
SOLUTIONS TO HOMEWORK 1

1. (i) When n ∈ N, one has n3 + 27 = (n + 3)(n2 − 3n + 9), and so n + 3
divides n3 + 27, as required.

(ii) When n ⩾ 1, one has

(n+ 1, n4 + n+ 1) = (n+ 1, n4 + n+ 1− (n+ 1)(n3 − n2 + n)),

and thus (n+ 1, n4 + n+ 1) = (n+ 1, 1) = 1.

2. (i) One has 3|(10a+b) if and only if 3|(10a+b−9a), or equivalently 3|(a+b).
Write n = 10knk + 10k−1nk−1 + . . . + n0 in the ordinary base-10 expansion.
Using the above conclusion, one finds that 3|n if and only if

3|(10k−1nk + . . .+ 10n2 + n1 + n0),

or equivalently 3|(10k−2nk + . . .+ 10n3 + n2 + (n1 + n0)), and so on. Thus, by
induction, one sees that 3|n if and only if 3|(nk +nk−1+ . . .+n0), as required.

(ii) One has 11|(100a+ b) if and only if 11|(100a+ b− 9(11a)), or equivalently
11|(a + b). Write n = 100knk + 100k−1nk−1 + . . . + n0 in the ordinary base-
100 expansion. Using the above conclusion, one finds that 11|n if and only if
11|(100k−1nk + . . .+ 100n2 + n1 + n0), or equivalently

11|(100k−2nk + . . .+ 100n3 + n2 + (n1 + n0)),

and so on. Thus, one sees that 11|n if and only if 11|(nk + nk−1 + . . .+ n0), as
required.

(iii) One has 37|(1000a+b) if and only if 37|(1000a+b−27(37a)), or equivalently
37|(a+ b). Write n = 1000knk + 1000k−1nk−1 + . . .+ n0 in the ordinary base-
1000 expansion. Using the above conclusion, one finds that 37|n if and only if
37|(1000k−1nk + . . .+ 1000n2 + n1 + n0), or equivalently

37|(1000k−2nk + . . .+ 1000n3 + n2 + (n1 + n0)),

and so on. Thus, one sees that 37|n if and only if 37|(nk + nk−1 + . . .+ n0), as
required.

3. (i) Since 4 and 13 are coprime, one finds that n = 10m+ n0 is divisible by
13 if and only if 4n = 40m+4n0 is divisible by 13. But the latter holds if and
only if 40m + 4n0 − 39m = m + 4n0 is divisible by 13. Thus 13|n if and only
if m+ 4n0 is divisible by 13, as required.

(ii) Since 2 and 7 are coprime, one finds that n = 10m+ n0 is divisible by 7 if
and only if −2n = −20m − 2n0 is divisible by 7. But the latter holds if and
only if −20m− 2n0 + 3(7m) = m− 2n0 is divisible by 7. Thus 7|n if and only
if m− 2n0 is divisible by 7, as required.

4. (i) One has (n!− 1, (n+1)!− 1) = (n!− 1, ((n+1)!− 1)− (n+1)(n!− 1)) =
(n! − 1, n). But (n! − 1, n) = (n! − 1 − n · (n − 1)!, n) = (−1, n) = 1, and so
(n!− 1, (n+ 1)!− 1) = 1, as required.
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(ii) When n ⩾ 3, one has

(n! + 2, (n+1)!+ 2) = (n! + 2, ((n+1)!+ 2)− (n+1)(n! + 2)) = (n! + 2,−2n).

But since when n ⩾ 3, one has 2|(n− 1)!, it follows that

(n! + 2,−2n) = (n! + 2− 2n · 1
2
(n− 1)!,−2n) = (2,−2n) = 2(1, n) = 2,

and so (n! + 2, (n+ 1)! + 2) = 2, as required.

5. If the k consecutive integers in question contain 0, then this conclusion is
trivial. Also, when all k integers are negative, then their product is equal to
(−1)k multiplied by the product of k consecutive positive integers, and thus
there is no loss of generality in restricting to the case of k consecutive positive
integers. Whenever k, n ∈ N satisfy k ⩽ n, one has

n(n− 1) · · · (n− k + 1)

k!
=

(
n

k

)
∈ N,

and hence k! divides n(n−1) · · · (n−k+1). Then the product of any k positive
integers is divisible by k!, and this completes the proof.
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