
NUMBER THEORY: HOMEWORK 8

TO BE HANDED IN BY THURSDAY 13TH MARCH 2025 BY 6PM

1.Calculate the symbols

(
264

173

)
,

(
2019

4987

)
,

(
187

389

)
.

2. (a) Determine the odd prime numbers p for which 5 is a quadratic residue
modulo p.

(b) By considering the polynomial x2 − 5, and applying a variant of Euclid’s
proof, show that there are infinitely many primes of the shape 5k + 4.

3. Let p be an odd prime number. Determine the primes p for which −7 is a
quadratic residue modulo p.

4. (a) Show that

(
3

p

)
= −1 whenever p ≡ 5 (mod 12).

(b) Suppose that p = 22
n
+ 1 is a prime number. Show that 3 is a primitive

root modulo p.

5. Use the following strategy to prove that there are no integers x, y satisfying
the equation y2 = x3 + 45.

(a) Show that if (x, y) were to satisfy this equation, then x ≡ 7 (mod 8) or
x ≡ 3 (mod 8).

(b) If x ≡ 7 (mod 8), rewrite the equation as

y2 − 2 · 32 = (x+ 3)(x2 − 3x+ 9).

Prove that x2 − 3x + 9 must be divisible by a prime p ≡ ±3 (mod 8), and
derive a contradiction.

(c) Deal with the second case in which x ≡ 3 (mod 8) by writing y2 = x3 +45
as

y2 − 2 · 62 = (x− 3)(x2 + 3x+ 9),

and proceeding similarly.
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