PURDUE UNIVERSITY

Department of Mathematics

INTRODUCTION TO NUMBER THEORY

MA 49500 and MA 59500 - SOLUTIONS $\,$

18th February 2025 75 minutes

This paper contains **SEVEN** questions. All SEVEN answers will be used for assessment. Calculators, textbooks, notes and cribsheets are **not** permitted in this examination.

Do not turn over until instructed.

Cont...

1. [3+3+3+3+3+3+3=21 points] Decide which of the following statements are necessarily true, and which may be false. Mark those which are true with "T", and those which are false with "F".

a. When p and q are distinct prime numbers, and $n \in \mathbb{Z}$, the equation px + qy = n always has a solution in integers x and y.

Solution: TRUE (Since (p, q) = 1, it follows from the Euclidean Algorithm that there are integers u and v with pu + qv = 1, and then p(un) + q(vn) = n).

b. Let p be a prime number. Then for every integer a, one has $a^{p-1} \equiv 1 \pmod{p}$.

Solution: FALSE (When p|a, one has $a^{p-1} \equiv 0 \pmod{p}$).

c. For some natural number n, one has $(n(n^2 - 1), 6) = 2$.

Solution: FALSE (The product of 3 consecutive integers is always divisible by 6, so $(n(n^2 - 1), 6) = 6)$.

d. The greatest common divisor of two non-zero integers a and b is the smallest positive value of ax + by, as x and y range over \mathbb{Z} .

Solution: TRUE (This is Theorem 2.7(i) from class).

e. There exists an integer x satisfying the simultaneous congruences

 $x^2 \equiv 5 \pmod{6}$ and $x^2 \equiv 4 \pmod{15}$.

Solution: FALSE (If such an integer were to exist, then from the first congruence we have $x^2 \equiv 2 \pmod{3}$, and from the second $x^2 \equiv 1 \pmod{3}$, leading to a contradiction).

f. Let a and b be natural numbers with (a, b) = 1. Then ab divides [a, b].

Solution: TRUE (We proved that ab = a, b, so since (a, b) = 1 we have [a, b] = ab).

g. Suppose that p is prime and d is a natural number with (p-1)|d. Then the congruence $x^d \equiv 1 \pmod{p^3}$ always has precisely d solutions modulo p^3 .

Solution: FALSE (The congruence $x^2 \equiv 1 \pmod{8}$ has 4 solutions 1, 3, 5, 7 modulo 8).

2. [3+3+3+3=12 points]

(a) Let a and b be non-zero integers. Define what is meant by the least common multiple [a, b] of a and b.

Solution: The least common multiple of a and b is the smallest positive integer k having the property that a|k and b|k.

(b) Define what is meant by a multiplicative function.

Solution: A function $f : \mathbb{N} \to \mathbb{C}$ is multiplicative if (i) f is not identically zero, and (ii) whenever (m, n) = 1, then f(mn) = f(m)f(n).

(c) Let f(x) be a polynomial with integer coefficients. Define what is meant by the degree of f modulo m.

Solution: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ be a polynomial with integral coefficients. Let j be the largest integer with $m \nmid a_j$. Then we say that the **degree** of f modulo m is j. If $m|a_j$ for every j, then the degree of f is undefined.

Continued...

Cont...

(d) Let $m \in \mathbb{N}$. Define what is meant by a reduced residue system modulo m.

Solution: A reduced residue system modulo m is a set of integers r_1, \ldots, r_n satisfying (i) $(r_i, m) = 1$ for $1 \le i \le n$, (ii) $r_i \not\equiv r_j \pmod{m}$ for $i \ne j$, and (iii) whenever (x, m) = 1, then $x \equiv r_i \pmod{m}$ for some i with $1 \le i \le n$.

3. [5+5=10 points] (a) Let n be a natural number with n > 1. Compute (n^2+1, n^3-1) .

Solution: One has $(n^2 + 1, n^3 - 1) = (n^2 + 1, n^3 - 1 - n(n^2 + 1)) = (n^2 + 1, n + 1)$, and $(n^2 + 1, n + 1) = (n^2 + 1 - (n - 1)(n + 1), n + 1) = (2, n + 1)$. So

$$(n^{2}+1, n^{3}-1) = \begin{cases} 1, & \text{when } n \text{ is even,} \\ 2, & \text{when } n \text{ is odd.} \end{cases}$$

(b) Let n be a natural number with n > 1. For what values of n is there a solution of the equation

$$(n^2 + 1)x + (n^3 - 1)y = 1$$

in integers x and y? Explain your answer.

Solution: The equation has a solution if and only if n is an even integer. In order to see this, observe that as a consequence of the Euclidean algorithm, the equation

$$(n^{2}+1)x + (n^{3}-1)y = (n^{2}+1, n^{3}-1)$$

has a solution in integers x and y. Thus, the equation in question has a solution whenever n is even, as a consequence of the conclusion of part (a). On the other hand, if $(n^2+1, n^3-1) = 2$, then for all integers x and y, one has that 2 divides $(n^2+1)x + (n^3-1)y$, and thus the latter integer cannot be 1. Hence, again by part (a), there is no solution of the equation in question when n is odd.

4. [10 points] Recall that if p is prime and $x^2 + 1 \equiv 0 \pmod{p}$ is soluble, then p = 2 or $p \equiv 1 \pmod{4}$. By modifying Euclid's proof that there are infinitely many primes, deduce that there are infinitely many primes of the form 4k + 1 $(k \in \mathbb{N})$.

