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1. [3+3+3+3+3+3+3=21 points] Decide which of the following statements are necessarily
true, and which may be false. Mark those which are true with “T”, and those which are
false with “F”.

a. When p and q are distinct prime numbers, and n ∈ Z, the equation px+ qy = n always
has a solution in integers x and y.

Solution: TRUE (Since (p, q) = 1, it follows from the Euclidean Algorithm that there are
integers u and v with pu+ qv = 1, and then p(un) + q(vn) = n).

b. Let p be a prime number. Then for every integer a, one has ap−1 ≡ 1 (mod p).

Solution: FALSE (When p|a, one has ap−1 ≡ 0 (mod p)).

c. For some natural number n, one has (n(n2 − 1), 6) = 2.

Solution: FALSE (The product of 3 consecutive integers is always divisible by 6, so
(n(n2 − 1), 6) = 6).

d. The greatest common divisor of two non-zero integers a and b is the smallest positive
value of ax+ by, as x and y range over Z.
Solution: TRUE (This is Theorem 2.7(i) from class).

e. There exists an integer x satisfying the simultaneous congruences

x2 ≡ 5 (mod 6) and x2 ≡ 4 (mod 15).

Solution: FALSE (If such an integer were to exist, then from the first congruence we have
x2 ≡ 2 (mod 3), and from the second x2 ≡ 1 (mod 3), leading to a contradiction).

f. Let a and b be natural numbers with (a, b) = 1. Then ab divides [a, b].

Solution: TRUE (We proved that ab = [a, b](a, b), so since (a, b) = 1 we have [a, b] = ab).

g. Suppose that p is prime and d is a natural number with (p− 1)|d. Then the congruence
xd ≡ 1 (mod p3) always has precisely d solutions modulo p3.

Solution: FALSE (The congruence x2 ≡ 1 (mod 8) has 4 solutions 1, 3, 5, 7 modulo 8).

2. [3+3+3+3=12 points]

(a) Let a and b be non-zero integers. Define what is meant by the least common multiple
[a, b] of a and b.

Solution: The least common multiple of a and b is the smallest positive integer k having
the property that a|k and b|k.

(b) Define what is meant by a multiplicative function.

Solution: A function f : N → C is multiplicative if (i) f is not identically zero, and (ii)
whenever (m,n) = 1, then f(mn) = f(m)f(n).

(c) Let f(x) be a polynomial with integer coefficients. Define what is meant by the degree
of f modulo m.

Solution: Let f(x) = anx
n+an−1x

n−1+ · · ·+a0 be a polynomial with integral coefficients.
Let j be the largest integer with m ∤ aj. Then we say that the degree of f modulo m is
j. If m|aj for every j, then the degree of f is undefined.

Continued...
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(d) Let m ∈ N. Define what is meant by a reduced residue system modulo m.

Solution: A reduced residue system modulo m is a set of integers r1, . . . , rn satisfying (i)
(ri,m) = 1 for 1 ≤ i ≤ n, (ii) ri ̸≡ rj (mod m) for i ̸= j, and (iii) whenever (x,m) = 1,
then x ≡ ri (mod m) for some i with 1 ≤ i ≤ n.

3. [5+5=10 points] (a) Let n be a natural number with n > 1. Compute (n2 + 1, n3 − 1).

Solution: One has (n2 + 1, n3 − 1) = (n2 + 1, n3 − 1 − n(n2 + 1)) = (n2 + 1, n + 1), and
(n2 + 1, n+ 1) = (n2 + 1− (n− 1)(n+ 1), n+ 1) = (2, n+ 1). So

(n2 + 1, n3 − 1) =

{
1, when n is even,

2, when n is odd.

(b) Let n be a natural number with n > 1. For what values of n is there a solution of the
equation

(n2 + 1)x+ (n3 − 1)y = 1

in integers x and y? Explain your answer.

Solution: The equation has a solution if and only if n is an even integer. In order to see
this, observe that as a consequence of the Euclidean algorithm, the equation

(n2 + 1)x+ (n3 − 1)y = (n2 + 1, n3 − 1)

has a solution in integers x and y. Thus, the equation in question has a solution whenever n
is even, as a consequence of the conclusion of part (a). On the other hand, if (n2+1, n3−1) =
2, then for all integers x and y, one has that 2 divides (n2 + 1)x+ (n3 − 1)y, and thus the
latter integer cannot be 1. Hence, again by part (a), there is no solution of the equation in
question when n is odd.

4. [10 points] Recall that if p is prime and x2 +1 ≡ 0 (mod p) is soluble, then p = 2 or p ≡ 1
(mod 4). By modifying Euclid’s proof that there are infinitely many primes, deduce that
there are infinitely many primes of the form 4k + 1 (k ∈ N).
Solution: Suppose that there are only finitely many primes of the shape 4k + 1, say
p1, . . . , pn. Let P = 2p1p2 · · · pn, and put Q = P 2 + 1. Then Q is odd, and if p|Q, then
x2+1 ≡ 0 (mod p) has the solution x = P . Then the prime divisors of Q are all congruent
to 1 modulo 4. By construction, one has (Q, pi) = (P 2+1, pi) = 1 for each i, because pi|P .
Then none of the finite set of primes congruent to 1 modulo 4 divide Q. We have arrived at
a contradiction, and this proves that there are infinitely many primes of the shape 4k + 1.

