,
regardless of whetherQε is contained in Ω. This is possible because Aε,k = Qε∩(U\V k) ⊂ Ω,
so that the balance law (6.17) can be applied in this extended setting. We choose ε > 0
such that

lim sup
δ→0

1

δ
µ
(
Ω ∩ (Qε \Qε+δ)

)
<∞,

which is valid for L1–a.e. ε > 0 by Lemma 7.4, extending µ by zero to Rn. Then we can
argue analogously as in the proof of Theorem 9.1 (especially (9.9)) that

FU (Q
ε ∩ ∂U) = lim

k→∞
FVk

(Qε ∩ ∂Vk) for any such Qε.

We then consider the collection of cubes Dε
Rn as in (9.15) and observe that, for L1–a.e. ε > 0,

both (9.13)–(9.14) hold for each Q ∈ Dε
Rn . Then, covering A ⊂ Rn by cubes in Dε

Rn , we can
infer that the local recovery (9.16) holds for any open set A, from which a density argument
extends the result to all Borel subsets.

Finally, the fact that a flux F ∈ DMext(Ω) defines an extended Cauchy flux follows
analogously as in the proof of Theorem 6.7, by using (10.1) and Theorems 10.4–10.5 if
necessary. Also, if F is a Cauchy flux, letting F ∈ DMext(Ω) be the associated field

guaranteed by Theorem 6.6, the extended Cauchy flux F̃ defined via the normal trace of F
is the unique extension of F . �

11. Remarks on the Existence of Divergence-Measure Fields

The characterization of the solvability of the equation with a Radon measure σ:

− divF = σ (11.1)

has been obtained in Phuc-Torres [53,54] in several spaces of functions, including continuous
vector fields and vector fields in Lp, 1 ≤ p ≤ ∞.
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The next theorem provides a way to show the existence of a solution of (11.1) that is a
vector-valued measure, that is, an extended divergence-measure field.

Theorem 11.1. Given a finite signed Radon measure σ in a bounded open set Ω ⊂ Rn,

there exists a vector-valued measure F = (F1, · · · , Fn) ∈ M(Ω;Rn) such that − divF = σ
in the sense of distributions.

Proof. Let Cc(Ω) be the vector space of all real continuous functions with compact support
defined in Ω, equipped with the norm:

‖u‖C0(Ω) = sup
x∈Ω
|u(x)|.

Let C0(Ω) denote the completion of Cc(Ω) in this norm. Similarly, let C1
c (Ω) be the vector

space of all differentiable functions with compact support in Ω such that the derivatives are
also continuous in Ω, which is equipped with the norm:

‖u‖C1
0 (Ω) = sup

x∈Ω
|u(x)|+ sup

x∈Ω
|∇u(x)|.

Let C1
0(Ω) denote the completion of C1

c (Ω) with this norm. Observe that σ ∈ C1
0 (Ω)

∗, since
we can estimate

∣∣∣
∫

Ω
ϕdσ

∣∣∣ ≤ |σ|(Ω) sup
Ω
|ϕ| = |σ|(Ω) ‖ϕ‖C1

0 (Ω) for any ϕ ∈ C1
0 (Ω). (11.2)

We define

A : C1
0(Ω)→ C0(Ω), A(u) = ∇u,

which is a bounded linear operator, since

‖Au‖C0(Ω) = ‖∇u‖C0(Ω) ≤ ‖u‖C1
0 (Ω) for every u ∈ C1

0(Ω).

Since C1
0 (Ω) is complete, the range R(A) of A is a closed subspace of C0(Ω). We now define

the functional

L̃ : R(A)→ R, R(A) ⊂ C0(Ω)

as

L̃(∇u) = σ(u).

We claim that L̃ is well defined.
Indeed, suppose that ∇u1 = ∇u2. Then, on each connected component, u1 = u2 +C for

some constant C. We recall that u ∈ C1
0(Ω) if and only if both u and ∇u are continuous

in Ω and, for any ε > 0, there exists K ⋐ Ω such that |u(x)| ≤ ε and |∇u(x)| ≤ ε for
any x ∈ Ω \ K. This characterization of C1

0 (Ω) implies that C = 0 on each connected
component.

We now show that L̃ is continuous on R(A) ⊂ C0(Ω). For any u ∈ C
1
0 (Ω), using the first

part in (11.2), we compute

|L̃(∇u)| = |σ(u)| ≤ |σ| (Ω) ‖u‖C0(Ω) .

