
SOLUTIONS TO HOMEWORK 11

1. (a) One has

[
√
5] = 2, 1/(

√
5− 2) =

√
5 + 2,

[
√
5 + 2] = 4, 1/((

√
5 + 2)− 4) = 1/(

√
5− 2) =

√
5 + 2,

and we obtain repetition. Thus
√
5 = [2; 4].

Also, one has

[
√
6] = 2, 1/(

√
6− 2) = (

√
6 + 2)/2,

[(
√
6 + 2)/2] = 2, 1/((

√
6 + 2)/2− 2) = 2/(

√
6− 2) =

√
6 + 2,

[
√
6 + 2] = 4, 1/((

√
6 + 2)− 4) = 1/(

√
6− 2) = (

√
6 + 2)/2,

and we obtain repetition. Thus
√
6 = [2; 2, 4].

(b) One has

[
√
54] = 7, 1/(

√
54− 7) = (

√
54 + 7)/5,

[(
√
54 + 7)/5] = 2, 1/((

√
54 + 7)/5− 2) = 5/(

√
54− 3) = (

√
54 + 3)/9,

[(
√
54 + 3)/9] = 1, 1/((

√
54 + 3)/9− 1) = 9/(

√
54− 6) = (

√
54 + 6)/2,

[(
√
54 + 6)/2] = 6, 1/((

√
54 + 6)/2− 6) = 2/(

√
54− 6) = (

√
54 + 6)/9,

[(
√
54 + 6)/9] = 1, 1/((

√
54 + 6)/9− 1) = 9/(

√
54− 3) = (

√
54 + 3)/5,

[(
√
54 + 3)/5] = 2, 1/((

√
54 + 3)/5− 2) = 5/(

√
54− 7) =

√
54 + 7,

[
√
54 + 7] = 14, 1/((

√
54 + 7)− 14) = 1/(

√
54− 7) = (

√
54 + 7)/5,

and we obtain repetition. Thus
√
54 = [7; 2, 1, 6, 1, 2, 14].

2. One has
[
√
69] = 8, 1/(

√
69− 8) = (

√
69 + 8)/5,

[(
√
69 + 8)/5] = 3, 1/((

√
69 + 8)/5− 3) = 5/(

√
69− 7) = (

√
69 + 7)/4,

[(
√
69 + 7)/4] = 3, 1/((

√
69 + 7)/4− 3) = 4/(

√
69− 5) = (

√
69 + 5)/11,

[(
√
69 + 5)/11] = 1, 1/((

√
69 + 5)/11− 1) = 11/(

√
69− 6) = (

√
69 + 6)/3,

[(
√
69 + 6)/3] = 4, 1/((

√
69 + 6)/3− 4) = 3/(

√
69− 6) = (

√
69 + 6)/11,

[(
√
69 + 6)/11] = 1, 1/((

√
69 + 6)/11− 1) = 11/(

√
69− 5) = (

√
69 + 5)/4,

[(
√
69 + 5)/4] = 3, 1/((

√
69 + 5)/4− 3) = 4/(

√
69− 7) = (

√
69 + 7)/5,

[(
√
69 + 7)/5] = 3, 1/((

√
69 + 7)/5− 3) = 5/(

√
69− 8) =

√
69 + 8,

[
√
69 + 8] = 16, 1/(

√
69− 8) = (

√
69 + 8)/5,

and we obtain repetition. Thus
√
69 = [8; 3, 3, 1, 4, 1, 3, 3, 16].

Also, one has

[(24−
√
15)/7] = 2, 1/((24−

√
15)/7−2) = 7/(10−

√
15) = 7(10+

√
15)/85,

[7(10+
√
15)/85] = 1, 1/(7(10+

√
15)/85−1) = 85/(−15+7

√
15) = (15+7

√
15)/6,
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[(15+7
√
15)/6] = 7, 1/((15+7

√
15)/6−7) = 6/(−27+7

√
15) = 27+7

√
15,

[27+7
√
15] = 54, 1/((27+7

√
15)−54) = 1/(−27+7

√
15) = (27+7

√
15)/6,

[(27+7
√
15)/6] = 9, 1/((27+7

√
15)/6−9) = 6/(−27+7

√
15) = 27+7

√
15,

and we obtain repetition. Thus (24−
√
15)/7 = [2; 1, 7, 54, 9].

