MA 34100 Fall 2016, HW 3

September 21, 2016

1.6.23 ··· 2 pts 1

Let A and B be nonempty sets of real numbers and let $\delta(A, B) := inf|a - b| : a \in A, b \in B$. $\delta(A, B)$ is often called the distance between the sets A and B. (a) Let A = N and $B = R \setminus N$. Compute $\delta(A, B).[0.5 \ pts]$. $\delta(A,B)=0, \text{ since } 0 \in A, \{\frac{1}{n}\}_{n=2}^{\infty} \subset B \text{ and } 0 \leq \delta(A,B) \leq \delta(\{0\},\{\frac{1}{n}\}_{n=2}^{\infty})=0.$

- (b) If A and B are finite sets, what does $\delta(A, B)$ represent? [0.5] pts. $\delta(A, B) = \min\{|a - b|, a \in A, b \in B\}.$
- (c) Let B = [0, 1]. What does the statement $\delta(\{x\}, B) = 0$ mean for the point x? [0.5] pts. $x \in [0, 1].$
- (d) Let B = (0, 1). What does the statement $\delta(\{x\}, B) = 0$ mean for the point x? [0.5] pts. $x \in [0, 1].$

$\mathbf{2}$ $1.7.1 \cdots 3 \ pts$

Using the archimedean theorem, prove each of the three statements that follow the proof of the archimedean theorem.

1. No matter how large a real number x is given, there is always a natural number n larger... $[1 pt_s]$.

If not, then $\exists x \in R, \forall n \in N, n < x$. then x is a upper bound of N which is contradictive with Archimedean theorem: set of nature number has no upper bound. Thus, $\forall x \in R, \exists n \in N, \text{ s.t.},$ n > x.

2. Given any positive number y, no matter how large, and any positive number x, no matter how small, one can add x to itself sufficiently many times so that the result exceeds y (i.e., nx > y for some $n \in N$)... $[1 \ pts]$.

since both x, y are positive, so it is equivalent to prove $\exists n \in N, s.t., n > \frac{y}{x}$. Since $\frac{x}{y} \in R$, we can prove it by using conclusion of (1).

3. Given any positive number x, no matter how small, one can always find a fraction $\frac{1}{n}$ with *n* a natural number that is smaller. (i.e., so that $\frac{1}{n} < x$)....[1 *pts*]. since *x* is positive, thus it is equivalent to prove $\exists n \in N, s.t., n > \frac{1}{x}$. we can prove it just by

letting y = 1 in (2).

3 1.9.6 · · · 2.5 *pts*

Show that the dyadic rationals (i.e., rational numbers of the form $\frac{m}{2^n}$ for $m \in \mathbb{Z}, n \in \mathbb{N}$) are dense.

Proof. what we need to prove is $\forall x, y \in R, x < y, \exists n, m \in N, s.t., x < \frac{m}{2^n} < y$. From (1.7.1-3), we know that $\exists n \in N, s.t., n > \frac{1}{y-x}$, since $2^n > n$, we get $2^n > \frac{1}{y-x} \Rightarrow 2^n y - 2^n x > 1$, then we know that there exists at least one integer between $2^n x, 2^n y$, let it be m, then we prove that $2^n x < m < 2^n y \Rightarrow x < \frac{m}{2^n} < y$.

4 2.2.8 \cdots 2.5 pts

Consider the sequence defined recursively by

$$x_1 = \sqrt{2}, x_n = \sqrt{2 + x_{n-1}}.$$

Show by induction that $x_n < 2$ for all n.

Proof. When k = 1, since $x_1 = \sqrt{2} < 2$, it holds. Assuming, it holds for k = n, which means $x_n < 2$, then for k = n + 1, $x_{n+1} = \sqrt{2 + x_n} < \sqrt{2 + 2} = 2$. Then by principle of induction, we know that for $\forall n \in N, x_n < 2$.