By the Hahn-Banach Theorem, L̃ can be extended to a continuous linear functional

L : C0(Ω)→ R.
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Hence, by the Riesz Representation Theorem, there exists a unique Rn-valued finite Radon
measure F = (F1, F2, · · · , Fn) such that

L(u) =

n∑

i=1

∫

Ω
ui dFi for any u ∈ C0(Ω).

In particular, for any ϕ ∈ C∞
c (Ω), we have

σ(ϕ) = L̃(∇ϕ) = L(∇ϕ) =

∫

Ω
∇ϕ · dF . (11.4)

Since the distributional divergence of F is given by

〈− divF , ϕ〉 =

∫

Ω
∇ϕ · dF , (11.5)

we conclude from (11.4)–(11.5) that

〈− divF , ϕ〉 = σ(ϕ) for any ϕ ∈ C∞
c (Ω),

that is, − divF = σ. �

Remark 11.2. A more classical method for solving equation (11.1) is to use first the
Newtonian potential to solve the equation: −∆u = σ and then define F := ∇u. This
approach is used in [62, Example 3.3(i)], where it is shown that, if σ has compact support

in Rn, a solution to (11.1) is given by F (x) = − 1
nωn

∫
Rn

dσ(y)
|x−y|n−1 , where ωn is the volume of

the unit ball in Rn. Note that, if σ is a measure on a bounded domain Ω, we can apply this
by taking a zero extension of σ to Rn. Moreover, u belongs to W 1,p

loc (R
n) for all 1 ≤ p < n

n−1

so that F = ∇u ∈ Lp
loc(R

n,Rn). If σ = 0, the Newtonian potential approach clearly gives
F = 0.

Without the assumption of the measure having compact support, using similar techniques
as in Theorem 11.1, it was shown in [53, Theorem 3.1] that, if 1 ≤ p ≤ n

n−1 and σ is any

positive Radon measure in Rn, equation (11.1) has a solution F ∈ Lp(Rn,Rn) if and only
if σ = 0. Moreover, it was indicated in [53, Theorem 3.2] that, for n

n−1 < p < ∞, (11.1)

has a solution F ∈ Lp(Rn,Rn) if and only if I1σ ∈ L
p(Rn), where I1σ is the Riesz potential

of order 1 of σ defined as I1σ(x) =
∫
Rn

dσ(y)
|x−y|n−1 . A characterization of this type is still

unknown if σ is a signed measure.
If σ is represented by a function in Lp for 1 < p <∞, there exists a function u ∈W 2,p(Ω)

satisfying −∆u = σ ∈ Lp(Ω), and F = ∇u ∈ W 1,p(Ω,Rn) solves (11.1). For p = 1,
there are examples of functions σ ∈ L1(Ω) for which there is no solution for (11.1) with
F ∈ W 1,1(Ω,Rn) ([5, §2.1]). For p = ∞, there are functions σ ∈ L∞(Ω) for which there is
no solution for (11.1) in W 1,∞(Ω,Rn) (see [5, §2.2] and [49]).

For the critical case σ ∈ Ln(Ω), even though there exists u ∈W 2,n(Ω) that solves −∆u =
σ, and hence ∇u ∈ W 1,n(Ω,Rn) solves (11.1), we can not conclude that ∇u ∈ L∞(Ω,Rn)
since it is a limiting case of the Sobolev imbedding. Moreover, if we consider the function
u(x) = ϕ(x)x1| ln |x||

α, 0 < α < n−1
n , where ϕ is a smooth cut-off function with support

near 0, then it holds that ∆u ∈ Ln, but ∇u /∈ L∞ (see [5, Remark 7]). If −∆u = σ ∈ Lp(Ω)

for n < p < ∞ and u ∈ W 2,p(Ω), then ∇u ∈ C0,1−n
p (Ω,Rn) (see [34, §5.6.2, Theorem 5]),

which implies that, for the case p = n, we can not conclude that ∇u is continuous. Bounded
and continuous vector fields that solve equation (11.1) with σ ∈ Ln(Ω) were constructed in
Bourgain-Brezis [5, Proposition 1, Theorem 1 and Theorem 1’] by using other techniques.
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For general distributions σ, a characterization of the solvability of (11.1) in the class of
continuous vector fields was obtained in Pfeffer-De Pauw [32] and De Pauw-Torres [33]. It
was shown in [32] that there exists a continuous vector field in Ω that solves the equation
if and only if σ belongs to a space of distribution denoted as the space of strong charges
(see [32, Theorem 4.7]. In [33], it was proved that there exists a continuous vector field
F ∈ C0(R

n,Rn) (i.e., vanishing at infinity) if and only if σ belong to the space of charges
vanishing at infinity (see [33, Theorem 6.1]). The space Ln belongs to both spaces of
distributions, in particular solving equation (11.1) in the class of continuous vector fields
when σ ∈ Ln(Ω).

