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1. (i) Note that ϕ(1000) = ϕ(23)ϕ(53) = 22 · 52 · 4 = 400 and (83, 1000) = 1.
Then by Euler’s theorem, one finds that 837601 = (83400)19·83 ≡ 83 (mod 1000).
Thus the last three digits of 837601 must be 083.

Observe next that 52 ≡ 25 (mod 100), and 5(25) ≡ 25 (mod 100), so that
an obvious induction yields the conclusion that 5k ≡ 25 (mod 100) for each
k ⩾ 2. Consequently, the last two digits of 52025 are 25.

(ii) When n ⩾ 0, one has

25n+4 + 72n ≡ 16 · 32n + 49n ≡ 16 · 15n + 15n ≡ 17 · 15n ≡ 0 (mod 17).

Thus 17 divides 25n+4 + 72n for each n ⩾ 0.

2. (i) Fermat’s Theorem shows that for each integer x one has that x6 is con-
gruent to one of 0 and 1 modulo 7. Thus, if we suppose that x3 ≡ 4 (mod 7),
so that x6 ≡ 42 ≡ 2 (mod 7), then 2 must be congruent to one of 0 and 1
modulo 7. This gives a contradiction, and thus x3 ≡ 4 (mod 7) is insoluble.
Next, if x3−4y3 ≡ 0 (mod 7) is soluble with y ̸≡ 0 (mod 7), then y−1 (mod 7)
exists, and so there exists a residue z = xy−1 (mod 7) with z3 ≡ 4 (mod 7).
This yields a contradiction which shows that the only solution of x3 ≡ 4y3

(mod 7) is the trivial solution x ≡ y ≡ 0 (mod 7). But if x3 − 4y3 = 0 were
to have a non-zero integral solution, then by homogeneity one may suppose
that a solution exists with (x, y) = 1, and in particular with x ̸≡ 0 (mod 7) or
y ̸≡ 0 (mod 7). This contradicts our earlier deduction, whence the equation
x3 − 4y3 = 0 has no solution in rational integers except (x, y) = (0, 0).

Suppose now that 3
√
4 ∈ Q. Then there exist a, b ∈ Z with b > 0 and

a/b = 3
√
4, and a3−4b3 = 0 is soluble in integers (a, b) ̸= (0, 0). This contradicts

the conclusion of the previous paragraph, and thus 3
√
4 is irrational.

(ii) Suppose that x3 − 4y3 + 14z3 = 0 has a solution in integers other than
(x, y, z) = (0, 0, 0). By homogeneity we may suppose that one at least of x, y
and z is not divisible by 7. But this equation is soluble only when x3 ≡ 4y3

(mod 7), and this congruence has only the solution x ≡ y ≡ 0 (mod 7). Thus
7 ∤ z. Put x1 = x/7 and y1 = y/7, so that x1 and y1 are integers. Then making
a substitution and dividing through by 7, we obtain 2z3 + 72(x3

1 − 4y31) = 0.
Then 7|z, contradicting our earlier deduction. This contradiction shows that
the above equation possesses only the trivial solution.

3. (i) The integers 5, 19 and 3 are pairwise coprime and 5 · 19 · 3 = 285. If
3x ≡ 2 (mod 5), 2x ≡ 3 (mod 19) and 7x ≡ 5 (mod 3), then x ≡ 4 (mod 5),
x ≡ 11 (mod 19) and x ≡ 2 (mod 3). We seek solutions to the congruences

(19 · 3)y1 ≡ 1 (mod 5), (3 · 5)y2 ≡ 1 (mod 19), (5 · 19)y3 ≡ 1 (mod 3),

so that 2y1 ≡ 1 (mod 5), 15y2 ≡ 1 (mod 19), 2y3 ≡ 1 (mod 3). We therefore
deduce that y1 ≡ 3 (mod 5), y2 ≡ −5 (mod 19), y3 ≡ 2 (mod 3). Thus, by
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the Chinese Remainder Theorem, the required solution is

x ≡ (19 · 3) · 3 · 4 + (3 · 5) · (−5) · 11 + (5 · 19) · 2 · 2 = 239 (mod 285).

So a suitable integer is 239, and any integer of the form 239 + 285k (k ∈ Z),
satisfies the same property.

