
NUMBER THEORY: HOMEWORK 1

TO BE HANDED IN THURSDAY 23RD JANUARY 2025 BY 6PM

1. (i) Prove that for every natural number n, one has (n+ 3)|(n3 + 27).

(ii) Suppose that n is a natural number. Prove that

(n+ 1, n4 + n+ 1) = 1.

2. (i) Let a and b be integers. Show that 3|(10a + b) if and only if 3|(a + b),
and hence deduce that an integer n is divisible by 3 if and only if the sum of
its base-10 digits is divisible by 3.

(ii) Let a and b be integers. Show that 11|(100a+ b) if and only if 11|(a+ b),
and hence deduce that an integer n is divisible by 11 if and only if the sum of
its base-100 digits is divisible by 11.

(iii) Let a and b be integers. Show that 37|(1000a+ b) if and only if 37|(a+ b),
and hence deduce that an integer n is divisible by 37 if and only if the sum of
its base-1000 digits is divisible by 37.

3. Let the conventional base 10 expansion of the integer n be nknk−1 . . . n1n0,
so that

n = 10knk + 10k−1nk−1 + . . .+ n0 with ni ∈ {0, 1, . . . , 9}.
Let m be the integer with base 10 expansion nknk−1 . . . n1, so that

m = 10k−1nk + 10k−2nk−1 + . . .+ n1.

(i) Show that 4n (and hence also n) is divisible by 13 if and only if m+4n0 is
divisible by 13, thereby providing a test for divisibility by 13.

(ii) Show that n is divisible by 7 if and only if m−2n0 is divisible by 7, thereby
providing a test for divisibility by 7.

4. Let n be a natural number.

(i) Prove that (n!− 1, (n+ 1)!− 1) = 1.

(ii) Prove that when n ⩾ 3, one has (n! + 2, (n+ 1)! + 2) = 2.

5. By considering the binomial coefficient

(
n

k

)
, prove that the product of k

consecutive integers is always divisible by k!.
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