Our construction in Theorem 11.1 provides a characterization of all fields F such that
− divF = σ, as all possible extensions of L̃ from R(A) to C0(Ω). Indeed, if F is any such
field, then, for any ϕ ∈ C∞

c (Ω),
∫

Ω
∇ϕ · dF = σ(ϕ) = L̃(∇ϕ).

Our proof relies on the Hahn-Banach Theorem to produce an extension and hence is non-
constructive.

Similar techniques as in Theorem 11.1 have been used in [53, Theorem 4.5, Theorem 3.5]
and [54, Theorem 4.4, Theorem 7.4] to obtain the necessary and sufficient condition on the
measure σ to solve − divF = σ in the spaces F ∈ L∞(Ω,Rn) or F ∈ C(Ω,Rn).

12. Equivalence between Entropy Solutions of Nonlinear PDEs of

Divergence Form and the Mathematical Formulation of Physical

Balance Laws

In this section, we employ the results obtained in §2–§11 to establish the equivalence
between solutions of nonlinear PDEs of divergence form and the mathematical formulation
of physical balance laws, and to analyze entropy solutions of hyperbolic conservation laws.

12.1. Mathematical formulation of physical balance laws. As stated in §6, a physical
balance law on an open set Ω of Rn postulates that the production of a vector-valued
extensive quantity in any bounded open set U ⋐ Ω is balanced by the Cauchy flux of
this quantity through the boundary ∂U of the open set U ; see also Dafermos [27] and the
references cited therein.

Like the Cauchy flux, the production is introduced through a functional P, defined on
any bounded open set U ⋐ Ω, taking values in RN and satisfying the conditions:

P(U1 ∪ U2) = P(U1) + P(U2) if U1 ∩ U2 = ∅,

|P(U)| ≤ µ̃(U),

where µ̃ is a given Radon measure. It follows (from, for example, [42]) that P extends to a
measure, in which there is a production measure σ ∈M(Ω;RN ), with σ ≪ µ̃, such that

P(U) = σ(U) for any U ⋐ Ω open. (12.1)

Then the physical principle of balance law on Ω can be mathematically formulated as

F(∂U) = P(U) = σ(U) (12.2)

for any bounded open set U ⋐ Ω.
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12.2. Equivalence between weak solutions of the physical balance laws and non-

linear PDEs of divergence form. First, combining Theorem 6.6 with (12.1)–(12.2), we
conclude that there exists a unique divergence-measure field F ∈ DMext(Ω) such that

− divF = σ in the sense of distributions, (12.3)

and, for any Borel subset S ⊂ ∂U with U ∈ Oµ,

FU (S) = (F · ν)∂U (S), (12.4)

where (F · ν)∂U is the normal trace of F on ∂U . By considering a vector-valued flux and
working component-wise, we can obtain a matrix-valued field F = (F 1,F 2, · · · ,FN )⊺ with
each row F i lying in DMext(Ω), so (12.3) becomes a system of balance laws (understood
with a row-wise divergence).

Consider the state of the medium under consideration that is described by a state vector
field u = (u1, · · · , uN )⊺ taking values in RN , which determines both the flux density field
F and the production density field σ at point y ∈ Ω by the constitutive relations:

F (y) = F (u(y), y), σ(y) := σ(u(y), y), (12.5)

where F (u, y) and σ(u, y) are given vector fields in (u, y), understood in a sense determined
by the physical system.

In the case that F (u, y) and σ(u, y) are sufficiently regular, (12.5) is always well-defined
if u ∈ L∞. This is not always so if u ∈ Lp for some 1 ≤ p < ∞, and further assumptions
may be necessary to ensure the composition F (u(y), y) is locally integrable. If u is measure-
valued, then we must give a meaning to (12.5); this is a modeling issue, which is beyond
the scope of this paper. An example of such constitutive relations in the measure-valued
case is given in [11] for the Euler equations for gas dynamics in Lagrangian coordinates.