Solution: Suppose that there are only finitely many primes of the shape 4k + 1, say p_1, \ldots, p_n . Let $P = 2p_1p_2 \cdots p_n$, and put $Q = P^2 + 1$. Then Q is odd, and if p|Q, then $x^2 + 1 \equiv 0 \pmod{p}$ has the solution x = P. Then the prime divisors of Q are all congruent to 1 modulo 4. By construction, one has $(Q, p_i) = (P^2 + 1, p_i) = 1$ for each i, because $p_i|P$. Then none of the finite set of primes congruent to 1 modulo 4 divide Q. We have arrived at a contradiction, and this proves that there are infinitely many primes of the shape 4k + 1.

5. [4+6+6=16 points] Throughout this question, the letter p denotes an odd prime number.
(a) State Fermat's Little Theorem in a form applicable to all residues modulo p.

Solution: For all $a \in \mathbb{Z}$, one has $a^p \equiv a \pmod{p}$.

(b) Show that the congruence

$$x^p - 2x + 2 \equiv 0 \pmod{p}$$

has precisely one solution modulo p, and determine that solution.

Solution: By Fermat's Little theorem, for any integer x, one has

$$x^p - 2x + 2 \equiv x - 2x + 2 \equiv -x + 2 \pmod{p}.$$

Thus, the congruence in question has the solution given by $x \equiv 2 \pmod{p}$, and no others.

Continued...

Cont...

(c) Determine the number of solutions of the congruence

$$x^p - 2x + 2 \equiv 0 \pmod{p^2}.$$

Justify your answer.

Solution: One can either apply Hensel's lemma, or proceed directly. We do the latter. If x is a solution of the congruence in question, then $x^p - 2x + 2 \equiv 0 \pmod{p}$, so from part (b) we must have $x \equiv 2 \pmod{p}$. Write x = 2 + py and substitute. Then we seek to solve $0 \equiv (2 + py)^p - 2(2 + py) + 2 \equiv 2^p - 2 - 2py \pmod{p^2}$. We therefore conclude that one must have $y \equiv (2^{p-1} - 1)/p \pmod{p}$, and thus there is precisely one solution modulo p^2 , namely $x \equiv 2 + py \equiv 2^{p-1} + 1 \pmod{p^2}$.

6. [4+6+6=16 points] (a) Give a formula for Euler's function $\varphi(n)$ explicit in terms of the prime factorisation of n.

Solution: One has $\phi(n) = n \prod_{p|n} (1 - 1/p)$, where the product is taken over the distinct prime divisors p of n.

(b) Suppose that p, q and r are distinct prime numbers, and put N = [p - 1, q - 1, r - 1]. Prove that whenever (a, pqr) = 1, one has $a^N \equiv 1 \pmod{pqr}$.

Solution: Since (p-1)|N, say N = m(p-1), and (a, p) = 1, it follows from Fermat's Little Theorem that $a^N = (a^{p-1})^m \equiv 1 \pmod{p}$. Likewise, one has $a^N \equiv 1 \pmod{q}$ and $a^N \equiv 1 \pmod{r}$. On noting that p, q and r are distinct primes, and therefore pairwise coprime, it therefore follows from the Chinese Remainder Theorem that $a^N \equiv 1 \pmod{pqr}$.

(c) By observing that $1729 = 7 \cdot 13 \cdot 19$, prove that whenever (a, 1729) = 1, one has

$$a^{1728} \equiv 1 \pmod{1729}.$$

Solution: Observe that [6, 12, 18] = 6[1, 2, 3] = 36, and $1728 = 36 \cdot 48$. Thus 1728 is divisible by [6, 12, 18], and we deduce from (b) that whenever (a, 1729) = 1, one has $a^{1728} = (a^{36})^{48} \equiv 1 \pmod{1729}$.

7. [4+6+5=15 points] Suppose that $f(x) \in \mathbb{Z}[x]$ is a polynomial of degree at least 2 having non-zero constant term.

(a) By computing (n, f(n)), show that there are infinitely many integers n for which n and f(n) are coprime.

Solution: Write $f(n) = a_d n^d + \ldots + a_1 n + a_0$, with $a_i \in \mathbb{Z}$ and $a_d a_0 \neq 0$. Then we have $(n, f(n)) = (n, a_0)$. Put $n = ma_0 + 1$ for any $m \in \mathbb{Z}$. Then $(n, f(n)) = (ma_0 + 1, a_0) = (1, a_0) = 1$, whence there are infinitely many integers n for which n and f(n) are coprime.

(b) Explain why, for all integers m, the integer f(n + mf(n)) is divisible by f(n).

Solution: Observe that for all integers n, one has $f(n + mf(n)) \equiv f(n) \equiv 0 \pmod{f(n)}$, and hence f(n + mf(n)) is divisible by f(n).

Continued...

(c) Assume the truth of Dirichlet's theorem asserting that whenever a and q are natural numbers with (a,q) = 1, then there are infinitely many primes congruent to a modulo q. Prove that there is no polynomial $f \in \mathbb{Z}[x]$ of degree at least 2 having the property that f(p) is prime whenever p is prime.

Solution: Suppose that $f \in \mathbb{Z}[x]$ is a polynomial of degree at least 2 having the property that f(p) is prime for every prime p. By choosing a large prime q, we can suppose that f(q) is a prime with |f(q)| > q, and hence (q, f(q)) = 1. Thus, by Dirichlet's theorem, there exists a prime number with p = q + mf(q) for some large integer m. In particular, we may suppose that p is large enough that |f(p)| > |f(q)|. But then part (b) shows that f(p) = f(q + mf(q)) is divisible by f(q), and hence cannot be prime. This yields a contradiction, showing that no such polynomial f can exist.

 $End \ of \ examination.$