
NUMBER THEORY: HOMEWORK 6

TO BE HANDED IN BY THURSDAY 27TH FEBRUARY 2025 BY 6PM

1. Let p be an odd prime number, suppose that h ⩾ 2, and denote by g a
primitive root modulo ph.

(a) How many solutions does the congruence xp ≡ 1 (mod ph) possess? List
them all using the primitive root g modulo ph.

(b) How many solutions does the congruence x2p ≡ 1 (mod ph) possess? List
them all using the primitive root g modulo ph.

2. Let a and n be integers with 1 ⩽ a ⩽ n and (a, n) = 1.

(a) Suppose that the usual base 10 digital representation of a/n is a recurring
decimal in the form

a

n
= 0 · b1b2 · · · bmb1b2 · · · bm · · ·

= 0 · b1b2 · · · bm,
where bi ∈ {0, 1, . . . , 9} (1 ⩽ i ⩽ m). Prove that 10m ≡ 1 (mod n).

(b) Suppose that (10, n) = 1 and that the order of 10 modulo n is d. Show that
a/n has a recurring decimal expansion with least period d, and show further
that d|φ(n).
(c) Show that a/n has a recurring decimal expansion with least period n − 1
if and only if n is prime and 10 is a primitive root modulo n.

3. Let p1, p2, . . . , pr be distinct prime numbers. Show that an integer g exists
satisfying the property that g is a primitive root modulo pi for all indices i
with 1 ⩽ i ⩽ r.

4. (a) Let a be an integer with a ⩾ 2, and suppose that q ∈ N. What is the
smallest positive integer d satisfying the property that ad ≡ 1 (mod aq − 1)?
Deduce that q|φ(aq − 1).

(b) Let q be a prime number. By considering the prime factorisation of the
integer N = aq − 1, show that either N is divisible by q, or else N is divisible
by a prime number p with p ≡ 1 (mod q).

5. Let q be a prime number. Prove that there are infinitely many prime
numbers p with p ≡ 1 (mod q).
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