
MA59800ANT ANALYTIC THEORY OF FUNCTION FIELDS.
PROBLEMS 2

TO BE HANDED IN BY 6PM WEDNESDAY 18TH SEPTEMBER 2024

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

A1.Let A = Fq[t], where q = ph, and suppose that π ∈ A is a monic irreducible. Let
m ∈ N, and write l for the least positive integer with pl ⩾ m. Show that {a|π|−1 : a ∈
(A/πmA)×} is a subgroup of (A/πmA)× having the structure of an abelian p-group, all
of whose elements have order at most pl.

A2. Let A = Fq[t], where q = ph with p odd, and suppose that m ∈ A is a monic
polynomial of positive degree which is not irreducible. Is it possible that (A/mA)× is
cyclic? Explain your answer.

B3. (i) Let p1 and p2 be two distinct Mersenne primes, say p1 = 2r1 −1 and p2 = 2r2 −1.
Suppose that π1 and π2 are two irreducible polynomials in A = F2[t] having respective
degrees r1 and r2. Prove that (A/π1π2A)× is cyclic.

(ii) Let n1 and n2 be two distinct Mersenne numbers, say n1 = 2r1 − 1 and n2 = 2r2 − 1.
Suppose that π1 and π2 are two irreducible polynomials in A = F2[t] having respective
degrees r1 and r2. When is it the case that (A/π1π2A)× is cyclic? Explain your answer.

B4. Define the von Mangoldt function in A = Fq[t] by putting

Λ(u) =

{
log |π|, when u = πr for some r ∈ N,
0, otherwise.

Obtain asymptotic formulae for the following quantities as n → ∞:

(i)
∑

u∈Fq [t]+

deg(u)=n

Λ(u); (ii)
∑

u∈Fq [t]+

deg(u)=n

Λ(u)

|u|
; (iii)

∑
u∈Fq [t]+

deg(u)=n

Λ2(u)

|u|
.

B5. Let σ(u) denote the function
∑

d∈Fq [t]+

d|u

|d|.

(i) Show that there is a positive constant C = C(q) with the property that, for all
u ∈ Fq[t] of large degree, one has σ(u) ⩽ C(q)|u| logq logq |u|.
(ii) By considering σ(u) as a convolution, find a formula for the Dirichlet series Dσ(s) in
terms of the zeta function ζA(s).

(iii) Obtain a formula for
∑

u∈Fq [t]+

deg(u)=n

σ(u).
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C6. (i) Show that, for each natural number k, one has Dτk(s) = ζA(s)
k.

(ii) Prove that for n ∈ N, one has∑
u∈Fq [t]+

deg(u)=n

τk(u) = Pk(n)q
n,

where Pk(x) is a polynomial of degree k − 1 in x with leading coefficient 1/(k − 1)!.

(iii) Obtain an asymptotic formula, valid as n → ∞, for∑
u∈Fq [t]+

deg(u)=n

τk(u)

|u|
.

C7. (i) Show that when u is a monic polynomial in A = Fq[t], one has

|u|
φ(u)

=
∑

d∈Fq [t]+

d|u

µ2(d)

φ(d)
.

(ii) Prove that as n → ∞, one has∑
u∈Fq [t]+

deg(u)=n

|u|
φ(u)

∼ 1− q−5

(1− q−1)(1− q−2)
qn.
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