(ii) The integers 7, 23 and 9 are pairwise coprime and 7 · 23 · 9 = 1449. If
3x ≡ 2 (mod 7), 5x ≡ 3 (mod 23) and 7x ≡ 5 (mod 9), then x ≡ 3 (mod 7),
x ≡ −4 (mod 23) and x ≡ 2 (mod 9). We seek solutions to the congruences

(23 · 9)y1 ≡ 1 (mod 7), (7 · 9)y2 ≡ 1 (mod 23), (7 · 23)y3 ≡ 1 (mod 9),

so that 4y1 ≡ 1 (mod 7), 17y2 ≡ 1 (mod 23), 8y3 ≡ 1 (mod 9). We therefore
deduce that y1 ≡ 2 (mod 7), y2 ≡ −4 (mod 23), y3 ≡ −1 (mod 9). Thus, by
the Chinese Remainder Theorem, the required solution is

x ≡ (23·9)·2·3+(7·9)·(−4)·(−4)+(7·23)·(−1)·2 ≡ 1928 ≡ 479 (mod 1449).

So a suitable integer is 479, and any integer of the form 479 + 1449k (k ∈ Z),
satisfies the same property.

(iii) If the integer x satisfies 2x ≡ 5 (mod 15) and 5x ≡ 7 (mod 33), then in
particular we have 2x ≡ 2 (mod 3) and 2x ≡ 1 (mod 3), whence 1 ≡ 2x ≡ 2
(mod 3), leading to a contradiction. Then there are no solutions to this pair
of simultaneous congruences.

4. (i) Suppose that there are only finitely many primes of the shape 4k + 1,
say p1, . . . , pn. Let P = 2p1p2 · · · pn, and put Q = P 2 + 1. Then Q is odd,
and if p|Q, then x2 + 1 ≡ 0 (mod p) has the solution x = P . Then the
prime divisors of Q are all congruent to 1 modulo 4. By construction, one has
(Q, pi) = (P 2+1, pi) = 1 for each i, because pi|P . Then none of the finite set of
primes congruent to 1 modulo 4 divide Q. We have arrived at a contradiction,
and this proves that there are infinitely many primes of the shape 4k + 1.

(ii) Suppose that there are only finitely many primes of the shape 8k + 5, say
p1, . . . , pn. Let P = p1p2 . . . pn, and put Q = (2P )2 + 1. Then Q is odd, and
if p|Q, then x2 + 1 ≡ 0 (mod p) has the solution x = 2P . Then the prime
divisors of Q are congruent to 1 modulo 4. Since P is odd and 2 ∤ P , one has
P 2 ≡ 1 (mod 8). Thus 4P 2+1 ≡ 5 (mod 8), and hence Q is divisible by some
prime π not congruent to 1 modulo 8. But the primes dividing Q are congruent
to 1 modulo 4, so the only possibility is that π ≡ 5 (mod 8). Moreover, one
has (Q, pi) = (4P 2+1, pi) = 1 for each i, because pi|P . Then none of the finite
set of primes congruent to 5 modulo 8 divide Q. This gives a contradiction,
proving that there are infinitely many primes of the shape 8k + 5.

5. (i) One has (n, n+ 1) = 1, and hence any prime divisor π of n+ 1 does not
divide n. The desired conclusion follows on noting that π ⩽ n+ 1.

(ii) By the binomial theorem, for each natural number n one has

qn ⩾ 2n = (1 + 1)n ⩾

(
n

1

)
+ 1 = n+ 1.
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(iii) Suppose that p is the least prime not dividing n, and write p − 1 =
πa1
1 . . . πam

m , where π1 < . . . < πm are prime numbers and ai ∈ N. We must
have πi|n for each i, and moreover parts (ii) and (i), respectively, show that
πn
i ⩾ n + 1 ⩾ p. In particular, it follows that ai ⩽ n for each i, and hence

πa1
1 . . . πam

m |(π1 . . . πm)
n. Since also π1 . . . πm|n, it follows that πa1

1 . . . πam
m |nn,

whence (p− 1)|nn.

(iv) Suppose that π is a prime number dividing n. Then since (n, nnn −1) = 1,
we see that π does not divide nnn − 1. Then the only prime divisors of nnn − 1
do not divide n. Let p be the least prime not dividing n. From part (iii) we
have (p − 1)|nn, say nn = l(p − 1). Then by Fermat’s Little Theorem, since
we have (n, p) = 1, one finds that nnn − 1 = (np−1)l − 1 ≡ 0 (mod p), whence
p|(nnn − 1). Thus, the least prime not dividing n is the smallest prime divisor
of nnn − 1.

(v) Now let pk be the k-th smallest prime, and put n = p1p2 . . . pk. The
smallest prime number not dividing n is pk+1, and by part (iv) one sees that
this is the smallest prime divisor of nnn − 1.

©Trevor D. Wooley, Purdue University 2025. This material is copyright of
Trevor D. Wooley at Purdue University unless explicitly stated otherwise. It
is provided exclusively for educational purposes at Purdue University, and is
to be downloaded or copied for your private study only.


