
SOLUTIONS TO HOMEWORK 4

1. (i) By inspection (or by observing that (1
2
(p − 1)!)2 ≡ −1 (mod p) when

p ≡ 1 (mod 4)), one finds that 22 ≡ −1 (mod 5) and 42 ≡ −1 (mod 17). It
therefore follows that whenever x ≡ 2 (mod 5) and x ≡ 4 (mod 17), then
x2 ≡ −1 (mod 85). But a solution of the congruence 17y1 ≡ 1 (mod 5) is
given by y1 = 3, and a solution of the congruence 5y2 ≡ 1 (mod 17) is given
by y2 = 7. Then since 85 = 5 · 17, it follows from the Chinese Remainder
Theorem that a solution of the desired type is

x = 17 · 3 · 2 + 5 · 7 · 4 = 242 ≡ −13 (mod 85).

(ii) The congruence x2 ≡ −1 (mod 5) has the 2 solutions x ≡ ±2 (mod 5),
and the congruence x2 ≡ −1 (mod 17) has the 2 solutions x ≡ ±4 (mod 17).
Then, by the Chinese Remainder Theorem, the congruence x2 ≡ −1 (mod 85)
has 2 · 2 = 4 solutions modulo 85.

2. (i) By Fermat’s Little Theorem, for all integers a one has ap ≡ a (mod p),
and hence ap − a + 1 ≡ 1 (mod p). Thus we see that xp − x + 1 ≡ 0 (mod p)
has no integral solution.

(ii) If (x, 40) = d, then d|(x16−x). Consequently, if x16−x+3 ≡ 0 (mod 40),
we see that x16 − x+3 ≡ 0 (mod d), and hence d|3. But d|40 and (40, 3) = 1,
and so d = 1. Observe next that φ(40) = φ(8)φ(5) = 4 · 4 = 16. Thus, when
(a, 40) = 1, it follows from Euler’s theorem that a16 ≡ 1 (mod 40). In such
circumstances, it follows that a16−a+3 ≡ 4−a (mod 40). Then if (x, 40) = 1,
we have x16−x+3 ≡ 0 (mod 40) if and only if x ≡ 4 (mod 40), yet (4, 40) ̸= 1,
so we arrive at a contradiction. Hence, the equation x16 − x+3 ≡ 0 (mod 40)
has no solutions.

3. One has 561 = 3 ·11 ·17. By Fermat’s Little Theorem, whenever (a, 561) =
1, one has a2 ≡ 1 (mod 3) because (a, 3) = 1, and a10 ≡ 1 (mod 11) because
(a, 11) = 1, and a16 ≡ 1 (mod 17) because (a, 17) = 1. Hence, for all integers
a with (a, 561) = 1 one has

a560 = (a2)280 ≡ 1 (mod 3),

a560 = (a10)56 ≡ 1 (mod 11),

a560 = (a16)35 ≡ 1 (mod 17).

Thus we conclude that a560 ≡ 1 (mod 561), since 561 = 3 · 11 · 13.

4. (a) If x2 + x ≡ 0 (mod pk), then pk|x(x+1). But (x, x+1) = (x, 1) = 1, so
the latter implies that pk|x or pk|(x + 1), whence x ≡ 0 (mod pk) or x ≡ −1
(mod pk). Plainly, both of these residue classes yield a solution, so we find
that the congruence f(x) ≡ 0 (mod pk) has precisely two solutions for each k.
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(b) Let N(m) denote the number of solutions of the congruence f(x) ≡ 0
(mod m). Then N(m) is a multiplicative function of m satisfying N(pk) = 2
for each prime power pk. Thus, writing r for the number of different prime
numbers dividing m,we obtain

N(m) =
∏
pk∥m

N(pk) =
∏
p|m

2 = 2r.

5. (a) The Euclidean Algorithm supplies integers r and s with r(p− 1)+ sn =
(n, p − 1) = 1, so that (xn)s(xp−1)r = xns+r(p−1) ≡ x (mod p). If xn ≡ a
(mod p), then as a consequence of Fermat’s Little Theorem, one obtains x ≡ as

(mod p), and so we conclude that the congruence has precisely one solution.

(b) Suppose that (n, p− 1) = d, and that xn ≡ 1 (mod p). By the Euclidean
algorithm, there exist integers u and v with nu+(p−1)v = (n, p−1) = d. Then
by Fermat’s Little Theorem, one has xd ≡ (xn)u(xp−1)v ≡ 1 (mod p). We saw
in class that when d|(p − 1), the congruence yd ≡ 1 (mod p) has precisely d
solutions modulo p, and so it follows that there are precisely d solutions for x.
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