SOLUTIONS TO HOMEWORK 11

1. (a) One has
[\/5]:27 1/(\/3_2):\/6+27
Vo+2 =4, 1/(vV6+2) —4)=1/(V5-2) =vV5+2,
and we obtain repetition. Thus v/5 = [2;4].
Also, one has

V6l =2, 1/(V6-2)=(V6+2)/2,
[(V6+2)/2] =2, 1/(vV6+2)/2—2)=2/(v6—2)=6+2,
V642 =4, 1/(vV6+2)—4)=1/(v6—2)=(V6+2)/2,

and we obtain repetition. Thus v/6 = [2;2,4].

(b) One has
V54 =7, 1/(V54—17) = (V54 +7)/5,
[(VB4+T7)/5] =2, 1/(V54+7)/5—2) =5/(V54—3) = (V54 +3)/9,
[(V54+3)/9] =1, 1/((vV54+3)/9 - 1) =9/(V54 - 6) = (V54 +6)/2,
[(V54+6)/21 =6, 1/((v54+6)/2—6) =2/(V54—6) = (V54 +6)/9,
(V54+6)/91 =1, 1/((vV54+6)/9—1) =9/(V54 - 3) = (VB4 +3)/5,
(VB4+3)/5] =2, 1/((vV64+3)/5-2)=5/(vV54—7) = VB4 +7,
VB4 +7 =14, 1/((VB4+7)—14) =1/(v54—7) = (V544 7)/5,

and we obtain repetition. Thus v/54 = [7;2, 1,6, 1, 2, 14].

2. One has
[V69] =8, 1/(v69—8) = (V69 +8)/5,
(V69 +8)/5] =3, 1/((vV69+8)/5—3)=5/(vV69—7) = (V69 +7)/4,
(V69 +7)/4] = 3, (V694 17)/4 —3) = 4/(v69 — 5) = (V69 + 5)/11,
(V69 4 5)/11] = 1, (V69 +5)/11 — 1) = 11/(v/69 — 6) = (V69 + 6)/3,
(V69 + 6)/3] = 4, (V69 +6)/3 — 4) = 3/(v/69 — 6) = (V69 + 6)/11,
(V69 +6)/11] = 1, (V69 +6)/11 — 1) = 11/(v/69 — 5) = (V69 + 5) /4,
(V69 +5)/4] =3, 1/((v/69+5)/4—3) =4/(v/69 —17) = (69 +7)/5,
(V69 +7)/5] =3, 1/(V69+7)/5—3)=5/(69 —8) =69 +8,
(V69 +8] =16, 1/(v/69—8) = (V69 +8)/5,
and we obtain repetition. Thus v/69 = [8;3,3,1,4,1, 3,3, 16].
Also, one has
[(24—V15)/7] =2, 1/((24—+/15)/7—2) = 7/(10—/15) = 7(10+/15) /85,
[7(10+v/15)/85] =1, 1/(7(10+V/15)/85—1) = 85/(—15+7/15) = (15+7+/15)/6,
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[(15+7V15)/6] =7, 1/((154+7v15)/6—7T) = 6/(—27+T7V15) = 27+ 715,
27+ 7V15] =54, 1/((27+7V15) —54) = 1/(—=27+7V15) = (274 7V/15)/6,
[(27+7V15)/6] =9, 1/((27+7V15)/6—9) = 6/(—27T+TV15) = 27+ 7/15,
and we obtain repetition. Thus (24 — v/15)/7 = [2;1,7,54,9].

3. Write 6 = >"° 2025~™". For each natural number j, write q; = 20257 and

J
a; = 2025y ~ 20257,
n=0

Then both a; and ¢; are natural numbers with (a;, ¢;) = 1, and

0 —a;/q5l = ) 20257 < 20250 < g7,
n=j+1
If 6 were algebraic, then it would be algebraic of some degree d > 1. By
Liouville’s theorem, for some positive number ¢, one would have |—a/q| > ¢/q*
for every pair of natural numbers a and ¢ with (a,q) = 1 and ¢ large enough.
But the above upper bound contradicts this lower bound as soon as j > d and
j is large enough in terms of ¢. Hence 6 is transcendental.

4. Write © = Y17 27P»#_ For each natural number j, write ¢; = 2P7% and

J
a; = op;# Z 9Q—Pn#
n=1

Then both a; and ¢; are natural numbers with (a;,¢;) =1, and

o0
|@ _ aj/q]“ _ Z 9—Pn#t ~ 9l-Dj1# q;j~
n=j+1
Notice here that we use the trivial lower bound p;;1 > j + 1 to derive the
last of these inequalities. If © were algebraic, then it would be algebraic of
some degree d > 1. By Liouville’s theorem, for some positive number ¢, one
would have |© — a/q| > ¢/q? for every pair of natural numbers a and ¢ with
(a,q) = 1 and ¢ large enough. But the above upper bound contradicts this
lower bound as soon as j > d and j is large enough in terms of c¢. Hence O is

transcendental.
1
I, = / z"e” dzx.
0

5. (a) Write
Then, by integrating by parts, one finds that when n > 1, one has
1
I, = [z"€"], — n/ " etdr =e —nl,_;.
0

Meanwhile, one has Iy = e — 1. Then it follows by induction that for each
natural number n, there are integers A, and B,, for which I,, = A,e — B,,. On
the other hand, the positivity of the integrand ensures that A,e— B, = I,, > 0.
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Finally, when 0 < x < 1, one has 0 < z"e” < ex™, so that x"e® — 0 as n — oc.

It follows that )

lim e’ dx =0,

n—oo 0
and hence lim,, . (A,e—B,,) = lim,,_,, I, = 0. However, were e to be rational,
then one would have natural numbers b and k with (b, k) = 1 such that e =
b/k, and then since A,e — B, > 0, we see that A,e — B, > 1/k. This
shows that liminf, ,. (A,e — B,) = 1/k, in contradiction with the conclusion
lim,, o (An,e — B,) = 0. Hence e must be irrational.

(b) Write
1
I :/ x"e’ dr.
—1

Then, by integrating by parts, one finds that when n > 1, one has

1
Jp = [z, — n/ " et dr =e— (—=1)"e "t —nJ, ;.
-1
Meanwhile, one has Jy = ¢ — e~ 1. Then it follows by induction that for each
natural number n, there are integers C,, and D,, for which J,, = C,e — D,e %
On the other hand, the positivity of the integrand ensures that C,e — D,e™! =
J, > 0. Finally, when —1 < 2 < 1, one has 0 < |z"e”| < e|z|", so that

z"e® — 0 as n — oo. It follows that
1

lim x"e*dr =0,

n—oo J_4
and hence lim,, o, (Cre* — D,)) = elim, o J,, = 0. However, were €* to be
rational, then one would have natural numbers ¢ and [ with (¢,[) = 1 such that
e? = ¢/l, and then since Cpe? — D,, > 0, we see that C,e?> — D,, > 1/I. This
shows that lim inf,, . (Cpe? — D,) > 1/I, in contradiction with the conclusion
lim,, 00 (Cre? — D,,) = 0. Hence e must be irrational.
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