Combining (12.3) with (12.5), we obtain the first-order quasilinear system of PDEs of
divergence form:

divF (u(y), y) + σ(u(y), y) = 0, (12.6)

which is called a system of nonlinear PDEs of balance laws (cf. [27]).
For the zero-production case: P = 0, which implies that σ(u(y), y) = 0, then the above

derivation yields

divF (u(y), y) = 0, (12.7)

which is called a nonlinear system of conservation laws. In particular, when the medium is
homogeneous:

F (u, y) = F (u),

depending on y only through the state vector u = u(y), then system (12.7) becomes

divF (u(y)) = 0.

Now suppose that the coordinate system y is described by the time variable t and the space
variable x = (x1, · · · , xm):

y = (t, x) = (t, x1, · · · , xm), n = m+ 1,

and the flux density is written as an N × n matrix:

F (u) = (u, f(u)) = (u, f1(u), · · · , fm(u))
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where f
⊺
i : R

N → Rm for each i = 1, · · · ,m. Then we obtain the following standard form
for the system of conservation laws:

∂tu+ divx f(u) = 0, (t, x) ∈ Rn, u ∈ RN , (12.8)

where the spacial divergence is taken row-wise.
This shows the equivalence between the weak solutions of physical flows governed by the

balance laws (12.2) and weak solutions of the corresponding system of nonlinear PDEs of
divergence form (12.6), or even a system of conservation laws (12.8), through the relations
(12.3)–(12.4).

Theorem 12.1. The following statements hold:

(i) The state variables u ∈ RN (even measure-valued) that are governed respectively by

the physical balance laws (12.2) and the corresponding nonlinear PDEs of divergence

form (12.6) are equivalent on any open set U . That is, the weak solutions u ∈ RN

(even measure-valued) for the state variables of the physical balance laws (12.2) and
the corresponding nonlinear PDEs of divergence form (12.6) are equivalent.

(ii) Given an open set U , the divergence-measure field F ∈ DMext(Ω) is endowed with

the normal trace (F ·ν)∂U on ∂U such that (12.4) hold for any Borel subset S ⊂ ∂U
with U ∈ Oµ.

(iii) If (12.7) is satisfied, across any discontinuity surface S on which the underlying field

F does not concentrate, the weak Rankine-Hugoniot condition holds: The exterior

and interior normal traces of the divergence-measure field F for weak solutions are

equal, i.e., the normal trace is continuous across S.

However, the exterior and interior normal traces of the corresponding entropy divergence-
measure fields on a shock wave must have a jump, inferred by the second law of thermody-
namics as indicated in §12.3 below.

12.3. Entropy solutions of hyperbolic conservation laws. We now apply the results
established in §4 through §9 to the recovery of Cauchy entropy fluxes and the correspond-
ing entropy balance laws through the Lax entropy inequality (i.e., the second law of ther-
modynamics) for entropy solutions of hyperbolic conservation laws by capturing entropy
dissipation. That is, for hyperbolic conservation laws, even though there may be no pro-
duction for a weak solution, the entropy solutions must obey the entropy balance law with
non-zero production in general, especially when the entropy solution contains shock waves.
This leads to the intrinsic connection between the second law of thermodynamics and the
entropy balance laws in Continuum Mechanics.

We focus now on system (12.8), which is assumed to be hyperbolic. A function η : RN →
R is called an entropy of (12.8) if there exists q = (q1, · · · , qm)⊺ : RN → Rm such that

∇qj(u) = ∇η(u)∇fj(u), j = 1, · · · ,m.

Then the vector function q(u) is called an entropy flux associated with entropy η(u), and
the function pair (η(u),q(u)) is called an entropy pair. The entropy pair (η(u),q(u)) is
called a convex entropy pair on the state domain D ⊂ RN if the Hessian matrix ∇2η(u) ≥ 0
for any u ∈ D.

It is observed that most systems of conservation laws that result from continuum mechan-
ics are endowed with a globally defined convex entropy (see Dafermos [27] and Friedrichs-Lax
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[41]). The available existence theories show that solutions of (12.8) generally fall within the
following class of entropy solutions:

Definition 12.2. A vector function u = u(t, x) ∈ Mloc(R+×R
m) or Lp(R+×R

m) for some

p ≥ 1 is called an entropy solution of (12.8) if u(t, x) satisfies the Lax entropy inequality:

∂tη(u(t, x)) + divx q(u(t, x)) ≤ 0 (12.9)

in the sense of distributions for any convex entropy pair (η,q) such that

(η(u(t, x)), q(u(t, x))) is a distributional field.

