
NUMBER THEORY: HOMEWORK 4

TO BE HANDED IN BY THURSDAY 13TH FEBRUARY 2025 BY 6PM

1. (i) Find solutions of x2 ≡ −1 (mod 5) and x2 ≡ −1 (mod 17). Hence, apply-
ing the Chinese Remainder Theorem, obtain a solution of x2 ≡ −1 (mod 85).

(ii) How many solutions does x2 ≡ −1 (mod 85) possess?

2. (i) Let p be a prime number. By applying Fermat’s Little Theorem, or
otherwise, show that the congruence xp − x+ 1 ≡ 0 (mod p) has no solution.

(ii) How many solutions does the congruence x16−x+3 ≡ 0 (mod 40) possess?
Explain your answer.

3.By considering the prime factorisation of the integer 561, prove that when-
ever (a, 561) = 1, one has a80 ≡ 1 (mod 561). Hence prove that a560 ≡ 1
(mod 561) whenever (a, 561) = 1.

4.Let f(x) = x2 + x throughout.

(a) Show that for every prime number p and every positive integer k, the
congruence f(x) ≡ 0 (mod pk) has precisely 2 solutions.

(b) Let m be a natural number, and let r denote the number of distinct prime
numbers dividing m. Show that the congruence f(x) ≡ 0 (mod m) has pre-
cisely 2r solutions.

5. (a) Prove that if p is prime, (a, p) = 1 and (n, p − 1) = 1, then xn ≡ a
(mod p) has exactly one solution.

(b) Show that when (n, p − 1) = d, then xn ≡ 1 (mod p) has precisely d
solutions.
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