3. Write θ =
∑∞

0 2025−n!. For each natural number j, write qj = 2025j! and

aj = 2025j!
j∑

n=0

2025−n!.

Then both aj and qj are natural numbers with (aj, qj) = 1, and

|θ − aj/qj| =
∞∑

n=j+1

2025−n! < 20251−(j+1)! < q−j
j .

If θ were algebraic, then it would be algebraic of some degree d ⩾ 1. By
Liouville’s theorem, for some positive number c, one would have |θ−a/q| > c/qd

for every pair of natural numbers a and q with (a, q) = 1 and q large enough.
But the above upper bound contradicts this lower bound as soon as j > d and
j is large enough in terms of c. Hence θ is transcendental.

4. Write Θ =
∑∞

1 2−pn#. For each natural number j, write qj = 2pj# and

aj = 2pj#
j∑

n=1

2−pn#.

Then both aj and qj are natural numbers with (aj, qj) = 1, and

|Θ− aj/qj| =
∞∑

n=j+1

2−pn# < 21−pj+1# < q−j
j .

Notice here that we use the trivial lower bound pj+1 ⩾ j + 1 to derive the
last of these inequalities. If Θ were algebraic, then it would be algebraic of
some degree d ⩾ 1. By Liouville’s theorem, for some positive number c, one
would have |Θ − a/q| > c/qd for every pair of natural numbers a and q with
(a, q) = 1 and q large enough. But the above upper bound contradicts this
lower bound as soon as j > d and j is large enough in terms of c. Hence Θ is
transcendental.

5. (a) Write

In =

∫ 1

0

xnex dx.

Then, by integrating by parts, one finds that when n ⩾ 1, one has

In = [xnex]10 − n

∫ 1

0

xn−1ex dx = e− nIn−1.

Meanwhile, one has I0 = e − 1. Then it follows by induction that for each
natural number n, there are integers An and Bn for which In = Ane−Bn. On
the other hand, the positivity of the integrand ensures that Ane−Bn = In > 0.
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Finally, when 0 < x < 1, one has 0 < xnex < exn, so that xnex → 0 as n → ∞.
It follows that

lim
n→∞

∫ 1

0

xnex dx = 0,

and hence limn→∞(Ane−Bn) = limn→∞ In = 0. However, were e to be rational,
then one would have natural numbers b and k with (b, k) = 1 such that e =
b/k, and then since Ane − Bn > 0, we see that Ane − Bn ⩾ 1/k. This
shows that lim infn→∞(Ane−Bn) ⩾ 1/k, in contradiction with the conclusion
limn→∞(Ane−Bn) = 0. Hence e must be irrational.

(b) Write

Jn =

∫ 1

−1

xnex dx.

Then, by integrating by parts, one finds that when n ⩾ 1, one has

Jn = [xnex]1−1 − n

∫ 1

−1

xn−1ex dx = e− (−1)ne−1 − nJn−1.

Meanwhile, one has J0 = e − e−1. Then it follows by induction that for each
natural number n, there are integers Cn and Dn for which Jn = Cne−Dne

−1.
On the other hand, the positivity of the integrand ensures that Cne−Dne

−1 =
Jn > 0. Finally, when −1 < x < 1, one has 0 < |xnex| < e|x|n, so that
xnex → 0 as n → ∞. It follows that

lim
n→∞

∫ 1

−1

xnex dx = 0,

and hence limn→∞(Cne
2 − Dn) = e limn→∞ Jn = 0. However, were e2 to be

rational, then one would have natural numbers c and l with (c, l) = 1 such that
e2 = c/l, and then since Cne

2 − Dn > 0, we see that Cne
2 − Dn ⩾ 1/l. This

shows that lim infn→∞(Cne
2 −Dn) ⩾ 1/l, in contradiction with the conclusion

limn→∞(Cne
2 −Dn) = 0. Hence e2 must be irrational.
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