NUMBER THEORY: HOMEWORK 7

TO BE HANDED IN BY THURSDAY 6TH MARCH 2025 BY 6PM

1. Suppose that p is a prime number with p > 3, and that g is a primitive root
modulo p.

(a) What can one say about the integer « if g® is a quadratic residue modulo
p?

(b) What can one say about the integer « if ¢g* is a quadratic non-residue
modulo p?

(c) What can one say about the integer « if g% is a primitive root modulo p?

2. Suppose that p > 3 is a prime number.

(a) Find modulo p the sum, and the product, of all the distinct quadratic
residues modulo p.

(b) Find modulo p the sum, and the product, of all the distinct quadratic
non-residues modulo p.

3. Let p be an odd prime number.
—2
(a) Show that (—) = 1 if and only if p =1 (mod 8) or p = 3 (mod 8).
p
(b) Prove that there are infinitely many prime numbers p with p = 3 (mod 8).

4.Let p be an odd prime number, and let a and b be integers with p 1 ab.

(a) Show that if @ and b are both quadratic non-residues, then ab is a quadratic
residue.

(b) Deduce that the congruence

(2% — a)(z* — b)(2* — ab) = 0 (mod p)

always possesses a solution z modulo p.

5. The nth Mersenne number is defined to be M,, = 2™ — 1.

(a) Prove that if M, is prime, then n is prime.

(b) By making appropriate use of the quadratic residue symbol, show that if p
is a prime congruent to 3 modulo 4, and p’ = 2p + 1 is also prime, then 27 = 1
(mod p').

(c) Deduce that 225! — 1 is not a Mersenne prime.
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