
MA59800ANT ANALYTIC THEORY OF FUNCTION FIELDS.
PROBLEMS 3

TO BE HANDED IN BY 6PM WEDNESDAY 2 OCTOBER 2024

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

Throughout, we take p to be a prime number, put q = ph, and denote Fq[t] by A.

A1.Recall that an additive character ψ on Fq is a function ψ : Fq → C× having the
property that, whenever a, b ∈ Fq, then ψ(a+ b) = ψ(a)ψ(b).

(a) Show that for all a ∈ Fq, the value of ψ(a) is a p-th root of unity;

(b) Show that ψ(0) = 1;

(c) Show that, for all b ∈ {0, 1, 2, . . . , p− 1}, one has ψ(b) = ψ(1)b.

A2.Let ψ : Fq → C× be an additive character.

(a) Show that, whenever c ∈ Fq, one has∑
u∈Fq

ψ(u+ c) = ψ(c)
∑
u∈Fq

ψ(u).

(b) Show that for any additive character that is not identically 1, one has∑
u∈Fq

ψ(u) = 0.

B3. Suppose that {ω1, . . . , ωh} is a basis for Fq over Fp, and let ψ : Fq → C× be an
additive character.

(a) Show that, for suitable p-th roots of unity ξ1, . . . , ξh, and for all bi ∈ {0, 1, 2, . . . , p−1}
(1 ⩽ i ⩽ h), one has

ψ(b1ω1 + . . .+ bhωh) = ξb11 · · · ξbhh .
(b) Show that there are q distinct additive characters ψ : Fq → C×.

(c) Deduce that every additive character ψ : Fq → C× has the shape ψ(u) = eq(ua) for
some a ∈ Fq.

B4. (a) Suppose that α =
∑

i⩽N αit
i ∈ Fq((1/t))\{0}. Write ⌊α⌋ for the polynomial part

of α, namely
∑

0⩽i⩽N αit
i, and put ∥α∥ = |α − ⌊α⌋|. Use the definition e(α) = eq(resα)

to deduce that ∑
u∈A

|u|<qn

e(uα) =

{
qn, when ∥α∥ < q−n,

0, when ∥α∥ ⩾ q−n.
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(b) Prove that ∫
|α|<1

∣∣∣∣ ∑
u∈A

|u|<qn

e(uα)

∣∣∣∣ dα = 1.

B5. Let u ∈ A have degree exceeding 1.

(a) Show that whenever cb ∈ C (b ∈ A), then∑
χ∈X(u)

∣∣∣∣ ∑
|b|<|u|

cbχ(b)

∣∣∣∣2 = φ(u)
∑
|b|<|u|
(b,u)=1

|cb|2.

(b) Show that whenever cχ ∈ C (χ ∈ X(u)), then∑
|b|<|u|

∣∣∣∣ ∑
χ∈X(u)

cχχ(b)

∣∣∣∣2 = φ(u)
∑

χ∈X(u)

|cχ|2.

C6. Let g ∈ A have degree exceeding 1, and define

cg(u) =
∑
|a|<|g|
(a,g)=1

e(au/g).

(a) Show that for each fixed u ∈ A, the function cg(u) is a multiplicative function of g.

(b) Show that ∑
d|g

cd(u) =

{
|g|, when g|u,
0, otherwise.

(c) Prove that cg(u) =
µ(g/(g, u))

φ(g/(g, u))
φ(g).

C7. Let π ∈ A be monic and irreducible of degree exceeding 1, and suppose that k ∈ N
satisfies k|(|π| − 1). Put

f(a) =
∑
|r|<|π|

e(ark/π).

(a) Show that

|π|−1
∑

|a|<|π|

f(a) = 1 and |π|−1
∑

|a|<|π|

|f(a)|2 = k(|π| − 1) + 1.

(b) Deduce that when (a, π) = 1, one has |f(a)| ⩽ (k − 1)|π|1/2.
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