
SOLUTIONS TO HOMEWORK 2

1. (i) Use the Euclidean algorithm:

3991 = 2025 · 1 + 1966

2025 = 1966 · 1 + 59

1966 = 59 · 33 + 19

59 = 19 · 3 + 2

19 = 2 · 9 + 1

2 = 2 · 1 + 0.

Then identifying the last non-zero remainder, we find that (3991, 2025) = 1.

(ii) Now we work backwards.

1 = 19− 2 · 9 = 19− (59− 19 · 3) · 9 = 19 · 28− 59 · 9
= (1966− 59 · 33) · 28− 59 · 9 = 1966 · 28− 59 · 933
= 1966 · 28− (2025− 1966 · 1) · 933 = 1966 · 961− 2025 · 933
= (3991− 2025 · 1) · 961− 2025 · 933 = 3991 · 961− 2025 · 1894.

Then 1 = 3991 · (961) + 2025 · (−1894), and so (x, y) = (961,−1894) is a
solution of the equation 3991x+ 2025y = 1.

(iii) If n is of the form 15x + 39y, then necessarily 3|n. We can solve 3m +
91z = 1 by using the Euclidean algorithm (or directly!): you may check that
3 · (−30) + 91 · 1 = 1. Now we solve 15x+ 39y = 3 · (−30). By the Euclidean
algorithm (or otherwise!), we may find the solution (x, y) = (8,−3) to the
equation 15x+39y = 3, and hence 15·8·(−30)+39·(−3)·(−30) = 3·(−30). So
15·(−240)+39·90+91·1 = 1, and a suitable solution is (x, y, z) = (−240, 90, 1)

2. Since (a, b) = 111, one has 111|a and 111|b, say a = 111A and b = 111B.
Then (A,B) = 1 and [111A, 111B] = 999, whence [A,B] = 9 and AB =
(A,B)[A,B] = 9. The latter implies that A|9 and B|9, so that A,B ∈ {1, 3, 9}.
But (A,B) = 1 and AB = 9, so {A,B} = {1, 9}. Then (a, b) must be one of
(111, 999) and (999, 111), both of which satisfy (a, b) = 111 and [a, b] = 999.

3. (i) The prime factorisation of a positive integer may be written uniquely
in the form n =

∏
p|n p

r(p), with the r(p) positive integers. By the division

algorithm, there are unique integers c(p) and d(p) with r(p) = 2c(p) + d(p)
and d(p) = 0 or 1, for each p. But then n can be written uniquely in the form

n = ab, where b =
(∏

p|n p
c(p)

)2

and a =
∏

p|n p
d(p). The proof is completed by

noting that a is squarefree, for otherwise, if m2|a with m > 1, then q2|a with
q a prime divisor of m, contradicting the prime factorisation of a.

(ii) Suppose that n is a squarefull number, and that for each prime number p
dividing n, the largest power of p dividing n is prp . Then one has rp ⩾ 2, so
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that for some kp ∈ Z⩾0, one has rp = 3kp + sp for some sp ∈ {2, 3, 4}. Each
element in the latter set may be written in the form sp = 2up + 3vp, with
up ∈ {0, 1, 2} and vp ∈ {0, 1}. Then

n =
∏
p|n

prp =
(∏

p|n

pup

)2(∏
p|n

pkp+vp
)3

,

and the desired conclusion is now immediate.

4. (i) All primes exceeding 3 have the form 3k + 1 or 3k + 2. Suppose that
there are just finitely many prime numbers of the shape 3k + 2. Let the set
of all such primes exceeding 3 be {p1, p2, . . . , pn}, and put Q = 6p1 . . . pn − 1.
Plainly, one cannot have pi|Q for any i with 1 ⩽ i ⩽ n. Further, neither 2 nor
3 divides Q. If the only primes dividing Q were of the form 3k + 1, then Q
would itself be of the form 3k + 1, which is not the case. So Q must have a
prime factor of the form 3k + 2 that is not one of p1, . . . , pn. This contradicts
our assumption that the latter are the only primes of such shape. So there are
infinitely many primes of the shape 3k + 2.

(ii) All primes exceeding 2 have the form 8k ± a with a = 1 or 3. Suppose
that all large enough primes are of the form 8k ± 1, so that there are only
finitely many of the form 8k± 3. Let the set of all such primes exceeding 3 be
{p1, p2, . . . , pn}, and put Q = 8p1 . . . pn − 3. Plainly, one cannot have pi|Q for
any i with 1 ⩽ i ⩽ n. Further, one sees that neither 2 nor 3 divides Q. If the
only primes dividing Q were of the form 8k ± 1, then Q would itself be of the
form 8k± 1, which is not the case. So Q must have a prime factor of the form
8k ± 3 that is not one of p1, . . . , pn. This contradicts our assumption that the
latter are the only primes of such shape. So there are infinitely many primes
not of the shape 8k ± 1, and the answer is “no!”.

5∗ [Hard]. Write ai = (2bi + 1)2ci , with bi, ci ∈ Z⩾0, for 1 ⩽ i ⩽ k. Then
1 ⩽ 2bi + 1 < 2n for each i, and hence 0 ⩽ bi ⩽ n − 1 for each i. Now if for
any i < j we have bi = bj, then since ai < aj, we have ci < cj, and so ai|aj,
which is a contradiction. So bi ̸= bj for i ̸= j. Then since there are at most n
distinct choices for bi, there are at most n elements ai, that is, one has k ⩽ n.

Suppose that k = n, and that m is the integer satisfying 3m < 2n < 3m+1.
By the preceeding argument, we see that for each integer j with 0 ⩽ j ⩽ n−1,
there is an i with bi = j. Let d be maximal with (2b1 + 1)3d < 2n, and
consider the (distinct) indices 1 < i1, . . . , id ⩽ k with 2bir + 1 = 3r(2b1 + 1),
for each integer r with 1 ⩽ r ⩽ d. Now, if cir ⩽ cir+1 , then air |air+1 . Then
we must have c1 > ci1 > · · · > cid , whence c1 ⩾ d. Since (2b1 + 1)3d+1 > 2n,
moreover, we have 3m < 2n < (2b1 + 1)3d+1. So 2b1 + 1 > 3m−d−1, that is,
2b1 ⩾ 3m−d−1. Now for each positive integer k, one has 3k−2 + 1 ⩾ 2k−1, and
so a1 = (2b1 + 1)2c1 ⩾ 2m−d2d = 2m.
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