
MA59800ANT ANALYTIC THEORY OF FUNCTION FIELDS.
PROBLEMS 4

TO BE HANDED IN BY 6PM MONDAY 28TH OCTOBER 2024

Key: A-questions are short questions testing basic skill sets; B-questions
integrate essential methods of the course; C-questions are more challenging
for enthusiasts, with hints available on request.

Throughout, we take p to be a prime number, put q = ph, and denote Fq[t] by A.

A1.Consider the polynomials u ∈ A of the shape

u(t) = tn + un−1t
n−1 + . . .+ ukt

k + . . .+ u1t+ u0,

with ui ∈ Fq.

(a) Show that as n→ ∞, there are infinitely many irreducible polynomials of this shape
with u0, u1, . . . , uk−1 all fixed to be specified values, provided that u0 ̸= 0. Compute the
Dirichlet density of this set of polynomials.

(b) Show that, as n→ ∞, there are infinitely many irreducible polynomials of this shape
with un−1, . . . , un−k all fixed to be specified values. Compute the Dirichlet density of this
set of polynomials.

A2. (a) Show that, whenever c ∈ Fq and d ∈ Fq \ {0}, there are infinitely many monic
irreducible polynomials π(t) ∈ A having the property that π(c) = d.

(b) Show that, whenever c1 and c2 are distinct elements of Fq, and d1, d2 ∈ Fq \{0}, then
there are infinitely many monic irreducible polynomials π(t) ∈ A having the property
that π(c1) = d1 and π(c2) = d2.

B3. Assume the Riemann Hypothesis for Dirichlet L-functions over Fq[t]. Let Λ(u)
denote the von Mangoldt function in A = Fq[t]. Suppose that a,m ∈ Fq[t] satisfy
(a,m) = 1 and deg(m) ⩾ 1. Obtain asymptotic formulae for the following quantities as
n→ ∞:

∑
u∈Fq [t]+

deg(u)=n
u≡a (mod m)

Λ(u) and
∑

u∈Fq [t]+

deg(u)=n
u≡a (mod m)

Λ(u)

|u|
.

B4.Recall that the forward difference operator ∆1 is defined for any K∞-valued function
ψ of the variable x via the relation

∆1(ψ(x);h) = ψ(x+ h)− ψ(x).

The j-fold forward difference operator is then defined for j ⩾ 2 inductively via the relation

∆j(ψ(x);h1, . . . , hj) = ∆1(∆j−1(ψ(x);h1, . . . , hj−1);hj).
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Show that for 1 ⩽ j ⩽ k, one has

∆j(x
k;h1, . . . , hj) =

∑
i0,...,ij

k!

i0! . . . ij!
xi0hi11 . . . h

ij
j ,

where the summation is over i0 ⩾ 0, i1 ⩾ 1, . . . , ij ⩾ 1 and i0+ · · ·+ ij = k. Hence deduce
that

∆j(x
k;h1, . . . , hj) = h1 . . . hjpj(x;h1, . . . , hj),

where pj is a polynomial in x of degree k − j with leading coefficient k!/(k − j)!.

B5. Let H and X be positive integers. Suppose that k ⩾ 2 and α ∈ K∞, and define

T (α) =
∑

0⩽deg(h)<H

∣∣∣∣ ∑
deg(x)<X

e(hαxk)

∣∣∣∣.
(a) Show that

T (α)2
k−1

⩽ (qH)2
k−1−1

∑
0⩽deg(h)<H

∣∣∣∣ ∑
deg(x)<X

e(hαxk)

∣∣∣∣2k−1

.

(b) Suppose that a, g ∈ Fq[t] satisfy (a, g) = 1, g monic, and |α − a/q| < 1/|g|2. Show
that, whenever char(Fq) > k, one has

T (α) ≪ (qH+X)1+ε
(
|g|−1 + q−X + |g|(qH+kX)−1

)21−k

.

C6. Suppose that char(Fq) ̸= 2, and put α =
√
1 + t2 ∈ K∞.

(a) Show that the continued fraction expansion of α is α = [t; 2t, 2t, . . .].

(b) Suppose that the convergents to the continued fraction expansion of α are an/gn
(n ∈ N). By examining a2n−(1+t2)g2n, find an infinite sequence of polynomials (xn, yn)

∞
n=1

having the property that x2n − (t2 + 1)y2n = 1.

(c) Find an explicit constant c > 0 having the property that, whenever a and g are
elements of Fq[t] with g monic and (a, g) = 1, then |

√
1 + t2 − a/g| > c/|g|2.

C7. Suppose that θ ∈ K∞ is irrational.

(a) Show that the sequence of squares of fractional parts of θx, namely(
{θx}2

)
x∈Fq [t]

,

is not equidistributed in T.
(b) Suppose that char(Fq) is odd. Show that there exists an irrational element θ ∈ K∞
having the property that (

x⌊x
√
1 + t2⌋θ

)
x∈Fq [t]

,

is not equidistributed in T.
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