Clearly, an entropy solution is a weak solution, which can be seen by choosing (η(u),q(u)) =
±(ui, fi(u)), i = 1, · · · , N , in (12.9).

One of the main issues in hyperbolic conservation laws is to study the behavior of entropy
solutions in this class to explore to the fullest extent possible all questions relating to unique-
ness, stability, large-time behavior, structure, and traces of entropy solutions, with neither
specific reference to any particular method for constructing the solutions nor additional
regularity assumptions. The Lax entropy inequality (12.9) indicates that the distribution:

∂tη(u(t, x)) + divx q(u(t, x))

is nonpositive. Then we conclude that it is, in fact, a Radon measure; that is, there exists
ση ∈ M(R+ × Rm) with ση ≥ 0 such that

− div(t,x)(η(u(t, x)),q(u(t, x))) =: ση.

Therefore, the vector field (η(u(t, x)),q(u(t, x))) is a divergence-measure field:

(η(u(t, x)),q(u(t, x))) ∈ DMext
loc (R+ × Rm),

provided that (η(u(t, x)),q(u(t, x))) ∈ Mloc(R+ × Rm).
We introduce a functional on any surface S ⊂ ∂U with U ∈ Oµ:

Fη
U (S) := −((η(u),q(u)) · ν)∂U (S) (12.10)

where ((η(u),q(u)) ·ν)∂U is the normal trace of (η(u),q(u)) on ∂U in the sense of Theorem
3.3, since (η(u(t, x)),q(u(t, x))) ∈ DMext

loc (R+ × Rm).
By Theorem 6.7, the functional Fη

U defined by (12.10) is a Cauchy flux in the sense of
Definition 6.4, taking µ to be the total variation measure |(η(u(t, x)),q(u(t, x))|.

Definition 12.3 (Cauchy entropy fluxes). A functional Fη
U as defined by (12.10) is called

a Cauchy entropy flux with respect to entropy η(u).

In particular, when (η,q) is a convex entropy pair, Fη
U (S) ≥ 0 for any Borel set S ⊂ ∂U

with U ∈ Oµ. Furthermore, we can now reformulate the balance law of entropy from the
recovery of entropy production by capturing entropy dissipation.

Theorem 12.4 (Entropy balance laws). The production ση of entropy dissipation in any

bounded open set U ⋐ Ω is balanced by the entropy Cauchy flux Fη
U through the boundary

∂U of the open set U ⋐ Ω.

Furthermore, we have

Theorem 12.5. Assume that u = u(t, x) ∈ Mloc(R+ × Rm) or Lp(R+ × Rm) for some

p ≥ 1 is an entropy solution to (12.8). Then
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(i) Across the discontinuity, the normal trace of the vector field (u(t, x), f(u(t, x))) is

continuous, provided the underlying field does not concentrate on the discontinuity

surface; in this case the weak Rankine-Hugoniot condition holds.

(ii) For a convex entropy pair (η(u),q(u)) with ∇2η(u) > 0, the normal trace of the

vector field (η(u(t, x)),q(u(t, x))) has a jump across a shock wave, which increases

across the shock in the t-direction.

The continuity of the normal trace of the vector field (u(t, x), f(u(t, x))) is due to the
fact that div(u(t, x), f(u(t, x))) is zero and |(u, f(u))|(∂U) = 0 as assumed. On the other
hand, the jump of the normal trace of the vector field (η(u(t, x)),q(u(t, x))) is because
div(η(u(t, x)),q(u(t, x))) has a concentration on a shock wave, due to the entropy dissipa-
tion, concentrated on the shock wave.

Furthermore, for characteristic discontinuities such as vortex sheets and entropy waves,
in general, div(η(u(t, x)),q(u(t, x))) does not have a concentration due to the loss of the
entropy dissipation along such a discontinuity, and the normal trace for the vector field
(η(u(t, x)),q(u(t, x))) may generally be continuous across the characteristic discontinuity
normally.

Moreover, it is clear that understanding further properties of divergence-measure fields
can advance our understanding of the behavior of entropy solutions for hyperbolic conser-
vation laws and other related nonlinear PDEs by selecting appropriate entropy pairs. As
examples, we refer the reader to [8–18,65] for such applications.
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