MA 34100 Fall 2016, HW 3

September 21, 2016

$1 \quad 1.6 .23 \cdots 2$ pts

Let A and B be nonempty sets of real numbers and let $\delta(A, B):=\inf |a-b|: a \in A, b \in B$. $\delta(A, B)$ is often called the distance between the sets A and B.
(a) Let $A=N$ and $B=R \backslash N$. Compute $\delta(A, B) .[0.5 p t s]$.
$\delta(A, B)=0$, since $0 \in A,\left\{\frac{1}{n}\right\}_{n=2}^{\infty} \subset B$ and $0 \leq \delta(A, B) \leq \delta\left(\{0\},\left\{\frac{1}{n}\right\}_{n=2}^{\infty}\right)=0$.
(b) If A and B are finite sets, what does $\delta(A, B)$ represent? [0.5] pts.
$\delta(A, B)=\min \{|a-b|, a \in A, b \in B\}$.
(c) Let $B=[0,1]$. What does the statement $\delta(\{x\}, B)=0$ mean for the point x ? [0.5] pts. $x \in[0,1]$.
(d) Let $B=(0,1)$. What does the statement $\delta(\{x\}, B)=0$ mean for the point x ? [0.5] pts. $x \in[0,1]$.

2 1.7.1 $\cdots 3$ pts

Using the archimedean theorem, prove each of the three statements that follow the proof of the archimedean theorem.

1. No matter how large a real number x is given, there is always a natural number n larger. $\cdots[1 \mathrm{pts}]$. If not, then $\exists x \in R, \forall n \in N, n<x$. then x is a upper bound of N which is contradictive with Archimedean theorem: set of nature number has no upper bound. Thus, $\forall x \in R, \exists n \in N$, s.t., $n>x$.
2. Given any positive number y, no matter how large, and any positive number x, no matter how small, one can add x to itself sufficiently many times so that the result exceeds y (i.e., $n x>y$ for some $n \in N) . \cdots[1 p t s]$.
since both x, y are positive, so it is equivalent to prove $\exists n \in N$, s.t., $n>\frac{y}{x}$. Since $\frac{x}{y} \in R$, we can prove it by using conclusion of (1).
3. Given any positive number x, no matter how small, one can always find a fraction $\frac{1}{n}$ with n a natural number that is smaller. (i.e.,so that $\left.\frac{1}{n}<x\right) . \cdots[1$ pts $]$.
since x is positive, thus it is equivalent to prove $\exists n \in N$, s.t., $n>\frac{1}{x}$. we can prove it just by letting $y=1$ in (2).

$3 \quad 1.9 .6 \cdots 2.5 \mathrm{pts}$

Show that the dyadic rationals (i.e., rational numbers of the form $\frac{m}{2^{n}}$ for $m \in Z, n \in N$) are dense.

Proof. what we need to prove is $\forall x, y \in R, x<y, \exists n, m \in N$, s.t., $x<\frac{m}{2^{n}}<y$. From (1.7.1-3), we know that $\exists n \in N$, s.t., $n>\frac{1}{y-x}$, since $2^{n}>n$, we get $2^{n}>\frac{1}{y-x} \Rightarrow 2^{n} y-2^{n} x>1$, then we know that there exists at least one integer between $2^{n} x, 2^{n} y$, let it be m, then we prove that $2^{n} x<m<2^{n} y \Rightarrow x<\frac{m}{2^{n}}<y$.

$4 \quad 2.2 .8 \cdots 2.5$ pts

Consider the sequence defined recursively by

$$
x_{1}=\sqrt{2}, x_{n}=\sqrt{2+x_{n-1}} .
$$

Show by induction that $x_{n}<2$ for all n.
Proof. When $k=1$, since $x_{1}=\sqrt{2}<2$, it holds. Assuming, it holds for $k=n$, which means $x_{n}<2$, then for $k=n+1, x_{n+1}=\sqrt{2+x_{n}}<\sqrt{2+2}=2$. Then by principle of induction, we know that for $\forall n \in N, x_{n}<2$.

