MA 34100 Fall 2016, HW 2

September 11, 2016

1 $\sqrt{3}$ is not rational[3 pts]:

Method 1: if assuming $\sqrt{3}$ is a rational number, then it can be written as a reduced form $\sqrt{3} = \frac{p}{q}$, and p, q are relatively prime. then $p^2 = 3 q^2$ which means $3|p^2$. Since p could be written as p = 3m + r, r = 0, 1, 2, then $p^2 = 9m^2 + 6mr + r^2, r^2 = 0, 1, 4$. so if $3|p^2$, then $3|r^2$ which means r = 0, thus 3|p, then $\exists m, s.t. \ p = 3m$, then $9m^2 = p^2 = 3q^2 \Rightarrow 3m^2 = q^2$. as discussed before, we can get 3|q, which means 3 divides p, q, which is contradictive with assumption p, q are relatively prime. Thus, $\sqrt{3}$ is not rational.

Method 2: if assuming $\sqrt{3}$ is a rational number, then it can be written as a reduced form $\sqrt{3} = \frac{p}{q}$, and p, q are relatively prime and $p^2 = 3 q^2$. Since $p, q \in N$ means p, q has to be odd or even. If q is even then $\exists m \in N, q = 2m, \Rightarrow p^2 = 3q^2 = 3 * 4 * m^2, \Rightarrow 4|p^2 \Rightarrow 2|p$ which means p is also even, which is contradictive with assumption p, q are relatively prime. Same idea can prove p is not even, thus p, q are odd. Then $\exists m, n, s.t. p = 2m + 1, q = 2n + 1$. Then $p^2 = 4n^2 + 4n + 1 = 3 * (4m^2 + 4m + 1) = 12m^2 + 12m + 3 = 3q^2, \Rightarrow 2n^2 + 2n = 6m^2 + 6m + 1$. which is impossible, since left side is even, right side is odd, they can not be identity. Thus, $\sqrt{3}$ is not rational.

2 $A.8.4[2 \ pts]$

Question: Prove by induction that for every n = 1, 2, 3, ...

$$(1+x)^n \ge 1 + nx$$

for any x > 0.

Proof. For n = 1, since 1 + x = 1 + x, the conclusion holds. Assume it holds for n = k, which means $(1 + x)^k \ge 1 + kx$. Then for n = k + 1, since $x > 0, (1 + x)^{k+1} \ge (1 + kx)(1 + x) = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x$, then it holds for n = k + 1. By principle of induction, it holds for all n.

3 $A.8.8[4 \ pts]$

Question: Show that the following two principles are equivalent (i.e., assuming the validity of either one of them, prove the other).

(Principle of Induction) Let $S \subset N$ such that $1 \in S$ and for all integers n if $n \in S$, then so also is n + 1. Then S = N. and (Well ordering of N) If $S \subset N$ and $S \neq \emptyset$, then S has a first element (i.e., a minimal element). well ordering of N.

Proof. 1.(\Rightarrow): Assume S has no first element. If $1 \in S$, since 1 is the first element of N, thus 1 is the first element of S, then S has a first element, which is contradictive with our assumption. Thus $1 \notin S$, let $T = N \setminus S$, then $1 \in T$ and $T \neq \emptyset$. now assume $k = n \notin S$, then $n \in T$. For k = n + 1, since $1, 2, ..., n \notin S$, if $n + 1 \in S$ then n + 1 is the first element of S which is contradictive with our assumption. then $n + 1 \notin S$ means $n + 1 \in T$. Then by principle of induction, T = N, which means $S = N \setminus T = N \setminus N = \emptyset$, which is contradictive with $S \neq \emptyset$. Thus well ordering of N is right.

2.(\Leftarrow): Assume $S \neq N$, then $T = N \setminus S \neq \emptyset$. By well ordering of N, if $S \neq \emptyset$, S has a first element, assume it is k + 1. since k + 1 is the first element of T, thus $k \notin T$, which means $k \in S$. However, by assumption if $k \in S$, then $k + 1 \in S$ which is contradictive with our assumption $k + 1 \notin S$. Thus, $T = \emptyset$. which means S = N.

4 $1.6.11[1 \ pts]$

Question: Let A and B be sets of real numbers and write $C = A \cup B$. Find a relation among supA, supB, supC.

 $supC = max\{supA, supB\}.$