5. [4+6+6=16 points] Throughout this question, the letter p denotes an odd prime number.

(a) State Fermat’s Little Theorem in a form applicable to all residues modulo p.

Solution: For all a ∈ Z, one has ap ≡ a (mod p).

(b) Show that the congruence

xp − 2x+ 2 ≡ 0 (mod p)

has precisely one solution modulo p, and determine that solution.

Solution: By Fermat’s Little theorem, for any integer x, one has

xp − 2x+ 2 ≡ x− 2x+ 2 = −x+ 2 (mod p).

Thus, the congruence in question has the solution given by x ≡ 2 (mod p), and no others.

Continued...
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(c) Determine the number of solutions of the congruence

xp − 2x+ 2 ≡ 0 (mod p2).

Justify your answer.

Solution: One can either apply Hensel’s lemma, or proceed directly. We do the latter. If
x is a solution of the congruence in question, then xp − 2x + 2 ≡ 0 (mod p), so from part
(b) we must have x ≡ 2 (mod p). Write x = 2 + py and substitute. Then we seek to solve
0 ≡ (2 + py)p − 2(2 + py) + 2 ≡ 2p − 2 − 2py (mod p2). We therefore conclude that one
must have y ≡ (2p−1 − 1)/p (mod p), and thus there is precisely one solution modulo p2,
namely x ≡ 2 + py ≡ 2p−1 + 1 (mod p2).

6. [4+6+6=16 points] (a) Give a formula for Euler’s function φ(n) explicit in terms of the
prime factorisation of n.

Solution: One has ϕ(n) = n
∏

p|n(1 − 1/p), where the product is taken over the distinct
prime divisors p of n.

(b) Suppose that p, q and r are distinct prime numbers, and put N = [p− 1, q − 1, r − 1].
Prove that whenever (a, pqr) = 1, one has aN ≡ 1 (mod pqr).

Solution: Since (p − 1)|N , say N = m(p − 1), and (a, p) = 1, it follows from Fermat’s
Little Theorem that aN = (ap−1)m ≡ 1 (mod p). Likewise, one has aN ≡ 1 (mod q) and
aN ≡ 1 (mod r). On noting that p, q and r are distinct primes, and therefore pairwise
coprime, it therefore follows from the Chinese Remainder Theorem that aN ≡ 1 (mod pqr).

(c) By observing that 1729 = 7 · 13 · 19, prove that whenever (a, 1729) = 1, one has

a1728 ≡ 1 (mod 1729).

Solution: Observe that [6, 12, 18] = 6[1, 2, 3] = 36, and 1728 = 36 · 48. Thus 1728
is divisible by [6, 12, 18], and we deduce from (b) that whenever (a, 1729) = 1, one has
a1728 = (a36)48 ≡ 1 (mod 1729).

7. [4+6+5=15 points] Suppose that f(x) ∈ Z[x] is a polynomial of degree at least 2 having
non-zero constant term.

(a) By computing (n, f(n)), show that there are infinitely many integers n for which n and
f(n) are coprime.

Solution: Write f(n) = adn
d + . . . + a1n + a0, with ai ∈ Z and ada0 ̸= 0. Then we have

(n, f(n)) = (n, a0). Put n = ma0 + 1 for any m ∈ Z. Then (n, f(n)) = (ma0 + 1, a0) =
(1, a0) = 1, whence there are infinitely many integers n for which n and f(n) are coprime.

(b) Explain why, for all integers m, the integer f(n+mf(n)) is divisible by f(n).

Solution: Observe that for all integers n, one has f(n+mf(n)) ≡ f(n) ≡ 0 (mod f(n)),
and hence f(n+mf(n)) is divisible by f(n).

Continued...
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(c) Assume the truth of Dirichlet’s theorem asserting that whenever a and q are natural
numbers with (a, q) = 1, then there are infinitely many primes congruent to a modulo q.
Prove that there is no polynomial f ∈ Z[x] of degree at least 2 having the property that
f(p) is prime whenever p is prime.

Solution: Suppose that f ∈ Z[x] is a polynomial of degree at least 2 having the property
that f(p) is prime for every prime p. By choosing a large prime q, we can suppose that
f(q) is a prime with |f(q)| > q, and hence (q, f(q)) = 1. Thus, by Dirichlet’s theorem,
there exists a prime number with p = q +mf(q) for some large integer m. In particular,
we may suppose that p is large enough that |f(p)| > |f(q)|. But then part (b) shows
that f(p) = f(q +mf(q)) is divisible by f(q), and hence cannot be prime. This yields a
contradiction, showing that no such polynomial f can exist.

End of examination.
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