MA 34100 Fall 2016, HW 2

September 11, 2016

$1 \quad \sqrt{3}$ is not rational[3 pts]:

Method 1: if assuming $\sqrt{3}$ is a rational number, then it can be written as a reduced form $\sqrt{3}=\frac{p}{q}$,and p, q are relatively prime. then $p^{2}=3 q^{2}$ which means $3 \mid p^{2}$. Since p could be written as $p=3 m+r, r=0,1,2$, then $p^{2}=9 m^{2}+6 m r+r^{2}, r^{2}=0,1,4$. so if $3 \mid p^{2}$,then $3 \mid r^{2}$ which means $r=0$, thus $3 \mid p$, then $\exists m$, s.t. $p=3 m$, then $9 m^{2}=p^{2}=3 q^{2} \Rightarrow 3 m^{2}=q^{2}$. as discussed before, we can get $3 \mid q$, which means 3 divides p, q, which is contradictive with assumption p, q are relatively prime. Thus, $\sqrt{3}$ is not rational.

Method 2: if assuming $\sqrt{3}$ is a rational number, then it can be written as a reduced form $\sqrt{3}=\frac{p}{q}$, and p, q are relatively prime and $p^{2}=3 q^{2}$. Since $p, q \in N$ means p, q has to be odd or even. If q is even then $\exists m \in N, q=2 m, \Rightarrow p^{2}=3 q^{2}=3 * 4 * m^{2}, \Rightarrow 4\left|p^{2} \Rightarrow 2\right| p$ which means p is also even. which is contradictive with assumption p, q are relatively prime. Same idea can prove p is not even, thus p, q are odd. Then $\exists m, n$, s.t. $p=2 m+1, q=2 n+1$. Then $p^{2}=4 n^{2}+4 n+1=3 *\left(4 m^{2}+4 m+1\right)=12 m^{2}+12 m+3=3 q^{2}, \Rightarrow 2 n^{2}+2 n=6 m^{2}+6 m+1$. which is impossible, since left side is even, right side is odd, they can not be identity. Thus, $\sqrt{3}$ is not rational.

2 A.8.4[2 pts]

Question: Prove by induction that for every $n=1,2,3, \ldots$

$$
(1+x)^{n} \geq 1+n x
$$

for any $x>0$.
Proof. For $n=1$, since $1+x=1+x$, the conclusion holds. Assume it holds for $n=k$, which means $(1+x)^{k} \geq 1+k x$. Then for $n=k+1$, since $x>0,(1+x)^{k+1} \geq(1+k x)(1+x)=$ $1+(k+1) x+k x^{2} \geq 1+(k+1) x$, then it holds for $n=k+1$. By principle of induction, it holds for all n .

3 A.8.8[4 pts]

Question: Show that the following two principles are equivalent (i.e., assuming the validity of either one of them, prove the other).
(Principle of Induction) Let $S \subset N$ such that $1 \in S$ and for all integers n if $n \in S$, then so also is $n+1$. Then $S=N$.
and
(Well ordering of N) If $S \subset N$ and $S \neq \emptyset$, then S has a first element (i.e., a minimal element). well ordering of N.

Proof. 1. (\Rightarrow) : Assume S has no first element. If $1 \in S$, since 1 is the first element of N, thus 1 is the first element of S, then S has a first element, which is contradictive with our assumption. Thus $1 \notin S$, let $T=N \backslash S$, then $1 \in T$ and $T \neq \emptyset$. now assume $k=n \notin S$, then $n \in T$. For $k=n+1$, since $1,2, \ldots, n \notin S$, if $n+1 \in S$ then $n+1$ is the first element of S which is contradictive with our assumption. then $n+1 \notin S$ means $n+1 \in T$. Then by principle of induction, $T=N$, which means $S=N \backslash T=N \backslash N=\emptyset$, which is contradictive with $S \neq \emptyset$. Thus well ordering of N is right.
2. (\Leftarrow) : Assume $S \neq N$, then $T=N \backslash S \neq \emptyset$. By well ordering of N, if $S \neq \emptyset, S$ has a first element, assume it is $k+1$. since $k+1$ is the first element of T, thus $k \notin T$, which means $k \in S$. However, by assumption if $k \in S$, then $k+1 \in S$ which is contradictive with our assumption $k+1 \notin S$. Thus, $T=\emptyset$. which means $S=N$.

4 1.6.11[1 pts]

Question: Let A and B be sets of real numbers and write $C=A \cup B$. Find a relation among $\sup A, \sup B, \sup C$.
$\sup C=\max \{\sup A, \sup B\}$.

